Asymptotic Preserving and Positive Schemes for Radiation Hydrodynamics

Christophe Bueta Bruno Despresa

aDépartement des Sciences de la Simulation et de l’Information, Commissariat à l’Énergie Atomique, 91680, Bruyères le Chatel, BP 12, France

Abstract

In view of radiation hydrodynamics computations, we propose an implicit numerical scheme that captures the diffusion limit of the two-moments approximate model for the radiative transfer. We prove by construction the limited flux property. Various test cases show the accuracy and robustness of the scheme.

\textit{Key words:} radiation hydrodynamics, diffusion limit, flux limited and monotone scheme.

1 Introduction

The aim of this work is devoted to accurate discretization of radiation hydrodynamics by means of Eulerian finite volume methods. In this direction we study and discretize a non linear two-moments model \((1)\) for radiation in the Eulerian frame written in one space dimension. The model, called in the next \(M^1\), derives from a maximum entropy principle as in [10,28,19,20,27,5,8]. This model and the related ones are stiff models, the stiffness parameter is \(\varepsilon\) small. For ICF (inertial confinement fusion applications) \(\varepsilon \approx 10^{-3}\). There are some regions of the space with very little interactions between the radiation and the matter and other regions with strong interactions with the matter. The case of little interactions is called the streaming regime. For strong interaction it is possible to derive diffusion approximations of \((1)\). This is called the diffusion regime. Among the numerical methods that have been proposed for the discretization of simplified radiation models, we distinguish

Email addresses: christophe.buet@cea.fr (Christophe Buet), bruno.despres@cea.fr (Bruno Despres).

12 July 2005
between discretization of diffusion approximations and direct discretization of
two-moment models. Concerning numerical method for the discretization of
diffusion approximations we quote [18] in which a technique of flux limiting
is discussed in details. The technique of flux limiting allows to extend the do-
main of validity of these diffusion approximations to the streaming regime. We
exhibit a new intermediate interaction regime, of pure hyperbolic type. The
limit equation can be written in divergent form or in non divergent form. We
privilege the divergence form of this equation. This is different from the work
of [9] where the non divergent formulation is used for the radiation energy.
This is important for the numerics since a non divergent discretization may
converge to wrong discontinuous solutions [17]. It has been noticed since a long
time, in the work of Mihalas [25] for example, that a direct discretization of a
two-moments models can help to get a better discretization for both stream-
ing and diffusion regimes. In this direction, the question is how to discretize
”correctly” a two-moments model for the radiation in the non relativistic case,
that is for ε small, and at the matter scale. That is, we desire to adapt the
grid according to the length scale of the matter. From the point of view of
photons the grid is coarse. Among the works dedicated to this specific problem
we point out [22–24,2].

We show on a simple example that freezing naively the Eddington factor dur-
ing the time step gives a non positive implicit linear discretization of the
problem. This is based on the fact that the linear implicitation of the HLL
solver is non positive. The new method we propose has the following features

Positivity of the scheme: the scheme guarantees the flux limited property
at the discrete level $|F_r| \leq 1$, these is useful essentially in the streaming regime.
Be careful that this flux limiting has nothing to do with the numerical tricks
used for the discretization of diffusion approximations of two-moments mod-
elns.

Correct diffusion limits: the equilibrium and non equilibrium diffusion lim-
its of the scheme is correct,

Correct hyperbolic limit: the numerical treatment of the purely hyperbolic
limit (8) is compatible with the divergent form of the equation.

Time step requirement: the scheme is explicit for the hydrodynamic part
and totally implicit for the radiation part. Therefore the only CFL limitation
comes from the hydrodynamic part.

The first three properties are true at the PDE level for the basic two- moments
model. Unfortunately it turns out to be extremely difficult to obtain them for
a direct discretization of the M^1 model (1).

The first ingredient to obtain all these properties is a splitted approxima-
tion of (1). Usually this kind of model is called a co-moving frame radiation
hydrodynamics model, see [26,21,2]. The model consists in transporting the
radiation entropy and the radiation entropy flux at velocity v, then to dis-
cretize (1) with the matter at rest. This splitted approximation has almost
zero additional numerical cost. The maximal hyperbolic wave velocity of the
splitted approximation is $\frac{1}{\varepsilon} \pm u$ which slightly exceeds the physical maximal
wave velocity $\frac{1}{\varepsilon}$ of the left hand side of (1). The physical maximal wave ve-
locity $\frac{1}{\varepsilon}$ is the velocity of light in dimensional variables. This is shared with
other co-moving frame radiation hydrodynamics model like [26,21,2]. However
slight violation of the velocity of light in very rare cases is much better
than diffusion approximations without flux limiting of the diffusion coefficient.
Even with flux limiting of the diffusion coefficient it is difficult to guarantee
a correct velocity for the front propagation in transparent materials. In this
work we only consider an explicit discretization of the hydrodynamics part.
On the other hand, the radiative step of the splitted model is discretized by
an implicit method. The reason is the high speed of the radiation signal which
is much greater than the mean velocity of the matter. Since we are interested
in the time scale of the matter, the radiation must treated implicitly.

The second ingredient lies in the discretization of the radiative step. The nu-
erical scheme for the radiative step must be consistent with the diffusion
approximation in opaque region and must preserve the flux limited property.
It is well known, [14,15,29], that in opaque region standard finite volumes
scheme leads to a wrong coefficient of diffusion for coarse grid. Last decade
"asymptotic preserving schemes" (AP scheme), [14,15,29,12], have been de-
veloped in order to recover the correct diffusion asymptotic limit. Thus AP
schemes seems to be the good tool for radiative two-moment models. But
actual AP schemes suffer of some limitations. Semi implicit AP scheme like
those proposed in [15,14] can handle non-linear system but are, in the best
case, only positive and stable under a parabolic CFL condition and this not
acceptable for our purpose since we do not want such time limitation. The
AP scheme proposed by Gosse in [12] has a better stability property, but it is
difficult to extend this scheme for non linear systems: Moreover the method
used in [12] seems quite impossible to extend for a resonant problem like the
one we study in this work. Therefore we have developed a new discretization
of radiation part of the model. This implicit discretization is unconditionally
positive and has the correct diffusion limit. It is based on two basic schemes.
The first one is a "relaxation" scheme, see for example[16], which has the ad-
vantage to transform the initial non linear problem into a linear one: this is
why we solve two linear systems at each time step. The second one is the AP
scheme described [12], in order to obtain the right asymptotic diffusion limit
with no time limitation for the positivity. This discretization of the radiative
step is an improved version of the one proposed in [7], for the definition of the
relaxation scheme, since it can handle more efficiently opaque and transparent
zones. Concerning the cost of such a discretization, let us mention that in one
dimension the matrix can be inverted by the a low cost algorithm like the LU
one.

The plan is as follows. In the second section we study the M^1 model for
the radiation and recall various diffusion approximations of this model. In
the third section we derive what we call splitted approximations for the M^1
model. Numerical scheme for each part of the splitting are propose in the
fourth section. In particular we show their positiveness . In the fifth section
we shown some numerical results to demonstrate the features of the numerical
scheme. Some of these concern the full system of hydrodynamics coupled with
radiation. The final section is the conclusions. We sketch future developments
of the method.

2 Basic equations

2.1 The two-moments model M^1

We consider the following two-moments model for radiation in the Eulerian
frame and written with non dimensional variables in one space dimension (see
[8] for the full derivation):

$$\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{1}{\varepsilon} \frac{\partial}{\partial x} F_r &= \frac{7\pi}{\varepsilon^2} (T^4 - E_r + \varepsilon v F_r) - \frac{2\pi}{\varepsilon} v F_r^0, \\
\frac{\partial}{\partial t} F_r + \frac{1}{\varepsilon} \frac{\partial}{\partial x} P_r &= -\frac{7\pi}{\varepsilon^2} v F_r^0 - \frac{2\pi}{\varepsilon} F_r^0, \\
P_r &= \chi E_r, \quad \chi = \frac{3+4f^2}{5+2\sqrt{4-3f^2}}, \quad f = F_r/E_r.
\end{align*}$$

(1) eq:10

In this model E_r is the energy of radiation, F_r is the flux of radiation, P_r is
the pressure of radiation and χ is called the Eddington factor. f measures
the anisotropy of radiation. For physical reasons the modulus of f is bounded
by one, $|f| \leq 1$. This Eddington factor was proposed first by Levermore [18]
and can be recovered from a maximum entropy principle as in [28,19,20,27,5].
For a matter at rest, it can be checked , by means of the Godunov method,
that solutions of the system (1) for a general Eddington factor χ verify this
flux limited property provided that the initial condition satisfy it and if the
Eddington factor χ is a even convex positive function satisfying $\chi(\pm 1) = 1$.
The Eddington factor considered here have these properties. We point out
that for the P^1 model, the Eddington factor is a constant function $\chi = 1/3$,
and thus solutions of (1) does not verify $|F_r| \leq E_r$. Since the P^1 model is
linear, this can be trivially checked.

This system has two exterior parameters. The first one is T the temperature
of the matter. ε is a small parameter that measures the velocity of light versus
the sound velocity in the matter. For non relativistic plasmas the velocity
of the matter can be assumed of the same magnitude than sound velocity
in the matter, therefore is also small with respect to the velocity of light.
The second exterior parameter is v the velocity of the matter. Therefore $\gamma = 1/\sqrt{1-\varepsilon^2|v|^2} \geq 1$ is very close to one for non relativistic plasmas. F^0_r is the radiation flux energy measured in the co-mobile reference frame that moves with the matter $F^0_r = \gamma^2 \left((1+\varepsilon^2v^2)F_r - \varepsilon v(E_r+P_r) \right)$. The particular form of the right hand side is due to the underlying compatibility of the relaxation source terms with the Lorentzian invariance of radiation. The absorption-emission opacity σ_a and the scattering opacity σ_s are mean opacities. In practice there are functions of T and the density of the matter. This model, (1), comes from a maximum entropy principle with Lorentzian invariant source terms [8]. In particular one can take $\gamma = 1$ in (1). Other simpler sources have been proposed in the literature [21]. The conclusions of the present study are easy to generalize to the source terms of [21] which are very close to the ones used in this work.

2.2 Hyperbolicity and entropy of the radiation

The M^1 model (1) is strictly hyperbolic for $0 \leq f^2 < 1$ and $1 < f^2 < 4/3$. For $f^2 = 4/3$ is non more differentiable. For $f = 1$ the Jacobian matrix of the flux is

$$\frac{\partial(F_r, P_r)}{\partial(E_r, F_r)} = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}.$$ Therefore the system is only weakly hyperbolic at $f = \pm 1$.

We notice that $f = \pm 1$ corresponds to a strongly non isotropic radiation flux. Since the eigenvalues coincide for $f = \pm 1$ it means the system is resonant for $|F_r| = E_r$.

The method of moment assumes the intensity of the radiation is the generalized Planckian $I_{\nu} = \frac{4\pi}{15} \frac{\nu^3}{\epsilon^4 + \frac{\nu^4}{\nu^2} - 1}$. The energy of radiation and the radiation flux can also be computed with respect to T_r and b. One has $E_r = \int \int I(\nu, n)d\nu dn$, $F_r = \int \int nI(\nu, n)d\nu dn$ and $P_r = \int \int n \otimes nI(\nu, n)d\nu dn$. After some standard calculations [28,1] one gets

$$E_r = T_r^{3} \frac{3 + b^2}{3(1 - b^2)^3}, \quad F_r = -T_r^{4} \frac{4b}{3(1 - b^2)^3}.$$ (2) eq:2.5

Let S_r and Q_r be the entropy and entropy flux of the radiation defined by $S_r = -\frac{15}{4\pi} \int \nu^2 (n \log n - (n + 1) \log(n + 1)) d\nu dn$ and $Q_r = -\frac{15}{4\pi} \int \nu^2 (n \log n - (n + 1) \log(n + 1)) n d\nu dn$. One gets the simplified expressions

$$S_r = 4 \frac{T_r^3}{3(1 - |b|^2)^2}, \quad Q_r = -bS_r.$$ (3) eq:10.2

The mapping $(E_r, F_r) \mapsto (T_r, b)$ is degenerate for $b = \pm 1$. Since $\frac{F_r}{E_r} = f =$
\[-\frac{4b}{3+\varepsilon^2}, \text{ then } b = \pm 1 \] is equivalent to \(f = \mp 1 \). It has been proved in [8] (anyway this is compatible with the theory of moment for hyperbolic system of conservation laws, see [18]) that an algebraic combination of the two equations of the system (1) gives the equation
\[
\frac{\partial}{\partial t} S_r + \frac{1}{3} \frac{\partial}{\partial x} Q_r = \frac{1}{T_r} S_E + \frac{b}{T_r} S_F.
\]
This comes from the second principle of thermodynamic for the moment model, namely
\(T_r dS_r = dE_r + bdF_r \).

2.3 Equilibrium diffusion limit

Very classically [21,22] the equilibrium diffusion limit of (1) is recovered with the scaling \(\sigma_a = O(1) \) and \(\sigma_s = O(1) \). Then of course the dominant contribution in the right hand side of (1) is due to \(\sigma_a \). One gets
\[
E_r = T^4 + O(\varepsilon),
\]
\[
F_r = -\varepsilon \frac{1}{\sigma_a + \sigma_s} \frac{\partial}{\partial x} P_r + \varepsilon^2 T^4 + O(\varepsilon^2)
\]
and
\[
P_r = \frac{1}{3} T^4 + O(\varepsilon).
\]
Since \(F_r = O(\varepsilon) \) then \(\chi \approx \frac{1}{3} \). Assuming \(v = 0 \) a typical diffusion equilibrium model for the temperature is [21]
\[
\frac{\partial}{\partial t} (T + T^4) = \frac{1}{3(\sigma_a + \sigma_s)} \partial_x T^4.
\]

This type of model is only valid in opaque materials, but is also used outside of its natural validity domain in transparent materials for which \(\sigma_a \) and \(\sigma_s \) are very small. To see what is the problem in transparent materials it is sufficient to remember the model is degenerate parabolic and admits finite speed of propagation for the fronts \(T = 0 \). At the front the temperature can be expanded like
\[
T \approx C|x - x_f(t)|^{\frac{1}{3}}.
\]
The speed of propagation of the front is
\[
x_f(t) = \frac{1}{3(\sigma_a + \sigma_s)} \partial_x T^3.
\]
Provided \(\partial_x T^3 = O(1) \) the propagation of the front is highly non physical in transparent materials since the \(|x_f(t)| \rightarrow \infty \). In any cases \(|x_f(t)| \) should be smaller than \(\frac{1}{\varepsilon} \).

2.4 Non-equilibrium diffusion limit

It has recently been noticed that the scaling \(\sigma_a = O(\varepsilon) \) and \(\sigma_s = O(1) \) helps to get a non-equilibrium diffusion limit of the \(M^1 \) model. Here non-equilibrium means that \(E_r \neq T^4 \). It explains why \(\sigma_a \) needs to be small. On the other hand \(\sigma_s \) is kept of order one, so that the \(M^1 \) model admits a diffusion limit. Thus the model we presents hereafter is a simple non trivial model for the coupling of radiation and hydrodynamics. With the above scaling one gets
\[
E_r = T^4 + O(\varepsilon),
\]
\[
F_r = -\varepsilon \frac{1}{\sigma_s} \frac{\partial}{\partial x} T^4 + \varepsilon^2 T^4 + O(\varepsilon^2)
\]
and
\[
P_r = \frac{1}{3} T^4 + O(\varepsilon).
\]
these asymptotics and definitions, then the equation for \(E_r \) becomes

\[
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(-\frac{1}{\sigma_s} \frac{\partial}{\partial x} E_r + \frac{4}{3} v E_r \right) = \sigma_a (T^4 - E_r) + v \frac{\partial}{\partial x} (\frac{1}{3} E_r).
\] (5) \[eq:26\]

One gets

\[
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} (v E_r) + \frac{E_r}{3} \frac{\partial}{\partial x} v = \sigma_a (T^4 - E_r) + \frac{1}{\sigma_a + \sigma_s} \frac{\partial}{\partial x} E_r.
\] (6) \[eq:28\]

Thus the radiation energy \(E_r \) is the solution of a fluid like equation with pressure \(P_r = \frac{1}{3} E_r \). In (6) the velocity is a given function of time and space \(v = v(t, x) \): \(\frac{\partial}{\partial x} v \neq 0 \) a priori. Therefore \(v \) may be discontinuous. Other approximations of the two-moments model exist in the literature. One commonly used consists in using (6) with another definition of the radiative pressure and with \(\sigma_t = \sigma_a + \sigma_s \) in the right hand side. One gets

\[
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} (v E_r) + \frac{E_r}{3} \frac{\partial}{\partial x} v = \sigma_a (T^4 - E_r) + \frac{1}{\sigma_a + \sigma_s} \frac{\partial}{\partial x} E_r.
\] (7) \[eq:29\]

It means that \(\sigma_a \) is no more considered as a very small quantity with respect to \(\sigma_s \). We will use this model in the numerical section. The interest of such models is clear. Paraphrasing [26]: The radiation temperature \(T_r \) can be quite different from the material temperature. The spectrum of the radiation field can be non-Planckian.

The model (7) has the same limitation than equilibrium diffusion approximation like (4) in transparent materials, that is \(\sigma_a \) and \(\sigma_s \) small. However a new intermediate regime appears. Let us assume that \(\sigma_a \) is small and \(\sigma_s \) large. For example \(\sigma_a = O(\varepsilon) \) and \(\sigma_s = O(\varepsilon^{-1}) \). In this case the equation becomes

\[
\frac{\partial}{\partial t} \frac{E_r^3}{3} + \frac{\partial}{\partial x} v \frac{E_r^3}{3} = 0 \iff \frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} v E_r + \frac{E_r}{3} \frac{\partial}{\partial x} v = 0.
\] (8) \[eq:3.bis\]

The equation can be written in divergence form on the left and in non divergence form on the right. The \(\frac{E_r^3}{3} \) term in the non divergence form is thermodynamic pressure of radiation [26]. The divergence form of the equation if a conservation equation for \(E_r^3 \) which is the number of photons at equilibrium. Assuming the matter encounters a shock, the velocity \(v \) is the discontinuous. Therefore a continuous the radiation energy \(E_r \) is required to give a non ambiguous value to the non conservative product \(\frac{E_r}{3} \frac{\partial}{\partial x} v \). Unfortunately the hypothesis \(\sigma_s = O(\varepsilon^{-1}) \) implies a vanishing diffusion and possible discontinuity of \(E_r \) at the limit. So the non conservative product \(\frac{E_r}{3} \frac{\partial}{\partial x} v \) can be ambiguous.
On the other hand the divergence form of the equation is non ambiguously defined for a discontinuous velocity. The Rankine Hugoniot relations for the divergence formulation of (8) are

\[-D[T^3_r] + [vT^3_r] = 0, \quad E_r = T^4_r.\]

\(D\) is the shock velocity. Assuming radiation is at equilibrium the radiation entropy is \(S_r = T^3_r\) and is also equal to the number of photons. Therefore the physical meaning of this RH relation is that the integrated number of photons \(\int T^3_r\) is conserved through the discontinuity. This is compatible with what is proposed at the numerical in [26], where no numerical viscosity is used for radiation. The situation is very closed to ion-electron fluid models, for which the correct Rankine Hugoniot relation is obtained with the entropy of electron, see [35]. There is no entropy deposit on electrons or photons at shocks. This principle is compatible with the conservation of total energy, the total energy being the sum of the radiation energy and the fluid energy. For contact discontinuities \(D = v_L = v_R\) the Rankine Hugoniot vanishes.

2.5 Splitting method for the non-equilibrium diffusion limit

Our main idea is that we desire to use asymptotic preserving schemes for the discretization of the \(M^1\) model. Such asymptotic schemes exist for the diffusion limit of the telegraph system: they can be used to design a scheme for the case \(v \equiv 0\) that is for the \(M^1\) model with a zero velocity fluid. This is not sufficient for our purposes.

Before presenting the family of scheme, we begin with a preliminary remark about the discretization of the non equilibrium diffusion limit equation (6). The idea is to solve (6) with a splitting technique. This is we solve separately during the same time step

\[\partial_t S_r + \partial_x v S_r = 0, \quad S_r = \frac{4}{3} T^3_r\]

followed by

\[\partial_t E_r = \sigma_a (T^4_r - E_r) + \frac{1}{\Delta t} \partial_x \left(\frac{1}{3 T_r} \partial_x E_r \right), \quad E_r = T^4_r.\]

(9) [eq:31]

The first equation in (9) is, for smooth solutions, algebraically equivalent to \(\partial_t E_r + \partial_x v E_r + \frac{1}{3} T^3_r \partial_x v = 0\). Thus (9) is indeed a convenient way to split (6) into two separate parts. Note that the first equation in (9) is a first order conservation law, that can be easily discretized with a finite volume technique, while the second equation is of parabolic type and is easily discretized with a symmetric positive diffusion matrix. The implicit linear system can be solved
with a conjugate gradient algorithm, which reveals very powerful (both in term of accuracy and speed) for this problem.

3 Splitted approximations of the M^1 model

Our aim is at the description of splitted approximation of the M^1 model, in view of the discretization of (1) such that (6) is by construction an asymptotic limit of the scheme. We also take care of the natural reality condition that says that $\frac{|F_r|}{E_r} \leq 1$. This comes from $\frac{|F_r|}{E_r} = \left| \int \int I(\nu,n) d\nu d\omega \right| \leq 1$ for a smooth smooth intensity I. Straightforward but lengthy calculations show that

Proposition 1 Assuming that $T_r > 0$ then

$$|b| < 1 \iff \frac{|Q_r|}{S_r} < 1 \iff \frac{|F_r|}{E_r} < 1.$$ \hspace{1cm} (10) \hspace{1cm} \text{eq:30.5}

From (2) and (3) it is sufficient to prove that prove that : $-1 < b < 1$ implies $-1 < \frac{db}{3b^2} < 1$. The range $-1 < b < 1$ is the physical range in which the physical solution is searched. The inequalities are strict because the map $(E_r, F_r) \rightarrow (S_r, Q_r)$ is singular at $b = \pm 1$. A convenient way to extend the range to $-1 \leq b \leq 1$ is proposed in section 3.2.

3.1 Splitting method for the M^1 model

We generalize the splitting method of (9). The first part of the splitting is written as

$$\begin{cases}
\frac{\partial}{\partial t} S_r + \frac{\partial}{\partial x} v S_r = 0, \\
\frac{\partial}{\partial t} Q_r + \frac{\partial}{\partial x} v Q_r = 0.
\end{cases}$$ \hspace{1cm} (11) \hspace{1cm} \text{eq:40}

The first equation is natural, in the sense that it is the first equation of (9). The second equation is arbitrary : notice however that a consequence will be the compatibility with the realizability condition (10).

Proposition 2 Assume the velocity filed v is smooth. Assume that $\frac{|Q_r|}{S_r} < 1$ for all x at $t = 0$. Then $\frac{|Q_r|}{S_r} < 1$ for all x and for all $t > 0$.

A algebraic consequence of (11) is $\frac{\partial}{\partial t} \frac{Q_r}{S_r} + v \frac{\partial}{\partial x} \frac{Q_r}{S_r} = 0$. So the parameter $b = -\frac{Q_r}{S_r}$ is just transported by the equation. It ends the proof.
Proposition 3 The system (11) is algebraically equivalent to

\[
\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} v E_r + \frac{1}{3} E_r \frac{\partial}{\partial x} v &= 0, \\
\frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x} v F_r + \frac{1}{3} F_r \frac{\partial}{\partial x} v &= 0.
\end{align*}
\]

(12) \text{eq:41}

A proof is as follows. The system (11) is also

\[
\frac{\partial}{\partial t} S_r + v \frac{\partial}{\partial x} S_r + S_r \frac{\partial}{\partial x} v = 0 \quad \text{and} \quad \frac{\partial}{\partial t} Q_r + v \frac{\partial}{\partial x} Q_r + Q_r \frac{\partial}{\partial x} v = 0.
\]

Since one has

\[
dE_r = \frac{\partial E_r}{\partial S_r} dS_r + \frac{\partial E_r}{\partial Q_r} dQ_r
\]

then

\[
\frac{\partial}{\partial t} E_r + v \frac{\partial}{\partial x} E_r + \left(\frac{\partial E_r}{\partial S_r} S_r + \frac{\partial E_r}{\partial Q_r} Q_r \right) \frac{\partial}{\partial x} v = 0.
\]

(13) \text{eq:42}

From its definition one has

\[
E_r = \frac{4}{3} S_r^\frac{2}{3} \varphi \left(\frac{Q_r}{S_r} \right).
\]

Then

\[
\frac{\partial E_r}{\partial S_r} S_r + \frac{\partial E_r}{\partial Q_r} Q_r = \left(\frac{4}{3} S_r^\frac{2}{3} \times \varphi \left(\frac{Q_r}{S_r} \right) - S_r^\frac{2}{3} \frac{Q_r}{S_r} \varphi' \left(\frac{Q_r}{S_r} \right) \right) S_r
\]

\[
+ \left(S_r^\frac{2}{3} \frac{1}{S_r} \varphi' \left(\frac{Q_r}{S_r} \right) \right) Q_r = \frac{4}{3} E_r.
\]

Using this in (13) it gives the first equation of (12). Concerning the second equation in (12) we note that

\[
F_r = \frac{4}{3} S_r^\frac{2}{3} \psi \left(\frac{Q_r}{S_r} \right).
\]

Therefore a similar algebra ends the proof of the proposition.

Now we subtract (12) to the M^1 model (1). This subtraction allows to reconstruct (1) using the splitting method. The subtraction is valid only for the derivatives in space, and not in time. We get

\[
\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(\frac{E_r}{\varepsilon} - v E_r \right) - \frac{E_r}{3} \frac{\partial}{\partial x} v &= S_E, \\
\frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x} \left(\frac{F_r}{\varepsilon} - v F_r \right) - \frac{F_r}{3} \frac{\partial}{\partial x} v &= S_F,
\end{align*}
\]

(14) \text{eq:43}

We claim that the non-equilibrium diffusion limit of (14) is (5) but with $v \equiv 0$. This property means that the splitting method has really subtract the drift effect due to the Lorentzian compatibility of the model.

Proposition 4 Whatever v is, the non-equilibrium diffusion limit ($\sigma_a = O(\varepsilon^2)$ and $\sigma_s = O(1)$) of the system (14) is the second equation of (9), that is

\[
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(\frac{1}{\sigma_s} \frac{\partial}{\partial x} E_r \right) = \sigma_a (T^4 - E_r).
\]

(15) \text{eq:44}
This property means that if we set $v = 0$ in (14) then we respect the non-equilibrium diffusion limit of the M^1 model, provided we use the splitting method. If $v \equiv 0$ the system (14) is the standard radiation M^1 model with the matter at rest.

The splitted model is made of (11) followed by (14) where we have set $v = 0$. This model is composed of (11) followed by

$$\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(\frac{E_r}{\varepsilon} \right) &= \frac{\sigma_a}{\varepsilon^2} (T^4 - E_r), \\
\frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x} \left(\frac{P_r}{\varepsilon} \right) &= -\frac{\sigma_a + \sigma_s}{\varepsilon^2} F_r.
\end{align*}$$

(16) eq:51.avant

In the numerical section we will show how to derive accurate and robust schemes for the discretization of (11)-(16).

3.2 Elimination of the singularity near $|f| = 1$

The method of moment is singular near $f = \pm 1$ since in this case T_r is zero for finite E_r, see formula (2). It simply means that, far from isotropy, T_r is not a temperature and is only a parameter of the generalized Planckian. At the numerical level we prefer to use non singular equation near $f = \pm 1$. We think this is important to get accurate numerical results if f is close to 1, because singular equations are most of time difficult to discretize correctly.

We notice that it is sufficient to redefine $S_r = E_r^3$ and $Q_r = -bE_r^3$, because (11) is equivalent to $(\partial_t + v\partial_x)b = 0$ and $\partial_t T_r^3 + \partial_x (vT_r^3) = 0$. This transformation is a smooth map between (E_r, F_r) and $(S_r, Q_r) = (E_r^3, -bE_r^3)$. From now on the splitted approximation we use is

$$\begin{align*}
\frac{\partial}{\partial t} S_r + \frac{\partial}{\partial x} vS_r &= 0, \quad S_r = E_r^3 \\
\frac{\partial}{\partial t} Q_r + \frac{\partial}{\partial x} vQ_r &= 0, \quad Q_r = -bE_r^3.
\end{align*}$$

(17) eq:50

followed by

$$\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(\frac{E_r}{\varepsilon} \right) &= \frac{\sigma_a}{\varepsilon^2} (T^4 - E_r), \\
\frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x} \left(\frac{P_r}{\varepsilon} \right) &= -\frac{\sigma_a + \sigma_s}{\varepsilon^2} F_r.
\end{align*}$$

(18) eq:51
3.3 Extension for radiation hydrodynamics

Written in non dimensional variables the model we use is

\[
\begin{align*}
\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho v) &= 0, \\
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho v^2 + p + \frac{E_r}{3}) &= 0, \\
\frac{\partial}{\partial t}(\rho E + E_r) + \frac{\partial}{\partial x}(\rho Ev + pv + \frac{E_r}{3}v + \frac{1}{\varepsilon}F_r) &= 0, \\
\frac{1}{\varepsilon} \frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x}(v E_r) + \frac{E_r}{3} \frac{\partial}{\partial x} v + \frac{\partial}{\partial x} F_r &= \frac{\sigma_a}{\varepsilon^2} (T^4 - E_r), \\
\frac{1}{\varepsilon} \frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x}(v F_r) + \frac{E_r}{3} \frac{\partial}{\partial x} v + \frac{\partial}{\partial x} P_r &= -\frac{\sigma_a}{\varepsilon^2} \sigma_s F_r,
\end{align*}
\]

(19) \text{eq:debut}

where the source terms are \(O\left(\frac{1}{\varepsilon^2}\right)\) in opaque materials and are negligible in transparent materials. In view of the previous analysis, we propose to split the radiative solver from the hydrodynamics solver. It means that (19) is solved using

\[
\begin{align*}
\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho v) &= 0, \\
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho v^2 + p + \frac{E_r}{3}) &= 0, \\
\frac{\partial}{\partial t}(\rho E + E_r) + \frac{\partial}{\partial x}(\rho Ev + pv + \frac{E_r}{3}v) &= 0, \\
\frac{\partial}{\partial t} S_r + \frac{\partial}{\partial x}(uS_r) &= 0, \quad S_r = E_r^3, \\
\frac{\partial}{\partial t} Q_r + \frac{\partial}{\partial x}(uQ_r) &= 0, \quad Q_r = -bS_r,
\end{align*}
\]

(20) \text{split:1}

with \(b\) defined by (2), and followed by

\[
\begin{align*}
\partial_t E_r + \frac{1}{\varepsilon} \partial_x F_r &= \sigma_a \frac{T^4 - E_r}{\varepsilon^2} \\
\partial_t F_r + \frac{1}{\varepsilon} \partial_x P_r &= -\sigma_t \frac{E_r}{\varepsilon^2}, \quad \sigma_t = \sigma_a + \sigma_s \\
\rho C_v \partial_t T &= \sigma_a \frac{E_r - T^4}{\varepsilon^2}.
\end{align*}
\]

(21) \text{split:2}

It is possible to treat directly the radiative moment system. We think our approach is simpler to capture the diffusion limit of the model.

4 Derivation of the numerical schemes

The time step is \(\Delta t > 0\), the mesh size is \(\Delta x > 0\), the value of the radiative energy and flux in the cell \([j - \frac{1}{2})\Delta x, (j + \frac{1}{2})\Delta x]\) and at time step \(n\) is denoted
as \((E_{r}^{n}, F_{r}^{n})\). Similarly the radiative entropy and radiative entropy flux are \((S_{r}^{n}, Q_{r}^{n})\). The velocity \(u_{j+\frac{1}{2}}^{n}\) is assumed to be known at each interface and at each time step.

4.1 Discretization of (17)

The discretization is quite natural in the context of finite volume method. Many methods exist. For the sake of completeness we describe the most simple one. We assume that \(u_{j+\frac{1}{2}}^{n} \geq 0\) for all \((j, n)\), so that the up-winding is uniform. With this hypothesis, the scheme is

\[
\begin{align*}
\frac{S_{j+1}^{n+1} - S_{j}^{n}}{\Delta t} + \frac{u_{j+\frac{1}{2}}^{n} S_{j+\frac{1}{2}}^{n} - S_{j-\frac{1}{2}}^{n-1} S_{j-\frac{1}{2}}^{n}}{\Delta x} &= 0, \\
\frac{Q_{j+1}^{n+1} - Q_{j}^{n}}{\Delta t} + \frac{u_{j+\frac{1}{2}}^{n} Q_{j+\frac{1}{2}}^{n} - Q_{j-\frac{1}{2}}^{n-1} Q_{j-\frac{1}{2}}^{n}}{\Delta x} &= 0.
\end{align*}
\]

(22) \(\text{eq:60}\)

Proposition 5 Assume that \(\frac{|Q_{j,n}^{l}|}{S_{r}^{l,n}} \leq 1\) for all \(j\). Assume the CFL condition \((\max_{j} u_{j+\frac{1}{2}}^{n}) \Delta t \leq \Delta x\). Then one has \(\frac{|Q_{j,n}^{l+1}|}{S_{r}^{l,n+1}} \leq 1\) for all \(j\).

Let us use simplified notations for the sake of convenience: \(\alpha = S_{r} - Q_{r}\) and \(\beta = S_{r} + Q_{r}\). Then \(\alpha\) and \(\beta\) satisfy the same equation which are positive under CFL.

4.2 Discretization of the radiative step (21)

In this part we explain the main features of the scheme we propose for the discretization of the (21). First we show that a direct linear implicitation of the HLLE like solvers leads to a non positive linear implicit problem. Second we modify the HLLE solver and introduce a new scheme. We show that the modification fixes the positivity of the scheme. For expository purposes we take \(\sigma_{a} = \sigma_{s} = 0\) when dealing with the HLLE solver and \(\sigma_{a} = 0, \sigma_{s} \geq 0\) for the new scheme. Finally we consider the general case \(\sigma_{a} \geq 0\) and \(\sigma_{s} \geq 0\). The general method is to use the theory of \(M\)-matrices.

Since we describe and analyze implicit schemes, the boundary conditions are important because the boundary conditions modify the coefficients of the linear system. Therefore a bad discretization can pollute the \(M\)-matrix structure.
4.2.1 A basic example of a non positive implicit solver

We begin with a simple basic example which shows that a direct implicitation is \textit{a priori} non positive. Let us freeze the Eddington factor in (21) and take $\sigma \equiv 0$

\[
\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{\partial}{\partial x} \left(\frac{E_r}{\varepsilon} \right) &= 0, \\
\frac{\partial}{\partial t} F_r + \frac{\partial}{\partial x} \left(\frac{a^2 E_r}{\varepsilon} \right) &= 0.
\end{align*}
\]

(23) \textbf{eq:51.4}

Here the coefficient a is the square root of the Eddington factor defined by $a^2 = \frac{P_r}{E_r} \in [\frac{1}{3}, 1]$. Then we discretize (23) with a standard approximate Godunov method, the so-called HHL scheme which is described in [34] page 298. Since the maximum wave speed is $\frac{1}{\varepsilon}$ the scheme is

\[
\begin{align*}
\frac{E_r^{j+1,n+1} - E_r^{j,n}}{\Delta t} + \frac{1}{\varepsilon} F_r^{j+\frac{1}{2},n+1} - F_r^{j-\frac{1}{2},n+1} &= 0, \\
\frac{F_r^{j+1,n+1} - F_r^{j,n}}{\Delta t} + \frac{1}{\varepsilon} (a^2 E_r)^{j+\frac{1}{2},n+1} - (a^2 E_r)^{j-\frac{1}{2},n+1} &= 0.
\end{align*}
\]

(24) \textbf{eq:51.6}

The inter-facial flux is given by the first order finite volume approximation

\[
\begin{align*}
(a^2 E_r)^{j+\frac{1}{2},n+1} &= \frac{(a^2 E_r^{j,n+1} + a^2 E_r^{j+1,n+1}) + F_r^{j+1,n+1} - F_r^{j,n+1}}{2}, \\
F_r^{j+\frac{1}{2},n+1} &= \frac{F_r^{j+1,n+1} + F_r^{j+1,n+1} + E_r^{j+1,n+1} - E_r^{j+1,n+1}}{2}.
\end{align*}
\]

(25) \textbf{eq:51.8}

This is an implicit linear system that we solve with a direct solver in dimension one. A conjugate gradient solver can be used if needed in dimension two and more. Unfortunately this scheme does not necessarily respect the flux limiting property. The scheme may be \textbf{non positive}. To show this, we rely on the theory of M matrices [3]. This theory provide necessary and sufficient conditions such that the solution of a general linear system $Ax = b$ gives a non negative solution $x \geq 0$ for all $b \geq 0$. Here $x \geq 0$ means that $x_i \geq 0$ for all i. We retain the simple condition on A

\[
\text{if } a_{ij} \leq 0 \forall i \neq j, \quad \text{and } \left(\sum_j a_{ij} > 0 \forall i \text{ or } \sum_i a_{ij} > 0 \forall j \right)
\]

then A is an M-matrix with $x = A^{-1}b \geq 0$ for all $b \geq 0$. The flux limited condition $|F_r| \leq E_r$ is equivalent to the positivity of $u = E_r + F_r$ and $v = E_r - F_r$. Therefore we check the property of M matrix for the system (24) with the flux defined by (25) and for the unknown $x = (u^{j,n+1}, v^{j,n+1})_j$ and the
right hand side \(b = (u^{i,n}, v^{j,n})_j \), for the sake of simplicity assume that \(\sigma \equiv 0 \) so that \(M \equiv 1 \). The equation for \(V^{j,n+1} \) is

\[
\frac{v^{j,n+1} - v^{j,n}}{\Delta t} + \frac{1}{4\varepsilon \Delta x} \left((1 - a_{j+\frac{1}{2}}^2) v^{j+1,n+1} + (a_{j-\frac{1}{2}}^2 - 1) v^{j-1,n+1} + (-3 - a_{j+\frac{1}{2}}^2) v^{j+1,n+1} + (-1 - a_{j-\frac{1}{2}}^2) v^{j-1,n+1} + 4v^{j,n+1} \right) = 0.
\]

If \(a_{j+\frac{1}{2}} < 1 \) the extra-diagonal coefficient in front of \(u^{j+1,n+1} \) has the wrong sign \(1 - a_{j+\frac{1}{2}}^2 > 0 \). There is a similar property for the equation for \(Y^{j,n+1} \).

Therefore the solution of the linear system can be non positive.

It is worthwhile to notice that the explicit scheme is positive. The equation becomes

\[
\frac{v^{j,n+1} - v^{j,n}}{\Delta t} + \frac{1}{4\varepsilon \Delta x} \left((1 - a_{j+\frac{1}{2}}^2) v^{j+1,n} + (a_{j-\frac{1}{2}}^2 - 1) v^{j-1,n} + (-3 - a_{j+\frac{1}{2}}^2) v^{j+1,n} + (-1 - a_{j-\frac{1}{2}}^2) v^{j-1,n} + 4v^{j,n} \right) = 0.
\]

One can check that \((1 - a_{j+\frac{1}{2}}^2) u_{j+1}^{i+1,n} + (a_{j-\frac{1}{2}}^2 - 1) u_{j-1}^{i-1,n} \leq 0 \) because \(a_j^2 = a \left(\frac{F_{r,n}}{E_r} \right)^2 \geq 2 \left| \frac{F_{r,n}}{E_r} \right| - 1 \). Nevertheless the explicit scheme is restricted by the explicit CFL condition \(\frac{\Delta t}{\varepsilon \Delta x} \leq 1 \). This is why we propose in the following a new linear implicit AP and unconditionally positive scheme.

4.2.2 AP and positive discretization of (21) with \(\sigma_a = 0 \)

The idea is to use a strategy that has been proposed and used in [6,7]. It consists in a linearization of the system combined with a well balanced scheme. Depending on the linearization, it is possible to design different numerical schemes with slightly different theoretical properties. In order to simplify the presentation, we consider (23). We will indicate later on how to deal with the temperature relaxation. Here we use a strategy that has been first proposed and used in [6,7]. It consists in the use of a relaxation method (see for example [16] for principle of relaxation method) to “linearize” the system and a “well-balanced” scheme. This combination gives stability and preservation of the asymptotic limit.

Let us first define the relaxation method. We introduce the intermediate relaxation unknowns \(X = \frac{F_{r,n}}{a} \) and \(Y = \frac{E_{r,n}}{a} \) and we consider the system

\[
\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{1}{\varepsilon} \frac{\partial}{\partial x} a X &= 0, \\
\frac{\partial}{\partial t} X + \frac{1}{\varepsilon} \frac{\partial}{\partial x} a E_r &= -\frac{\partial}{\varepsilon} X + \frac{1}{\varepsilon} \left(\frac{F_{r,n}}{a} - X \right),
\end{align*}
\tag{26}
\]

\[\text{eq:61}\]
The coefficient a is the square root of the Eddington factor defined by $a^2 = \frac{P}{E}$.

The additional variables are $X \approx \frac{F}{a}$ and $Y \approx \frac{P}{a}$. More exactly if the relaxation coefficient λ tends to 0, then $X \rightarrow \frac{F}{a}$ and $Y \rightarrow \frac{P}{a}$, and the asymptotic limit is indeed (18). In the original work [6,7], the relaxation variables were $X = F_r$ and $Y = P_r$. Our choice has better properties.

As it is usually done, we consider the relaxed version of (26). This is no more that using a splitting technique to solve (26), by splitting the relaxation source from the rest and let formally λ tends to 0 in the relaxation step. This lead to the following transport-projection algorithm:

- Transport step: let $a = \sqrt{\chi} X^n = \frac{F^n}{a}$ and $Y^n = \frac{P^n}{a}$ at the beginning of the time step. Then we solve the systems

\[
\begin{align*}
\frac{\partial}{\partial t} E_r + \frac{1}{\varepsilon} \frac{\partial}{\partial x} aX &= 0, \\
\frac{\partial}{\partial t} X + \frac{1}{\varepsilon} \frac{\partial}{\partial x} aE_r &= -\frac{\sigma}{\varepsilon^2} X,
\end{align*}
\] ~eq:61.2

and

\[
\begin{align*}
\frac{\partial}{\partial t} Y + \frac{1}{\varepsilon} \frac{\partial}{\partial x} aF_r &= 0, \\
\frac{\partial}{\partial t} F_r + \frac{1}{\varepsilon} \frac{\partial}{\partial x} aY &= -\frac{\sigma}{\varepsilon^2} F_r,
\end{align*}
\] ~eq:62.2

during one time step. So we know the initial conditions at $n\Delta t$ and we use (28-29) to compute all quantities at $(n + 1)\Delta t$: that is $E_{r}^{n+1}, \ F_{r}^{n+1}, \ X^{n+1}$ and Y^{n+1}.

- Projection step: we drop X^{n+1} and Y^{n+1} and reinitialize $a = \sqrt{\chi^{n+1}}$, $X^{n+1} = \frac{F^{n+1}}{a}$ and $Y^{n+1} = \frac{P^{n+1}}{a}$.

Therefore it remains to explain how we discretize (28-29) and what advantages come from this strategy. One can remark that (28) and (29) are decoupled.

The method we use for (28) or (29), comes from the work [11–13] about well-balanced schemes for hyperbolic systems with source terms. Originally the goal of this technique was to preserve stationary solutions. Essentially it consists in collapsing the source terms at interfaces and to write down the Godunov method. This step needs the computation of the solution of a
Riemann problem with a Dirac source term at the interface. This is quite easy to for linear equations. We refer to [12] for the construction of the method, and to [7] for a simple explanation in the linear case. In what follows we only describe the result of the application of the method to our case. We have decided to present the scheme with natural notations, such that the consistency of the scheme becomes clear. The coefficient $M_{j+\frac{1}{2}}$ is defined on the interfaces by

$$M_{j+\frac{1}{2}} = \frac{2a_{j+\frac{1}{2}}\varepsilon}{\sigma_{j+\frac{1}{2}}\Delta x + 2a_{j+\frac{1}{2}}\varepsilon}$$ \hspace{1cm} (30) \hspace{1cm} \text{eq:64}$$

where quantities of the type $q_{j+\frac{1}{2}}$ are mean value of q_j and q_{j+1}. Then we discretize (28) with

$$
\begin{align*}
\left\{ \begin{array}{l}
\frac{E_{j,n+1} - E_{j,n}}{\Delta t} + \frac{1}{\varepsilon} M_{j+\frac{1}{2}} a_{j+\frac{1}{2}} X_{j+\frac{1}{2},n+1} - M_{j-\frac{1}{2}} a_{j-\frac{1}{2}} X_{j-\frac{1}{2},n+1} \\
\frac{X_{j,n+1} - X_{j,n}}{\Delta t} + \frac{1}{\varepsilon} M_{j+\frac{1}{2}} a_{j+\frac{1}{2}} E_{j+\frac{1}{2},n+1} - M_{j-\frac{1}{2}} a_{j-\frac{1}{2}} E_{j-\frac{1}{2},n+1} \\
= -\frac{1}{2} \left(M_{j+\frac{1}{2}} a_{j+\frac{1}{2}} \frac{\sigma_{j+\frac{1}{2}}}{\varepsilon} + M_{j-\frac{1}{2}} a_{j-\frac{1}{2}} \frac{\sigma_{j-\frac{1}{2}}}{\varepsilon} \right) X_{j,n+1} \\
+ \frac{M_{j+\frac{1}{2}} - M_{j-\frac{1}{2}}}{\varepsilon \Delta x} a_i E_{i,n+1}
\end{array} \right. \\
= 0,
\end{align*}
$$

(31) \hspace{1cm} \text{eq:63}$$

The initial value of the additional unknown X is $X_{j,n} = \frac{E_{j,n}}{a_j}$. The fluxes are

$$
\begin{align*}
a_{j+\frac{1}{2}} E_{j+\frac{1}{2},n+1} &= \frac{a_j E_{j,n} + a_{j+1} E_{j+1,n+1}}{2} + a_j X_{j+1,n+1} - a_{j+1} X_{j+1,n+1}, \\
+ & \hspace{1cm} \frac{1}{2} \frac{E_{j+1,n+1} - E_{j,n+1}}{\Delta t}
\end{align*}
$$

(32) \hspace{1cm} \text{eq:6toto}$$

The linear scheme (31-32) is implicit and can easily be solved in 1D. For the system (29), the scheme is exactly the same except that E_r is replaced by Y and that X is replaced by F_r. Nevertheless the initialization of the Y variable is $Y_{j,n} = \frac{F_{j,n}}{a_j}$.

Proposition 6 The scheme is AP Assume that $\sigma = O(1)$ and ε is small. Then the diffusion limit of the scheme (24) is

$$
\frac{E_{j,n+1} - E_{j,n}}{\Delta t} - \frac{1}{3\sigma_{j+\frac{1}{2}}} \left(E_{j+1,n+1} - E_{j,n+1} \right) - \frac{1}{3\sigma_{j-\frac{1}{2}}} \left(E_{j,n+1} - E_{j-1,n+1} \right) \frac{1}{\Delta x^2} = 0.
$$

(33) \hspace{1cm} \text{eq:51.86}$$
The second equation in (24) implies that $F_{r}^{j,n+1}$ is small of order $\varepsilon : F_{r}^{j,n+1} = O(\varepsilon)$. Since this is true for all j and n, then the Eddington factor is close to one third $a^2 = \frac{1}{3} + O(\varepsilon)$ for all j and n. Then

$$M_{j+\frac{1}{2}} = \frac{2\sqrt{3}\varepsilon}{\sigma_{j+\frac{1}{2}} \Delta x} + O(\varepsilon^3).$$ \hspace{1cm} (34) [eq:5]

So the flux that matters in (24) is up to $O(\varepsilon)$

$$\frac{M_{j+\frac{1}{2}}}{\varepsilon} F_{r}^{j+\frac{1}{2},n+1} = \frac{2\sqrt{3}\varepsilon}{\sigma_{j+\frac{1}{2}} \Delta x} \left(E_{r}^{j+1,n+1} - E_{r}^{j,n+1} \right) \frac{1}{2} = \frac{E_{r}^{j+1,n+1} - E_{r}^{j,n+1}}{3\sigma_{j+\frac{1}{2}} \Delta x}.$$ \hspace{1cm} (35) [eq:6]

It ends the proof.

It is particularly convenient to use the diagonal form of the system. Let $u = E_{r} + X$ and $v = E_{r} - X$. The equations can be written as a system in $x = (u, v)$.

$$\begin{align*}
\frac{v^{j,n+1} - v^{j,n}}{\Delta t} &+ \frac{M_{j+\frac{1}{2}}}{\varepsilon} a_{j} v^{j,n+1} - a_{j-1} v^{j-1,n+1} - \frac{\sigma_{j-\frac{1}{2}}}{2 \varepsilon^2} (v^{j,n+1} - u^{j,n+1}), \\
\frac{v^{j,n+1} - v^{j,n}}{\Delta t} &- \frac{M_{j+\frac{1}{2}}}{\varepsilon} a_{j+1} v^{j+1,n+1} - a_{j} v^{j,n+1} - \frac{\sigma_{j+\frac{1}{2}}}{2 \varepsilon^2} (u^{j,n+1} - v^{j,n+1}).
\end{align*}$$ \hspace{1cm} (36) [eq:7]

In view of (35) the natural discrete boundary conditions are

$$\begin{align*}
\begin{cases}
 j = 1: & a_{j-1} v^{j-1,n+1} = \alpha_{1} a_{j} v^{j,n+1} + \alpha_{2} \text{ with } \alpha_{1}, \alpha_{2} \geq 0, \\
 j = N: & a_{j+1} v^{j+1,n+1} = \alpha_{3} a_{j} v^{j,n+1} + \alpha_{4} \text{ with } \alpha_{3}, \alpha_{4} \geq 0.
\end{cases}
\end{align*}$$ \hspace{1cm} (37) [eq:8]

Plugging the boundary conditions (36) inside the scheme (35) the linear system can be written as

$$Ax = b, \quad A = I - \Delta t M^{S} - \Delta t M^{BC}$$

where M^{S} is the matrix that discretizes the scheme, and M^{BC} is for the boundary conditions. The A is not symmetric. The right hand side is $b = x^{n+\Delta t}(a_{2}, 0, ..., 0, a_{4})$. By construction one has the property $M^{S}_{ij} \leq 0$, $M^{S}_{ij} \geq 0$ for $i \neq j$, and $\sum_{i} M^{S}_{ij} \leq 0$ and (this is trivial) $M^{BC}_{ij} \leq 0$, $M^{BC}_{ij} \geq 0$ for $i \neq j$ and $\sum_{j} M^{BC}_{ij} \leq 0$. The inequality $\sum_{i} M^{S}_{ij} \leq 0$ is an equality inside the domain : $\sum_{i} M^{S}_{ij} = 0$ for $2 \leq j \leq N - 1$. Therefore the diagonal of A is stricly dominant with respect to the columns inside the domain. It is of particular
interest to show that diagonal of A is also dominant at the boundaries. It is the case for incoming boundary conditions for which $\alpha_1 = \alpha_3 = 0$. For transparent conditions one has also $\alpha_2 = \alpha_4 = 0$. For general boundary conditions the property is guaranteed if $0 \leq \alpha_1 \leq 1$ and $0 \leq \alpha_3 \leq 1$; we note this property comes from the dissipative nature of the boundary conditions. From now on, we assume that

$$A_{ij} \leq 0 \text{ for } i \neq j, \text{ and } \sum_i A_{ij} > 0 \forall j.$$

Therefore the matrix A is an M-matrix. A general reference is [3]. That is A is invertible and $A^{-1} \geq 0$.

Proposition 7 The scheme is positive Assume that $E_r^{j,n} \pm F_r^{j,n} \geq 0$ for all j. Then $E_r^{j,n+1} \pm F_r^{j,n+1} \geq 0$ for all j.

This flux limited property is the reason why we prefer to use this relaxation method rather than the direct approach (25). The price to pay is that we need to solve two linear systems with twice the number of unknowns when compared with (25). The linear systems are absolutely identical. We divide the proof of proposition 7 in three steps.

a) Claim that $E_r^{j,n+1} \pm X_r^{j,n+1} \geq 0$ The proof consists in writing the equation for $u = E_r + X$ and $v = E_r - X$. This set of equations of linear equations can be rewritten as $Ax = b$ where A is the matrix of the system, $x = (u_r^{j,n+1}, v_r^{j,n+1})$ is the unknown of the linear system and $b = (w_r^{j,n}, v_r^{j,n})$ is the right hand side of the linear system. To prove the claim it is sufficient to prove that all component of x are non negative. First we assume that all component of b are non negative, which is due to the hypothesis :

$$\frac{|X_r^{j,n}|}{E_r^{j,n}} = \frac{|F_r^{j,n}|}{a_j E_r^{j,n}} \leq 1.$$

Second we use the M-matrix property. It proves the claim $u_r^{j,n+1} = E_r^{j,n+1} + X_r^{j,n+1} \geq 0$ and $v_r^{j,n+1} = E_r^{j,n+1} - X_r^{j,n+1} \geq 0$.

b) Claim that $Y_r^{j,n+1} \pm F_r^{j,n+1} \geq 0$ We use the same method. Let $w = Y + F_r$ and $z = Y - F_r$. Then $w_r^{j,n} = Y_r^{j,n} + F_r^{j,n} = E_r^{j,n} a_j + F_r^{j,n} = a_j E_r^{j,n} (a_j + F_r^{j,n})$. Since a_j is a function of the non dimensional radiation flux $\frac{E_r^{j,n}}{E^{j,n}}$, then it is sufficient to study the function $f \mapsto a = \sqrt{X}$. Since $X - f^2 = \frac{1}{\sqrt{4-3f^2}} \geq 0$, then $a \geq |f|$ and therefore $w_r^{j,n} \geq 0$. Similarly $z_r^{j,n} \geq 0$. The new values $x' = (w_r^{j,n+1}, z_r^{j,n+1})$ are solutions of the same linear system, $Ax' = b'$ where $b' = (w_r^{j,n}, z_r^{j,n})$. Since $b' \geq 0$ then x' also. Therefore $w_r^{j,n+1}, z_r^{j,n+1} \geq 0$.

c) Claim that $E_r^{j,n+1} \pm F_r^{j,n+1} \geq 0$. Let us define $r = E - Y + X - F$ and $s = E - Y - (X - F)$. Since E, X and Y, F are by definition solutions of the same linear system (31) but with a different initialization of course, then the same method can be used to study the non negativity of $r_r^{j,n+1}, s_r^{j,n+1}$. It is sufficient to check that $r_r^{j,n}, s_r^{j,n}$ are non negative at the beginning of

19
the time step. One has

\[
\begin{align*}
 r^n &= E_r^n - aE_r^n + \frac{F_r^n}{a} - F_r^n = (1 - a)(E_r^n + \frac{F_r^n}{a}) \geq 0, \\
 s^n &= E_r^n - aE_r^n + \frac{F_r^n}{a} + F_r^n = (1 - a)(E_r^n + \frac{F_r^n}{a}) \geq 0.
\end{align*}
\]

Therefore \(r^{n+1} \geq 0 \) and \(s^{n+1} \geq 0 \). At the end of the time step

\[
\begin{align*}
 2(E_r^{n+1} - F_r^{n+1}) &= r^{n+1} + z^{n+1} + v^{n+1} \geq 0, \\
 2(E_r^{n+1} + F_r^{n+1}) &= s^{n+1} + w^{n+1} + u^{n+1} \geq 0.
\end{align*}
\]

4.3 Discretization of the full system (21)

Now we describe the scheme for the full system (21). The main tool is, indeed, the discretization described in the previous section (4.2.2). Let us define the quantities \(u, v, w, z \) as \(u = E_r + X, \ v = E_r - X, \ w = Y + F_r \) and \(z = Y - F_r \). and let also \(\alpha_{j-\frac{1}{2}}(\sigma) = 2M_{j-\frac{1}{2}}(\sigma) \frac{a_j}{a_{j-\frac{1}{2}}} \frac{\sigma - \frac{1}{2}}{2\varepsilon^2} \) where \(M_{j-\frac{1}{2}}(\sigma) \) is defined in (30).

The transport part of the AP-relaxation scheme described in (4.2.2) can be written now, in its diagonalized form, as

\[
\begin{align*}
 \rho_j C_v T_{j,n+1} - T_{j,n} &= \frac{\alpha_{j-\frac{1}{2}}(\sigma_x) + \alpha_{j+\frac{1}{2}}(\sigma_x)}{2} \left(\frac{w_{j,n+1} + v_{j,n+1}}{2} - T_{j,n+1}^1 \right) \\
 \frac{w_{j,n+1} - w_{j,n}}{\Delta t} + &\frac{M_{j-\frac{1}{2}}(\sigma_x)}{\varepsilon} a_jw_{j,n+1} + a_{j-1}w_{j-1,n+1} \\
 &= \alpha_{j-\frac{1}{2}}(\sigma_x) \left(T_{j,n+1}^4 - w_{j,n+1} \right) + \left(\alpha_{j+\frac{1}{2}}(\sigma_x) - \alpha_{j-\frac{1}{2}}(\sigma_x) \right) v_{j,n+1} - w_{j,n+1} \frac{1}{2}, \quad \text{(38)} \tag{eq:full1} \\
 \frac{v_{j,n+1} - v_{j,n}}{\Delta t} - &\frac{M_{j+\frac{1}{2}}(\sigma_x)}{\varepsilon} a_jv_{j+1,n+1} + a_{j-1}v_{j-1,n+1} \\
 &= \alpha_{j+\frac{1}{2}}(\sigma_x) \left(T_{j,n+1}^4 - v_{j,n+1} \right) + \left(\alpha_{j+\frac{1}{2}}(\sigma_x) - \alpha_{j-\frac{1}{2}}(\sigma_x) \right) u_{j,n+1} - v_{j,n+1} \frac{1}{2}. \quad \text{(39)} \tag{eq:full2}
\end{align*}
\]

This discretization remains AP, the proof is as in section (4.2.2). For an infinite domain, one can also easily check the conservation of the total energy \(\rho_j C_v T_j + E_{r,j} \).

During the time step the systems (38) and (39) are, as before, decoupled. But now (38) is a non-linear system. The iterative procedure we use to solve
system (38) is based on a fixed point procedure proposed first in [33] for non equilibrium diffusion model. The basic idea of this fixed point procedure is to use $\Theta = T^q$ as unknown instead of T. In [33], it has been reported good convergence behavior of this method. For convenience the index n at the beginning of the time step has been dropped. Our iterative procedure for (38) is

$$
\rho_j C_v \mu_j^q \frac{\Theta_j^{q+1} - \Theta_j}{\Delta t} = \frac{\alpha_{j-1}}{2} (\sigma_a + a_{j+1} (\sigma_a) \left(u_j^{q+1} - u_j^q \right) - \Theta_j^{q+1}) + \frac{M_{j-1}}{2} (\sigma_t) a_{j} u_j^{q+1} - a_{j-1} u_j^{q-1} - \frac{\Delta x}{\Delta t} \left(\rho C_v u_j \Theta_j \right) + M_j \frac{1}{2} (\sigma_t) a_{j+1} v_j^{q+1} - a_{j-1} v_j^{q-1} - \frac{\Delta x}{\Delta t} \left(\rho C_v \Theta_j \right), \quad (40)
$$

The coefficient μ_j^q is defined by $\mu_j^q = \frac{T^q - T_{j,n}}{\Theta_j^{q+1} - \Theta_j^{q-1}}$. By construction we have to solve at each iteration on q a linear system

$$
\tilde{A}^q \tilde{x}^q = \tilde{b}^q
$$

where $\tilde{x}^q = (\rho C_v \mu^q \Theta^{q+1}, u^{q+1}, v^{q+1})$ and $\tilde{b}^q = (\rho C_v \mu^q \Theta_n, u_n, v_n)$. This linear matrix \tilde{A}^q is an M-matrix.

Therefore at each iteration q one has the positivity of the material temperature and the flux limited property. Next we show that the algorithm is strictly contracting. By computing the difference between two successive iterates of (40) one has the relation

$$
\tilde{A}^q \tilde{y}^q = \tilde{c}^q
$$

where $\tilde{y}^q = (\rho C_v \mu^q (\Theta^{q+1} - \Theta^q), u^{q+1} - u^q, v^{q+1} - v^q)$ and $\tilde{c}^q = (\rho C_v (\mu^q - \mu^{q-1}) \Theta^q, 0, 0)$. The structure of \tilde{A}^q is similar to the structure of A, that is there exists a matrix M^q such that $\tilde{A}^q = I - \Delta t M^q$. The important property of M^q is

$$
M_{ij}^q \geq 0 \quad \text{for } i \neq j, \quad \sum_i M_{ij}^q \leq 0.
$$

A consequence 1 is as follows: the matrix $(\tilde{A}^q)^{-1}$ is contracting in l^1.

1 Consider $Ax = b$ where $A = I - M$ and M is such that $m_{ij} \geq 0$ for $i \neq j$ and $\sum_i m_{ij} \leq 0$. The linear system is equivalent to $(1 - m_{ii}) x_i = b_i + \sum_{j \neq i} m_{ij} x_j$. So $(1 - m_{ii}) |x_i| \leq |b_i| + \sum_{j \neq i} m_{ij} |x_j|$. We sum over all indices and get

$$
\sum_i (1 - m_{ii}) |x_i| \leq \sum_i |b_i| + \sum_i \sum_{j \neq i} m_{ij} |x_j| = \sum_i |b_i| + \sum_j \left(\sum_{i \neq j} m_{ij} \right) |x_j|.
$$
Therefore
\[
\sum_j \left(\rho C_v \mu_j^q |\Theta_j^{q+1} - \Theta_j^q| + \frac{1}{2} |u_j^{q+1} - u_j^q| + \frac{1}{2} |v_j^{q+1} - v_j^q| \right)
\leq \sum_j \left(\rho C_v \mu_j^{q-1} |\Theta_j^q - \Theta_j^{q-1}| |\beta_j^q| \right) \leq \left(\max_j |\beta_j^q| \right) \times \sum_j \left(\rho C_v \mu_j^{q-1} |\Theta_j^q - \Theta_j^{q-1}| \right).
\]

where \(\beta_j^q = \frac{\mu_j^q - \mu_j^{q-1}}{\Theta_j^q - \Theta_j^{q-1}} \times \frac{\Theta_j^q}{\mu_j^q} \). Using the definition of the quantities \(\mu_j^q \), one can easily check that, at convergence, this quantity scales like
\[
\beta_j^q \approx \frac{1}{4} \left(\frac{3(T_j^q)^3 + 2(T_j^q)^2 T_{j,n} + T_j^q T_{j,n}^2}{T_j^q T_{j,n}^3} \right),
\]
so \(|\beta| < \frac{3}{4}\). Since this number \(\beta \) is the asymptotic value of contraction ratio of the fixed point procedure, it explains why this algorithm is strictly contracting in any neighborhood of the solution. Moreover all steps of the fixed point procedure are positive (this property was already stressed in the work [33]). In our context it is also a consequence of the \(M \) matrix property.

5 Numerical results

All test cases have been performed with the algorithm proposed in this work.

5.1 Su-Olson test case

This test case come from [32]. It is a basic non-equilibrium radiative transfer consisting of an initially cold, homogeneous, infinite, and isotropically scattering medium with an internal radiation source turned on at time zero [30].

The opacity is taken constant but with \(C_v = \alpha T^3 \). The source term \(S = 1 \) localized in \(|x| \leq 1/2\). The system of equations to solve reduced to, see [30] for a precise derivation of the model,

\[
\begin{align*}
\partial_t E_r + \partial_x F_r &= (T^4 - E_r) + S \\
\partial_t F_r + \partial_x P_r &= -F_r \\
\partial_t T^4 &= E_r - T^4.
\end{align*}
\]

This test problem has been used to benchmark various strategies about the analytical definition \((E_r, F_r) \mapsto P_r\), diffusion approximations, and numerical algorithms to solve the problem. In [30] it has been claimed that the variable

\[
\sum_i |x_i| \leq \sum_i |b_i| + \sum_j (\sum_i m_{ij}) |x_j| \leq \sum_i |b_i|.
\]

The property is proved.
Eddington factor gives non smooth and oscillating solutions. On the contrary our results show that it is probably the numerical schemes used in [30] that were unstable for this test case, since our results are stable (i.e. non oscillating) and accurate.

In figure 1 we plot the result given by scheme for the solution of (41) versus the solution of the diffusion approximation of the same model, that is

$$\partial_t E_r - \frac{1}{3} \partial_{xx} E_r = (T^4 - E_r) + S.$$

The solution of the diffusion approximation has been computed with a standard parabolic implicit finite difference scheme. For small time, we see a difference between diffusion and variable Eddington factor. For large time, both methods give the same result, as predicted by the theory. In all cases the solution of the variable Eddington model (41) is free of oscillations. It illustrates the stability and robustness of the algorithm proposed in this work. For large time the variable Eddington model admits theoretically the diffusion model as asymptotic limit. At the numerical level this is also true because $M_{j+\frac{1}{2}} = \frac{2}{2+\Delta x} \approx 1$ in the scheme, see equation (34).

In figure 2 we plot the Eddington factor $f = \frac{E_r}{E_{r0}}$ at different times. The result is free of oscillations. One can compare with the results of [30] page 629. Moreover $\frac{1}{3} \geq f \leq 1$ as stated in proposition 7.
Fig. 2. Eddington factor $f = \frac{F_r}{E_r}$. Same times as in figure 1.

Table 1

<table>
<thead>
<tr>
<th>cells</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>error in L^1 norm</td>
<td>0.3</td>
<td>0.21</td>
<td>0.15</td>
<td>0.109</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Table 1

Error in L^1 norm for the streaming test case. The order is approximatively 0.5.

5.2 Streaming

This numerical test case illustrates the ability of the scheme to be accurate and stable for streaming. We solve (1) with $\sigma_a = \sigma_s = v = 0$ and $\varepsilon = 1$. The initial data is

$E_1 = F_r = 1$ if $0.4 < x < 0.6$, $E_1 = F_r = 0$ otherwise.

Since the velocity is one, the analytical solution at time $t = 0.2$ is

$t = 0.2 : E_1 = F_r = 1$ if $0.6 < x < 0.8$, $E_1 = F_r = 0$ otherwise.

The error in L^1 norm is given in table 5.2. One sees that the scheme is of order 0.5 in L^1 norm. Since the scheme is implicit the price to pay is the extra numerical diffusion compared with an explicit discretization of the same model. However an implicit scheme is absolutely needed for real applications where the velocity of light is very large.

The numerical solution of figure 3 has been computed with the same code as for the Sue-Olson text case, with exactly the same scheme. The time step is $\Delta t = \frac{1}{2} \Delta x$.

24
5.3 Stationary case

We solve \(\partial_t E_r + \frac{1}{\varepsilon} \partial_x F_r = \sigma_a(x) \frac{T - E_r}{\varepsilon^2} \) and \(\partial_t F_r + \frac{1}{\varepsilon} \partial_x P_r = -\sigma_t(x) \frac{F_r}{\varepsilon^2} \). The temperature \(T \) is prescribed \(T = 1 \) if \(1.5 < x < 1.8 \), \(T = 0 \) otherwise. The opacity \(\sigma_t \) is \(\sigma_t = 1 \) if \(1 < x < 1.5 \), \(\sigma_t = 0 \) otherwise. The opacity \(\sigma_a \) is \(\sigma_a = 1 \) if \(1.5 < x < 2 \), \(\sigma_a = 0 \) otherwise. The light’s velocity is \(\varepsilon = 10^3 \).

For this problem it is possible to compute a quasi-analytical solution in the region \(0 < x < 1.5 \). For \(x = 1.5 \) one has a boundary condition \(E_r = T_{1.5+} = 1 \). For \(x < 1.5 \) the stationary solution of the system is given by \(\frac{1}{\varepsilon} \partial_x F_r = 0 \) and \(\frac{1}{\varepsilon} \partial_x P_r = -\sigma_t \frac{F_r}{\varepsilon^2} \). Therefore \(F_r \) is constant \(F_r \equiv F \). On the other hand \(P_r(1.5) - P_r(1) = -d \sigma \frac{F}{\varepsilon}, \quad d = 1.5 - 1 \). Since \(\sigma_a = 0 \) for \(x < 1 \) the stationary regime is an outgoing regime with \(F_r = -E_r, \quad x < 1 \). Therefore \(P_r(1.5) \approx \frac{E_r(1.5)}{3} = \frac{1}{3}, \quad P_r(1) = E_r(1), \quad F = -E_r(1) \). Note that \(P_r(1.5) \approx \frac{E_r(1.5)}{3} \) is a very accurate approximation because \(\varepsilon \) is small. Therefore one solves for \(E_r \) and gets \(E_r(1) = \frac{1}{3 + 3\sigma \varepsilon} \approx E_r(1.5) \approx 0 \). In between \(1 < x < 1.5 \) one can solve for \(P_r \) which is affine with respect to \(x \). Since \(P_r \approx \frac{E_r}{3} \) is a very good approximation, then a quasi-analytical solution is

\[
E_r(1) = 0, \quad E_r(1.5) = 1, \quad E_r \text{ is affine in between.}
\]

We plot the result of our algorithm in figure 4. One sees a very good agreement between the numerical solution of figure 4 and the quasi-analytical solution (42).
5.4 Transfer

In this test case a transparent material is in between a hot opaque material on the left and a colder (but the temperature is non zero) opaque material on the right. The physical solution is a radiative flow that comes from the left to the right, so that the right material becomes hotter and the left one becomes colder due to the conservativity of energy. We solve (21). The opacity \(\sigma_a \) is a function of the material and of the temperature

\[
\sigma_a = \frac{\sigma_0 T^3}{3}
\]

with \(\sigma_0 = 0 \) for \(0.2 < x < 1.8 \) and \(\sigma_0 = 1 \) otherwise.

The opacity \(\sigma_t \) does not play a important role in the simulation, and is here only to mimic totally opaque boundary conditions

\[
\sigma_t = 0 \quad \text{for} \quad 0.1 < x < 1.9 \quad \text{and} \quad \sigma_t = 10^4 \quad \text{otherwise}.
\]

The initial data is \(E_r \equiv 0, \) \(F_r \equiv 0 \) and

\[
T = 1 \quad \text{for} \quad 0.1 < x < 0.2, \quad T = 0 \quad \text{for} \quad 0.2 < x < 1.8, \quad T = 0.1 \quad \text{for} \quad 1.8 < x < 1.9.
\]

The computation is done with 1000 cells. The result is plotted in figure 5. As noticed in the legend of figure 5, the results are the same with the diffusion approximation. The reason is that for \(t = 3 \), which is quite a large time for this test problem, the radiative flux is almost zero in the transparent region. This is due to the multiple bounces of the radiative energy on both sides of the transparent region. To see a difference between the variable Eddington factor approach and the diffusion approximation, it is necessary to look at transitory regime around \(x = 1.8 \). This is done in figure 6 where we plot the history of
temperature T (almost equal to the radiative temperature $T \approx T_r$ because the material is opaque) at $x = 1.8$ (in the first opaque cell) and at $x = 1.84$ (in the opaque material). One sees a difference between the results depending on the model (which can be the diffusion approximation, the variable Eddington factor with $\varepsilon = 0.01$ and the variable Eddington factor with $\varepsilon = 0.001$) and on the point ($x = 1.8$ or $x = 1.84$). Essentially the variable Eddington factor with $\varepsilon = 0.001$ is very close to the diffusion approximation. However the variable Eddington factor with $\varepsilon = 0.01$ is slightly different. Oscillations have appeared that we interpret as the result of multiple radiative bounces between the opaque materials. For longer time, all models have the same history.

![Graph](image)

Fig. 5. $E_r = T_r^4$ and the total energy $T + E_r = T + T_r^4$ at time $t = 3$, computed with the variable Eddington factor model and $\varepsilon = 10^{-3}$. For this test problem the result is the same with the diffusion approximation.

5.5 Coupling with hydrodynamics

5.5.1 Radiative Riemann problem

If now we set $\sigma_a = 0$ and $\sigma_s = +\infty$ then we obtain the simplified hyperbolic set of equations

\[
\begin{align*}
\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho v) &= 0, \\
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho v^2 + p + p_r) &= 0, \quad p_r = \frac{E_r}{3}, \\
\frac{\partial}{\partial t}(\rho E + E_r) + \frac{\partial}{\partial x}(\rho E v + pv + p_r v) &= 0, \quad E_r = T_r^4, \\
\frac{\partial}{\partial t}S_r + \frac{\partial}{\partial x}(u S_r) &= 0, \quad S_r = T_r^3.
\end{align*}
\]

(43)
Fig. 6. Heating history in the opaque material: T versus time for different models at $x = 1.8$ or $x = 1.84$.

For this system we study a standard Riemann problem. The initial data are $\rho = 1$, $u = 0$, $p = 1$, $T_r = 1$ for $x < 0.5$, and $\rho = .125$, $u = 0$, $p = 0.1$, $T_r = 0.1$ for $x > 0.5$. The solution consists in a rarefaction fan, a contact discontinuity and a shock. Across the shock and the rarefaction fan $\frac{T_r^3}{\rho}$ is preserved. A lot of hydrodynamic solvers can be used for the numerical resolution. We have used a standard Lagrange+remap solver with an acoustic flux.

The results, which are exactly the same for the diffusion approximation and the variable Eddington factor model, are displayed in figure (7) for the density, velocity and total pressure, and in (8) for $\frac{T_r^3}{\rho} = \frac{S_r}{\rho}$, see [35,8].

5.5.2 Radiation hydrodynamics

For this test problem we solve the full radiation hydrodynamics (19)(using the splitting scheme (20) and (21)) and with the variable Eddington factor given in (1). The initial data are

$$
\begin{align*}
&x < .4 ~ \text{and} ~ x > 1.6 : \rho = 0.1, ~ u = 0, ~ p_{\text{hydro}} = 0.002, ~ T_r = T = \frac{\varepsilon}{c v}, ~ F_r = 0, \\
&\frac{.4}{1.2} < x < 1.6 \\
&.8 < x ~ \text{and} ~ x < 1.2 : \rho = 0.1, ~ u = 0, ~ p_{\text{hydro}} = 0.001, ~ T_r = 1., ~ F_r = 0.
\end{align*}
$$

The opacities are

$\sigma \equiv 0, \tau = 0.2$ in the left, central and right regions, and $\tau = 0.2 \times 10^{-7}$ otherwise.
Fig. 7. Density, velocity and total pressure at $t = 0.1$ with 1000 cells : CFL=0.5.

$$Sr/rho = Sr \rho$$ at $t = 0.1$ with 1000 cells : CFL=0.5. One notices the exact preservation of this quantity across the shock and the rarefaction fan.

An energy deposit is made at each time step in the central region

$$\varepsilon \Leftarrow \varepsilon + 50000 \times \Delta t.$$

Since the central region is hotter, then a flow a radiative energy passes through the transparent intermediate regions, and arrived at the borders of the opaque extreme two regions. A zoom around $x = 0.4$ is given in figure 9. One sees that diffusion is in advance with respect to the variable Eddington factor. An interpretation is that diffusion propagates instantaneously the radiation since the equation is global. Therefore the radiation is over-predicted with
Fig. 9. T and T_r for diffusion and the variable Eddington factor, 100 cells, $T = 0.005$

Fig. 10. E_r, F_r and $f = \frac{F_r}{E_r}$: 100 cells, $T = 0.005$

the diffusion model. On the other hand the variable Eddington factor is an hyperbolic model with finite speed of propagation. The radiation takes some time to arrive in the region, coming from the central region. Our results are stable.

We give a global view of the radiative quantities, E_r, F_r and $f = \frac{F_r}{E_r}$ in figure 10. The result is limited since $|f| \leq 1$ everywhere. In figure (11) we plot the the radiative energy E_r in the interval $0 < x < 1$ for 100 and 400 cells, to illustrate the stability and convergence of the diffusion approximation and the variable Eddington factor method. Both schemes are equally stable. The diffusion gives
Fig. 11. Convergence study : 100 and 400 cells.

a flat profile due to the infinite propagation speed of this model.

In figure (12) we plot the velocity obtained with the diffusion approximation and with the variable Eddington factor method. The physics of the problem is the following : an energy deposit is made by the radiation at the interface opaque/transparent $x = 0.4$. Therefore the pressure increases and pushes the opaque material on the left ($u < 0$ for $x < 0.4$) and the transparent material on the right ($u > 0$ for $0.4 < x < 0.4 + \varepsilon$). Nevertheless there are some differences. Essentially the velocity profile is flat and equal to 0 for $0.5 < x < 0.8$ computed with the diffusion approximation. A possible interpretation is the infinite speed of propagation of the diffusion approximation which enforces a constant pressure (therefore no acceleration in this region). On the other hand the propagation of speed is finite with the variable Eddington factor method : it explains the smooth acceleration on the left of the material in the region $0.5 < x < 0.8$. However the time scale is the time scale of radiation, which is much smaller than the hydrodynamics time scale. So the impact of these velocity fields is absolutely negligible on the density.

In the final test case, figure 13, we have zeroed the energy deposit. The velocity is $v = 0$ and $v = 200$, everywhere at time $t = 0$. Therefore we expect the solution with $v = 200$ to be equal to the solution with $v = 0$, but with a shift. The results show it is indeed the case. For this particular test problem, we found necessary to advect the opacity with an exact method. If not numerical diffusion smear the opacity profiles at the interfaces opaque/transparent which give bad results. Here the results are good.
6 Conclusion and perspectives

We think that the method proposed in this work gives good results in 1D. At least the method is stable and accurate for diffusion limits, the code is robust, and the numerical results are satisfactory for a large variety of test case.

The method does not depend on the particular Eddington factor used for radiation, and therefore can be used in other areas, for neutrinos [31], electrons and all models with the same structure where the diffusion limit is somehow the isotropization of a more general system of partial differential equations [4].
Currently we work on the extension for multidimensional problems.

References

34

