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Abstract

microRNAs (miRNAs) are small noncoding RNAs that are important post-transcriptional regulators of gene expression.
miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by
oligomerization of transcription factors (TF) for the control of gene expression. First, we propose a minimal model for
protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF
generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random
variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple
messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs) network. The
model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA
network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in
protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the
robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the
time delay of a ‘‘Goodwin-like’’ oscillator model, which may favor the occurrence of oscillations of large amplitude. This
result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of
biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory
behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of
computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein
synthesis as well as oscillatory behaviors within ceRNA networks.
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Introduction

MicroRNAs (miRNAs) are short noncoding RNA molecules of

20–30 nucleotides, which can bind to the 39 UTR of messenger

RNA resulting in a post-transcriptional repression of protein

synthesis by targeting the corresponding messenger RNA for

degradation and/or by inhibiting its translation [1,2].

Besides the key role of miRNAs for the down-regulation of

protein expression [3–5], miRNAs can induce thresholds in

protein synthesis [6]. Moreover, they are often involved in feed-

forward regulations with their target genes, allowing an increase in

the robustness of protein expression towards molecular noise [6–

11]. Such robustness may be also achieved by protein oligomer-

ization of transcription factors (TF) for the control of genetic

expression [12].

Moreover, miRNAs have been also found to be critical

regulators in many molecular regulatory networks driving animal

development and human diseases [13]. Indeed, miRNAs could act

as oncogenes or tumor suppressors and are able to control critical

steps in cancer development [14–20], such as the process of cell

transformation [21] and the epithelial-to-mesenchymal transition

(EMT transition) [22–24]. The latter transition is crucial for the

initiation and the development of metastasis. miRNAs are also

involved in molecular regulatory networks driving cell differenti-

ation in multiple tissues [15,25–27].

Furthermore, the presence of miRNAs as well as oligomeriza-

tion of TF for the control of gene expression has been suggested to

play key roles in the regulation of the ordered temporal pattern of

proteins expression during developmental processes [11,28–30].

Without resorting to any feedback or feed-forward regulation

between a miRNA and its target gene, we will propose here

minimal models for protein expression to study the effect of

miRNA as well as oligomerization of TF on protein synthesis. By

resorting to stochastic simulations, we will assess the effect of

miRNAs and oligomerization of TF on the robustness of protein

expression towards molecular noise. The robustness of protein

synthesis will be also analyzed in a deterministic model for a

heterogeneous cell population, which accounts for the dynamical

variation that may arise between cells in a population.

Previous studies indicate that different competing endogenous

RNAs (ceRNAs) may be interconnected via their binding to a
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common miRNA, which can lead to the co-regulation of the

various proteins expressed by such ceRNA network [31,32]. The

correct balance in the activity of ceRNAs and miRNAs seems

important for the development of physiological and pathological

conditions, such as in cancer [31,33]. Such balance may be

deregulated since ceRNAs can act as miRNA sponges [31,34].

Based on those studies, we will also assess the effect of multiple

messenger RNAs (ceRNAs) linked to the same miRNA on the

dynamics of protein synthesis. We will analyze the effect of

oligomerization of TF for the control of gene expression on the

dynamics of such ceRNA network.

Since miRNAs could be also important regulators in the

molecular mechanisms leading to the occurrence of biological

rhythms [35,36], we will further study the effect of miRNA on the

dynamical behavior of a ‘‘Goodwin-like’’ oscillator [37]. The latter

oscillator has been extensively used to model the molecular

dynamics driving the circadian clock in diverse organisms [38–40].

Finally, we will propose a model to account for the potential

dynamics of a ‘‘Goodwin-like’’ oscillator embedded in a ceRNA

network.

Results

Minimal model for the synthesis of one protein regulated
by a miRNA

First we propose a minimal model for protein expression to

account for the effect of miRNA as well as oligomerization of TF

on protein output (see wiring diagram in Fig. 1A). In order to

assess only the effect of miRNA and oligomerization of TF on

protein synthesis, the model does not incorporate any assumptions

about feedback and feed-forward regulations between the miRNA

and its target gene [41]. Moreover, we do not include complex

molecular regulatory mechanisms that may arise to control the

temporal and spatial patterns of gene expression [42]. Here, TF

activate, with or without cooperativity mediated by a certain

degree of oligomerization, the synthesis of messenger RNA. The

binding of miRNA to the RNA forms an inhibitory complex

RNAi, which prevents the messenger RNA to encode the synthesis

of the protein. The model is based on 4 kinetic equations

describing the time evolution of miRNA, RNAi, RNA, and protein

(see section: ‘‘Methods’’). The different variables are defined in

Table 1, while Table 2 gives a definition, together with their

numerical values, of the different parameters of the model.

As expected, the model shows that an increase in the coefficient

of oligomerization of TF, n, generates a sharp threshold in the

expression of the protein (see Fig. 1B as well as [43]). Steady-state

levels of protein towards TF for different rates of synthesis of

miRNA, VSMIRNA, indicate that an increase in the level of miRNA

reduces the overall level of protein output (Fig. 1C). Regardless of

the level of TF, the model shows that a sufficient amount of

miRNA, i.e for VSMIRNA = 0.1 or 1, can completely prevent the

occurrence of a cellular response, which is defined by an arbitrary

threshold of protein (see horizontal red lines in Fig. 1). Further-

more, steady-state levels of protein vs VSMIRNA for different rate

constants of association between the messenger RNA and the

miRNA, k1, show that the presence of miRNA can induce

threshold in protein output (Fig. 1D). The latter result confirms

previous experimental as well as theoretical observations showing

the occurrence of thresholds in protein synthesis generated by the

presence of miRNA [6].

1. miRNA and oligomerization of TF as robust buffers

towards stochastic fluctuations in protein

synthesis. Protein synthesis can be strongly influenced by

stochastic process [44,45]; such stochasticity can greatly influence

the level of protein output [46]. A stochastic version of the

deterministic model proposed in Fig. 1A supports those results by

showing that small random variations in the copy number of

messenger RNA can result in large fluctuations in the protein level

(see Fig. 2 as well as Table 3 for the kinetic equations used in the

stochastic version of the model). Indeed, the deterministic (Fig. 2A,

C) and the corresponding stochastic time evolution of RNA,

miRNA and protein (Fig. 2B, D) illustrated with low (TF = 0.05 in

Fig. 2A, B) or high levels of TF (TF = 1 in Fig. 2C, D) indicate that

stochastic fluctuations can greatly influence the dynamics of

protein output. Moreover, if we set an arbitrary threshold of

proteins above which a cellular response is elicited (see horizontal

red lines in Fig. 2), stochastic simulations indicate that an abusive

cellular response could be generated due to molecular noise even

in the presence of low levels of TF (see Fig. 2B).

By using the stochastic version of the minimal model for protein

expression, we can assess the effect of miRNA on the control and

the robustness of protein expression. The distribution of maximum

number of messenger RNA and protein molecules is represented

for low (TF = 0.01 in Fig. 3A, B), intermediate (TF = 0.1 in Fig. 3C,

D), and high levels of TF (TF = 1 in Fig. 3E, F). For each

condition, different rates of synthesis of miRNA, VSMIRNA, are

considered. As in the deterministic case, the stochastic model

indicates that an increase in the level of miRNA reduces the

overall level of messenger RNA and protein. Furthermore, the

model shows that high levels of miRNA, VSMIRNA = 0.1, can

generate a robust buffer towards stochastic fluctuations. Indeed,

regardless of the level of TF, with high levels of miRNA the

protein output never exceeds the arbitrary threshold, i.e. 100

protein molecules, needed to ensure a cellular response (see

Fig. 3B, D, F). In the presence of low level of TF, the model also

indicates that a small level of miRNA, VSMIRNA = 0.01, is already

sufficient to create a robust buffer towards undesirable stochastic

expression of the protein (Fig. 3B).

The model indicates that the copy number of messenger RNAs

(less than 40 molecules per cell) and proteins (hundreds of

molecules per cell) is in the same order of magnitude as observed

experimentally. Indeed, quantitative measurements of messenger

RNA and protein molecules in E. coli [47], in yeast [48], as well as

in mammals [49] show an expression of messenger RNA of about

tens of copies per cell, while the expression of proteins is in the

range of hundreds or thousands of copies per cell.

The maximum number of protein molecules as a function of TF

represented in the absence (Fig. S1A, C) or in the presence of

miRNA (Fig. S1B, D), as well as with (Fig. S1C, D) or without (Fig.

S1A, B) oligomerization of TF indicates that miRNA and

oligomerization of TF generate a robust buffer towards stochastic

fluctuations. Indeed, with low levels of TF, this buffer prevents the

stochastic occurrence of supra-threshold amounts of protein. The

latter result stresses the fact that oligomerization of TF for the

control of gene expression represents a very good molecular

mechanism to create a buffer in protein expression (compare

panels C and D with panels A and B in Fig. S1). As mentioned

above, such robustness of protein synthesis mediated by oligo-

merization of TF and/or by miRNA seems to be crucial to ensure

the control of an ordered deterministic pattern of protein

expression required during developmental processes [11,29].

Mechanisms leading to noise minimization may be particularly

important for some classes of genes, such as essential genes and

those involved in complex-forming proteins [50]. Recently, it was

shown that gene network architecture is also an important

regulator controlling the variability of gene expression. In

particular, a network of interlocked positive and negative feedback

loops can be an effective mechanism to ensure developmental

Robustness of ceRNA Network Driven by microRNA
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Figure 1. Oligomerization of transcription factors (TF) and miRNAs induce thresholds in protein expression. (A) Minimal model for
protein synthesis including a miRNA. TF activate, with or without oligomerization of TF, the synthesis of a messenger RNA (RNA). This RNA can form
an inhibitory complex, RNAi, with a miRNA, which prevents it to encode the synthesis of the protein. We assume that the level of each component in
the model can be controlled by synthesis and degradation. Steady-state levels of protein vs the level of TF are shown for different degrees of
oligomerization of TF (n) in B, and for different rates of synthesis of miRNA (VSMIRNA) in C. Horizontal red lines indicate an arbitrary threshold of protein
needed to promote a cellular response. (D) Steady-state levels of protein vs VSMIRNA for different rate constants of association between the RNA and
the miRNA, k1. Parameter values used in the simulations are as in Table 2.
doi:10.1371/journal.pone.0083372.g001

Table 1. Variables of the model.

Symbol Definition

RNA Messenger RNA

Prot Protein encoded by the messenger RNA

RNAi Inhibitory complex between RNA and miRNA

miRNA microRNA, which forms inhibitory complexes with the corresponding messenger RNAs

Addition of a two messenger RNAs, RNA2 and RNA3, which can also bind to miRNA

RNA2 Messenger RNA 2

Prot2 Protein encoded by the messenger RNA 2

RNA2i Inhibitory complex between RNA2 and miRNA

RNA3 Messenger RNA 3

Prot3 Protein encoded by the messenger RNA 3

RNA3i Inhibitory complex between RNA3 and miRNA

‘‘Goodwin-like’’ oscillator with miRNA regulation of protein synthesis

Rep Repressor, which can prevent the synthesis of the messenger RNA

doi:10.1371/journal.pone.0083372.t001

Robustness of ceRNA Network Driven by microRNA
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Table 2. Parameters of the models.

Symbol Definition Numerical value

1) Minimal model for protein synthesis with a messenger RNA regulated by a miRNA

VSRNA Rate of synthesis of messenger RNA 0.02

TF Transcription factors

KARNA Michaelis constant for activation of RNA synthesis by TF 0.1

k1 Bimolecular rate constant for binding of miRNA to RNA 10

k2 Rate constant for dissociation of complex (RNAi) between miRNA and RNA 0.01

kDRNA Rate constant for the degradation of RNA 0.1

kSPROT Rate constant for the synthesis of protein 3

kDPROT Rate constant for the degradation of protein 0.1

kDRNAI Rate constant for the degradation of RNAi 0.1

VSMIRNA Rate of synthesis of miRNA

kDMIRNA Rate constant for the degradation of miRNA 0.1

n Coefficient of cooperativity mediated by the oligomerization of TF needed to promote the transcription of messenger RNA

2) Minimal model with two messenger RNAs regulated by the same miRNA
(Other parameter values are as in section 1 of this Table)

VSRNA Rate of synthesis of messenger RNA 3

VSRNA2 Rate of synthesis of messenger RNA 2, RNA2 0.02

VSRNA3 Rate of synthesis of messenger RNA 3, RNA3 0.02

k3 Bimolecular rate constant for binding of miRNA to RNA2 10

k4 Rate constant for dissociation of complex (RNA2i) between miRNA and RNA2 0.01

k5 Bimolecular rate constant for binding of miRNA to RNA3 10

k6 Rate constant for dissociation of complex (RNA3i) between miRNA and RNA3 0.01

kDRNA2 Rate constant for the degradation of RNA2 0.1

kDRNA3 Rate constant for the degradation of RNA3 0.1

kSPROT2 Rate constant for the synthesis of protein 2, Prot2 3

kSPROT3 Rate constant for the synthesis of protein 3, Prot3 3.5

kDPROT2 Rate constant for the degradation of Prot2 0.1

kDPROT3 Rate constant for the degradation of Prot3 0.1

kDRNAI2 Rate constant for the degradation of RNA2i 0.1

kDRNAI3 Rate constant for the degradation of RNA3i 0.1

3) ‘‘Goodwin-like’’ oscillator with regulation of protein synthesis by a miRNA

VSMIRNA Rate of synthesis of miRNA 0.1

kDMIRNA Rate constant for the degradation of miRNA 0.01

k1 Bimolecular rate constant for binding of miRNA to RNA 100

k2 Rate constant for dissociation of complex (RNAi) between miRNA and RNA 0.01

VSRNA Rate of synthesis of messenger RNA 0.4

kDRNA Rate constant for the degradation of RNA 0.4

kSPROT Rate constant for the synthesis of protein 2

kDPROT Rate constant for the degradation of protein 0.02

kDRNAI Rate constant for the degradation of RNAi 0.1

k7 Rate constant for the conversion of the protein into the repressor (i.e. transport of the protein from the cytosol to the
nucleus and/or post-translational modifications)

0.1

k8 Rate constant for the conversion of the repressor into the protein (i.e. transport of the repressor from the nucleus to the
cytosol and/or post-translational modifications)

0.01

KIMRNA Constant of inhibition by the repressor of the synthesis of RNA 0.04

kDREP Rate constant for the degradation of repressor, Rep 0.3

n Coefficient of oligomerization between repressor molecules to inhibit the synthesis of messenger RNA 12

Notes: The minimal models proposed here could represent the generic dynamics of protein expression in various types of eukaryotic cells. Such dynamics may vary in
an extensive manner for different types of proteins within a cell and may also vary between different cell types. Thus, in order to stay as general as possible, we have
chosen a set of ‘representative’ dimensionless parameter values.
doi:10.1371/journal.pone.0083372.t002
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robustness [51]. However, note also that in some circumstances,

stochastic gene expression can be advantageous by providing the

flexibility required to adapt to fluctuating environments or to

respond to sudden stresses [52].

2. Dynamics of protein synthesis in a heterogeneous cell

population. In the previous section, we analyzed the effect of

intrinsic molecular noise on the dynamics of protein expression.

Here, we propose a model to account for the dynamics of protein

synthesis in a heterogeneous cell population, where parameter

values for each cell can vary in a random manner. Such parameter

variation could represent the dynamical heterogeneity that may

arise between cells in a population [53–55]. Based on this model,

we will assess the effect of miRNA on the dynamics of protein

expression in a cell population.

Protein levels are represented towards the percentage of random

variation for each parameter of the model in the absence

(VSMIRNA = 0 in Fig. 4A, C) or in the presence of miRNA

(VSMIRNA = 0.01 in Fig. 4B, D), as well as in the presence of low

(TF = 0.01 in Fig. 4A, B) or high levels of TF (TF = 1 in Fig. 4C,

D). Without random variation from the default value of the

parameters, the model shows that, with low levels of TF, the

protein level is small (below the threshold needed to generate of

cellular response) (see Fig. 4A, B), while the protein level is above

the threshold with high levels of TF (Fig. 4C, D). By increasing the

random variation from 0 to 40% around the default value for each

parameter, the model indicates that, in the absence of miRNA and

in the presence of low levels of TF, a significant proportion of cells

abusively exhibit a cellular response (see Fig. 4A). The presence of

miRNA creates a robust buffer that prevents those undesirable

cellular responses (Fig. 4B). In the presence of high levels of TF, a

cellular response is always generated (Fig. 4C). In the latter

condition, the model suggests that with large random variations

around the default value of the parameters, the addition of

miRNA might in few cases prevent the occurrence of the desired

cellular response (see Fig. 4D). However, this observation happens

only for few cells and with a large random variation (30% or 40%).

Figure 2. Effect of stochastic fluctuations on protein expression. Deterministic (A, C) and the corresponding stochastic (B, D) time evolution
of RNA, protein and miRNA are shown in the presence of low (TF = 0.05 in A, B) or high levels of TF (TF = 1 in C, D). The level of protein is low with
small levels of TF and large with high levels of TF (compare panels A and C). Here again, horizontal red lines define an arbitrary threshold of protein
needed to elicit a cellular response. Small stochastic fluctuations in the copy number of messenger RNA molecules can greatly affect the level of
protein output (see panels B and D). Stochastic simulations were performed by means of the Gillespie’s algorithm [87] using the stochastic version of
the minimal model for protein synthesis (see Table 3). The units on the axes for the stochastic curves are expressed in numbers of molecules. The
corresponding concentrations for the deterministic trajectories are obtained by dividing the numbers of molecules by V expressed in units of 106 L/
NA, where NA is Avogadro’s number. Here, as well as in Figs. 3 and S1, V= 100. The rate of synthesis of miRNA, VSMIRNA, is equal to 0.01; the coefficient
of cooperativity, n, is equal to 1; and the other parameter values are as in Table 2.
doi:10.1371/journal.pone.0083372.g002
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Model for the expression of proteins formed by a
minimal ceRNA network

Here, we extend the previous model by considering that the

same miRNA binds and inhibits three messenger RNAs: RNA 1, 2

and 3 (see wiring diagram in Fig. 5). Those RNAs are ceRNAs for

each other. TF only activate, with or without oligomerization of

TF, the synthesis of RNA 1. We do not consider regulation of the

expression of RNA 2 or RNA 3 by TF. The three RNAs encode

the synthesis of their respective proteins.

The model counts 10 kinetic equations describing the time

evolution of the different variables of the model (see section 2 in

Methods: ‘‘Minimal model: 3 ceRNAs regulated by the same

miRNA’’ as well as Table 1 for a definition of the different

variables of the model).

Steady-state levels of protein 1 towards the level of TF

established in the absence or presence of oligomerization of TF

indicates, as expected, that oligomerization of TF induces an

abrupt switch in protein expression below which the gene is

repressed and above which it is expressed (see Fig. 6A and 6B as

well as Fig. 1). In each case, the rise in the level of miRNA reduces

the overall level of protein. Even if TF only control the synthesis of

RNA 1, as a result of the shared miRNA between the three

messenger RNAs, the model indicates that TF can also regulate

the steady-state level of proteins 2 and 3 (Fig. 6C–F). Indeed, a

positive correlation in the expression pattern of the three proteins

is observed. Such positive correlations between a gene and its

pseudogene, i.e. between the phosphatase PTEN and its pseudo-

gene pten1, as well as between a messenger RNA and its ceRNA

have already been observed theoretically and experimentally

[31,32,56–59]. Obviously, in the absence of miRNA, the level of

TF does not influence the level of proteins 2 and 3 (see Fig. 6C–F

for VSMIRNA = 0).

Interestingly, the model predicts that, via the presence of

miRNA, the oligomerization of TF allowing the occurrence of an

abrupt switch in the expression pattern of protein 1 can be

propagated to the expression profiles of proteins 2 and 3 (compare

Fig. 6C with Fig. 6D as well as Fig. 6E with Fig. 6F showing the

level of protein 2 and protein 3 towards TF in the absence or

presence of oligomerization of TF, respectively). This result

suggests that, with adequate level of miRNA, the expression of

all proteins involved in a ceRNA network can be completely

repressed in the absence of TF regulating the expression of only

one gene in this network, while all proteins can be expressed in the

presence of such TF.

Since the model suggests that thresholds in protein expression

mediated by oligomerization of TF can be propagated within a

ceRNA network, could it be possible that the robustness of gene

expression mediated by such thresholds be transmitted to the

whole network?

To answer that question, we resort to a model for a ceRNA

network in a heterogeneous cell population (see Fig. 5). We

represent the level of proteins 1, 2, and 3 towards the percentage

of random variation on every parameter of the model. In all cases,

a low level of TF is considered (TF = 0.0025 in Fig. 7). This low

level of TF is still sufficient to ensure a cellular response in the

absence of oligomerization of TF (see levels of proteins 1, 2 and 3

in Fig. 7A, C, E without random variation on parameters). The

model indicates that the presence of oligomerization of TF for the

expression of gene 1 drastically decreases the level of all proteins

(compare Figs. 7A, C, E with Figs. 7B, D, and F, respectively).

Moreover, the model suggests that a large proportion of cells will

exceed the threshold in the absence of oligomerization (Fig. 7A, C,

E), while all proteins are well repressed in the presence of

oligomerization, even with 40% of random variation on each

parameter of the model (Fig. 7B, D, F).

Thus, the model indicates that the threshold in protein synthesis

elicited by the oligomerization of TF for the expression of one gene

can be propagated, via a shared miRNA, to the pattern of

expression of the different genes involved in such ceRNA network.

If insufficient levels of TF are present, the propagation of this

threshold elicits a robust buffer for the whole ceRNA network

preventing the expression of the other genes. While all proteins in

the network can be expressed with supra-threshold amounts of TF

(Fig. 6B, D, F for high levels of TF).

However, the model suggests that the propagation of such

threshold may only occur if adequate levels of miRNA are present.

Indeed, an elevated level of ceRNA can sponge the free available

miRNA (Fig. S2A where steady-state levels of protein 2 are shown

towards the level of TF for different rates of synthesis of RNA 3,

VSRNA3). The rise in the level of RNA 3 (ceRNA) sponges the

available miRNA, which impedes the propagation of thresholds in

protein synthesis in this minimal ceRNA network (Fig. S2A). The

model also predicts that an elevated level of miRNA can

counteract, to some extent, this effect (see Fig. S2B when the

Table 3. Stochastic version of the model (see scheme in Fig. 1A).

Reaction
number Reaction Propensity of reaction

1 {TF{�?RNA w1~VSRNA
:V:

(TF :V)n

(KARNA
:V)nz(TF :V)n

� �

2 miRNA,RNA {{�?RNAi
w2~

k1

V
:miRNA:RNA

3 RNAi {{�?miRNA,RNA w3~k2
:RNAi

4 RNA {{�? w4~kDRNA
:RNA

5 {RNA{�?Prot w5~kSPROT
:RNA

6 Prot {{�? w6~kDPROT
:Prot

7 RNAi {{�? w7~kDRNAI
:RNAi

8 {{�?miRNA w8~VSMIRNA
:V

9 miRNA {{�? w9~kDMIRNA
:miRNA

doi:10.1371/journal.pone.0083372.t003
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Figure 3. miRNA as a robust buffer for the synthesis of protein. Stochastic distribution of the maximum number of messenger RNA and
protein molecules in the presence of low (TF = 0.01 in A and B), intermediate (TF = 0.1 in C and D), and large levels of TF (TF = 1 in E and F). For each
case, the distribution is calculated with 1000 stochastic cells (see stochastic model for protein expression in Table 3) in the absence of miRNA
(VSMIRNA = 0) as well as in the presence of low and high levels of miRNA (VSMIRNA = 0.01 and 0.1). Increasing the level of miRNA reduces the overall level
of messenger RNA and protein. Vertical red lines in panels B, D and F indicate the arbitrary threshold of protein (100 protein molecules) needed to
promote a cellular response. Regardless of the level of TF, a high level of miRNA, VSMIRNA = 0.1, ensures a robust repression of protein synthesis, which
impedes the occurrence of a cellular response; while with low levels of TF, a small level of miRNA, VSMIRNA = 0.01, is already sufficient to prevent
stochastic occurrence of protein expression (see panel B). Parameter values are as in Table 2.
doi:10.1371/journal.pone.0083372.g003
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rate of synthesis of miRNA, VSMIRNA is equal to 1 instead of 0.1 in

the conditions of Fig. S2A).

In the simulations of Figs. 6, 7, and S2, the kinetics of expression

of genes 2 and 3 is very similar. To analyze the effect of different

kinetics of expression between ceRNAs on the robustness of

protein output within a ceRNA network, we consider different

kinetics of expression for genes 2 and 3 (see Figs. S3 and S4). In

one set of parameter values, set 2, the kinetics of expression of gene

3 is much faster than the kinetics of expression of gene 2, while the

opposite is applied in set 3 (see legend of Fig. S3). The model

indicates that when the kinetics of expression of one gene in the

network is much larger that the others, the latter can sponge the

available miRNA (see the steady-state levels of miRNA in the

different conditions of Fig. S3). The reduction in the level of free

miRNA (compare Fig. S3B with Figs. S3A and S3C) causes an

increase in the levels of proteins 2 and 3. Such increase prevents,

in the framework of a heterogeneous cell population, the existence

of a robust buffer of protein output within the ceRNA network

(compare Fig. S4A and S4C with Fig. S4B and S4D).

The latter result supports a recent theoretical study showing that

the interaction of miRNAs with their different target messenger

RNAs, which forms a ceRNA network, can be described by a

titration mechanism [59]. The latter mechanism is characterized

by threshold effect defined by the amount of shared miRNAs and

messenger RNA targets. At the proximity of the threshold, a

maximum correlation between messenger RNA targets is

observed, as well as the presence of robustness of ceRNA effect

with respect to random parameter variation [59]. In our model,

Figure 4. Robustness of protein expression towards random variation of parameter values. Levels of protein are shown towards the
percentage of random variation around the default value for every parameter of the model in the absence (VSMIRNA = 0 in A, C) or presence of miRNA
(VSMIRNA = 0.01 in B, D), as well as with low (TF = 0.01 in A, B) or high levels of TF (TF = 1 in C, D). This simulation may represent the dynamics of protein
synthesis in a heterogeneous cell population. Red lines indicate the arbitrary threshold of protein needed to ensure a cellular response. With a low
level of TF, miRNA robustly inhibits the undesirable expression of protein, even when 40% of random variation is considered on each parameter of
the model (compare panels A and B). For each condition, 100 deterministic cells with random variation on each parameter are considered. Each dot
corresponds to the protein level of one cell. Default values for the parameter are as in Table 2. For all simulations involving heterogeneous cell
population, the parameter variation is applied with a uniform distribution around the mean value for each parameter.
doi:10.1371/journal.pone.0083372.g004
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because TF can regulate the transcription of one gene in the

network, it could also move the latter threshold (defined by the

relative levels of messenger RNAs and miRNA) to different

amounts of miRNA. Furthermore, another recent theoretical

study compared the mechanisms of eukaryotic microRNA-

regulated genes with the regulation of gene expression by the

prokaryotic small non-coding RNAs (sRNAs) [60]. Interestingly,

they showed that, despite different mechanisms of regulation, the

expression levels and the noise profiles of regulated-genes are

almost identical in eukaryotes and prokaryotes.

Thus, a proper balance in the levels of ceRNAs and miRNAs is

critical for the control of the activity of a ceRNA network. Such

ceRNA network activity may be an important layer of regulation

for physiological and pathological developments [32,33].

miRNA as a source of time delay for biological oscillators
It has been shown that miRNAs may be also important

modulators of the negative regulatory circuits allowing sustained

oscillatory behaviors in many physiological systems. Those

physiological systems lead to the occurrence of biological rhythms

[61], such as the NFkB oscillations [62]; Hes1 (Notch signaling

effector) ultradian oscillations [63]; the calcium oscillations [35];

the cell cycle [64–67]; as well as the circadian clock [36,68–72].

Here, by resorting to a minimal ‘‘Goodwin-like’’ oscillator

model (see [37,38] as well as Fig. 8A); we will assess the effect of a

miRNA on the dynamics of such oscillator. The model rests on a

negative feedback loop where a messenger RNA encodes the

synthesis of a protein, which can be converted into a repressor.

The latter represses the synthesis of the messenger RNA. By

forming an inhibitory complex with the messenger RNA, the

miRNA inhibits the expression of the protein.

The ‘‘Goodwin-like’’ oscillator model proposed here counts 5

kinetic equations (see Eqs. 11 to 15 in Methods) describing the

time evolution of the different variables of the model (see also

Table 1 for a definition of the different variables).

Time evolution of messenger RNA, protein and miRNA in the

absence (VSMIRNA = 0 in Fig. 8B and 8D) or in the presence of

miRNA (VSMIRNA = 0.1 in Fig. 8C and 8E), as well as in the

presence of intermediate (n = 4 in Fig. 8B and 8C) or high levels of

cooperativity in repression for the down-regulation of gene

expression (n = 12 in Fig. 8D and 8E) indicates that oligomeriza-

tion of repressors and miRNA promote the occurrence of

sustained oscillatory behavior. Regardless of the degree of

oligomerization, the model also predicts that, at least with the

parameter values used, oscillations of only small amplitude are

observed without miRNA (Fig. 8D), while large amplitude of

oscillations are elicited in its presence (Fig. 8C and 8E).

Steady-state levels of protein vs the rate of synthesis of miRNA,

VSMIRNA, illustrated in the presence of intermediate (n = 4 in Fig.

S5A) or high degree of oligomerization (n = 12 in Fig. S5B)

indicate that, with an intermediate level of oligomerization, the

presence of miRNA is required to elicit the occurrence of sustained

oscillations (Fig. S5A). However, with high levels of oligomeriza-

tion, miRNA is not required to promote sustained oscillatory

behavior (Fig. S5B).

Furthermore, the dynamical behavior of the model represented

in the parameter plane defined by the degree of oligomerization

between repressor molecules (n) and the rate of synthesis of

miRNA (VSMIRNA) points out that a high degree of oligomerization

is not needed to ensure sustained oscillations if an adequate level of

miRNA is present (see Fig. S5C).

Let us remind that a necessary condition to generate the

occurrence of sustained oscillations in the original Goodwin model

is the presence of a high degree of oligomerization (n), with the

condition that n$8 [73]. This latter condition can be criticized

since it assumes that at least 8 molecules of repressors must bind in

a complex to be able to repress the expression of the gene. Here

Figure 5. Model for the dynamics of a minimal ceRNA network. The expression of three proteins (Proteins 1, 2, and 3) is controlled by the
same miRNA. Transcription factors (TF) only promote, with or without cooperativity mediated by their oligomerization, the synthesis of messenger
RNA 1. The different messenger RNAs (RNAs 1, 2, 3) can form inhibitory complexes (RNA1i, RNA2i, RNA3i) with the miRNA, which prevent them to
encode the synthesis of their respective protein.
doi:10.1371/journal.pone.0083372.g005
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Figure 6. Propagation of thresholds in protein synthesis within a ceRNA network. Steady-state levels of protein 1 (A, B), protein 2 (C, D), and protein
3 (E, F) vs TF are shown in the absence (n = 1 in A, C, E) or in the presence of oligomerization of TF for the expression of gene 1 (n = 4 in B, D, F). For each case,
different rates of synthesis of miRNA, VSMIRNA, are considered: VSMIRNA = 0, 0.01, 0.1, 1, 3 and 10. For low levels of TF, the level of protein 1 is greatly reduced
when oligomerization of TF increases from n = 1 to 4 (compare panels A and B). As a result of common miRNA regulation, TF can control the levels of proteins 2
and 3 and can induce thresholds in the expression level of those proteins (compare panel C with D and panel E with F). Parameter values are as in Table 2.
doi:10.1371/journal.pone.0083372.g006
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the model shows that the addition of a miRNA in the Goodwin

model relaxes this strong condition about the high degree of

oligomerization. This result suggests important roles of miRNAs in

the regulation of the molecular mechanisms leading to the

occurrence of biological rhythms.

Dynamics of the ‘‘Goodwin-like’’ oscillator embedded in a
ceRNA network

Since most messenger RNAs in mammals can be a potential

target for miRNA regulation [74], it seems natural to study the

potential dynamical behavior of a ‘‘Goodwin-like’’ oscillator

embedded in a ceRNA network. Indeed, we can reasonably

assume that a miRNA, which binds to a messenger RNA involved

in a negative feedback loop generating sustained oscillatory

behavior, might also possess other messenger RNA targets, which

are not directly involved in the core of the negative feedback loop.

Thus, we further extend the ‘‘Goodwin-like’’ oscillator model,

which already includes a miRNA, by the addition of two ceRNAs:

RNAs 2 and 3 (see wiring diagram in Fig. 9). The latter ceRNAs

can also bind to the miRNA, which prevent them to encode their

respective proteins.

Time evolution of miRNA, protein, and proteins 2 and 3 in the

presence of low (VSMIRNA = 0.1 in Fig. 10A), intermediate

(VSMIRNA = 0.18 in Fig. 10B), or large levels of miRNA

(VSMIRNA = 0.25 in Fig. 10C) indicates that intermediate levels of

miRNA are required to elicit sustained oscillatory behavior (see

also Fig. S5A). Steady-state levels of protein (Fig. S6A), protein 2

(Fig. S6B), protein 3 (Fig. S6C) and miRNA (Fig. S6D) towards the

rate of synthesis of miRNA (VSMIRNA) further confirm this result

by showing that the domain of sustained oscillatory behavior only

occurs for intermediate levels of miRNA.

Interestingly, the model predicts that the levels of proteins 2 and

3, which are not directly involved in the core of the oscillator, can

oscillate in phase with the protein directly involved in the negative

feedback loop (see Fig. 10B). In the framework of biological

rhythms, this result highlights the potential role of miRNAs as key

molecular elements to extend the oscillatory behavior of proteins

to proteins that are not directly involved in the core of the

biological oscillator, but which are linked to the oscillator through

a ceRNA network.

Simulations with the stochastic version of the ‘‘Goodwin-like’’

oscillator embedded in a ceRNA network (see Table 4 in Methods)

indicate that sustained oscillations persist even with high molecular

noise (see time evolution of miRNA, Prot, Prot2 and Prot3 in Fig.

S7). As a result of random fluctuations near the two Hopf

bifurcation points delimiting the oscillatory domain, the model

shows that stochastic oscillations can occur even if the corre-

sponding deterministic simulation predicts a stable steady state

(compare Fig. S7F with Fig. 10C).

Furthermore, simulations of the ‘‘Goodwin-like’’ oscillator

embedded in a ceRNA network within a heterogeneous cell

population suggest that the oscillator is quite robust against

random fluctuations of parameter values (see Fig. S8). Indeed,

within the oscillatory domain (see Fig. 10B as well as Fig. S8D

where VSMIRNA = 0.18), a large proportion of cells (60%) still

oscillate even with 30% of random variation on parameters. Near

the two Hopf bifurcation points, the model predicts that some cells

can enter into an oscillatory regime if sufficient random variation

on parameters is present (see Figs. S8C, S8E).

Discussion

miRNAs can greatly influence the level of protein expression

and are also important to confer robustness to biological processes

[3,4,7,8,75,76]. Indeed, miRNAs and their target genes are often

embedded in feedback and feed-forward regulatory motifs, which

may improve the robustness of protein expression towards

molecular noise [10,41]. During the development of an organism,

it was shown that a miRNA-mediated incoherent feed-forward

loop could represent a filter that prevents the propagation of

deleterious fluctuations in gene expression [77]. Moreover, a

combined experimental and theoretical study also indicates that

miRNAs can induce thresholds in protein expression [6].

Thresholds in protein synthesis can be also achieved by the

presence of oligomerization of TF or amongst repressors for the

regulation of gene expression [29,78]. Such oligomerization

mechanism could represent a way to control genetic noise [12,79].

Here, we propose a minimal model for protein expression,

which does not rest on any feedback and/or feed-forward

regulatory motif between a gene and its miRNA. The model

supports the view that oligomerization of TF as well as miRNA

can induce the occurrence of thresholds in protein expression (see

Fig. 1 and [6]). By resorting to stochastic simulations, we show that

even small stochastic fluctuations in the copy number of messenger

RNA have a great impact on protein output (Fig. 2). The minimal

model already accounts for the fact that low levels of miRNA are

sufficient to generate a robust buffer towards the undesirable

stochastic expression of protein in the absence of TF (Fig. 3A, 3B

as well as Fig. S1). Moreover, the model shows that high levels of

miRNA could really act as a robust repressor of protein

expression, even in the presence of TF eliciting RNA synthesis

(Fig. 3E, 3F). Similarly, the model indicates that the presence of

oligomerization of TF also ensures a robust buffer towards

undesirable stochastic expression of protein (Fig. S1). By means of

a deterministic model for a heterogeneous cell population, where

every parameter can vary in a random manner within each cell in

the population, we further show that the presence of miRNA also

defines a robust buffer against undesirable protein synthesis (Fig. 4).

Most messenger RNAs are conserved target of miRNAs [74]. If

several messenger RNAs bind to the same miRNA, each of these

messenger RNAs represents a ceRNA for each other. Because

ceRNAs are linked together through their common miRNA, their

patterns of expression are positively correlated and they can form a

large ceRNA regulatory network [31,33]. Such ceRNA network

might be of great importance in many physiological functions [31],

such as in cell differentiation [80], or can play a key role in

physiological disorders, such as in cell transformation and cancer

development [56–58,81].

To account for the qualitative dynamics of a minimal ceRNA

network, we extend the model for protein expression by including

two messenger RNAs: RNAs 2 and 3, which can bind to the same

miRNA (Fig. 5). While the synthesis of those RNAs is not directly

regulated by TF (the latter only controls the synthesis of RNA 1),

the model shows that TF can control the level of proteins 2 and 3.

This result supports previous observations showing that TF and

ceRNA networks could be tightly intertwined in physiological as

well as pathological conditions [32,33]. Moreover, we show that

the threshold in the synthesis of protein 1 generated by the

oligomerization of TF can be transmitted to the expression profiles

of proteins 2 and 3 (Fig. 6). The model further predicts that the

propagation of such thresholds in protein synthesis may confer a

robust buffer for the expression of all proteins involved in this

network (Fig. 7). The model also indicates that the propagation of

such thresholds in gene expression may only occur if the levels of

the different ceRNAs are not too large as compared to the level of

miRNA (Fig. S2). One could suggest that the propagation of

thresholds in protein synthesis within a ceRNA network might
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Figure 7. Propagation of robustness in protein expression within a ceRNA network. Levels of protein 1 (A, B), protein 2 (C, D) and protein 3
(E, F) are shown in a heterogeneous cell population as a function of the percentage of random variation around the default value for each parameter
of the model. Simulations are performed without (n = 1 in A, C, E) and with oligomerization of TF for the synthesis of gene 1 (n = 4 in B, D, F). Red lines
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represent a mechanism to limit the noise propagation as observed

in gene networks [82].

Furthermore, an increasing amount of evidences illustrated the

important roles of miRNAs in the control of the expression of

proteins involved in negative feedback circuits regulating the

indicate the arbitrary threshold of protein needed to generate a cellular response. As a result of common miRNA regulation, the buffer effect in
protein 1 expression, mediated by the oligomerization of TF, is propagated to the expression profile of proteins 2 and 3 (compare panels C with D
and panels E with F). In each case, a low level of TF is considered (TF = 0.0025) and the rate of synthesis of miRNA, VSMIRNA, is equal to 0.1 (see green
curve in Fig. 6 with TF = 0.0025). Simulations are performed with 100 deterministic cells for each condition. Default values for the parameters are as in
Table 2.
doi:10.1371/journal.pone.0083372.g007

Figure 8. ‘‘Goodwin-like’’ oscillator including a miRNA. (A) Wiring diagram of the oscillator. A messenger RNA encodes the synthesis of a
protein, which can convert into a repressor, i.e. due to post-translational modifications of the protein. The repressor impedes the synthesis of the
messenger RNA, which creates a negative feedback loop allowing sustained oscillations in the levels of RNA, protein, and repressor. Here, a miRNA
can regulate the level of RNA by forming an inhibitory complex, RNAi. Time evolution of RNA, miRNA and protein is shown in the absence (VSMIRNA = 0
in B, D) or in the presence of miRNA (VSMIRNA = 0.1 in C, E); as well as in the presence of intermediate (n = 4 in B, C) or high degree of oligomerization
(n = 12 in D, E) amongst repressor molecules to down-regulate the synthesis of RNA. The model shows that the presence of miRNA promotes
sustained oscillations of large amplitude. Parameter values are as in Table 2.
doi:10.1371/journal.pone.0083372.g008
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occurrence of biological rhythms [83,84]. These negative regula-

tory circuits allow the occurrence of biological rhythms such as the

circadian clock [36,68,84], the calcium oscillations [35], the NFkB

oscillations [62,85], or the cell cycle [65].

By using a ‘‘Goodwin-like’’ model (see [37,38] and Fig. 8),

which may represent a generic biological oscillator, we assessed the

effect of miRNA on the dynamics of such oscillator. We show that

the addition of a miRNA regulating the level of the messenger

RNA can act as a source of time-delay that favors the occurrence

of oscillations of large amplitude (see Fig. 8). The latter result is

supported by a recent experimental study, which showed that

miRNAs are required to generate a time delay in the circadian

clock oscillator [84]. Moreover, the model indicates that, in the

presence of miRNA, the oscillator becomes less dependent from

the high degree of oligomerization for the repression of the gene to

ensure sustained oscillatory behavior (Figs. 8 and S5). This latter

prediction suggests a key role of miRNAs for the occurrence of

sustained oscillations, which may be of great importance for the

control of biological rhythms [86].

Finally, we consider the potential dynamics of a ‘‘Goodwin-like’’

oscillator embedded in a ceRNA network (Fig. 9). While proteins 2

and 3 encoded respectively by RNAs 2 and 3 (ceRNAs) are not

directly involved in the core of the oscillator, the model shows that,

under intermediate levels of miRNA, they can oscillate in phase

with the protein directly involved in the negative feedback loop

(see Figs. 10 and S6). An extrapolation of this result could be that:

if one ceRNA is involved in the core of a negative feedback loop

and under adequate levels of its regulating miRNA, oscillatory

behavior can be transmitted to every messenger RNA (and

proteins) involved in this ceRNA network. In the framework of

biological rhythms, this might extend considerably the oscillatory

behavior of numerous proteins related, through the ceRNA

network, but not directly involved in the core of the molecular

mechanism generating the oscillations.

In summary, we developed a minimal model to account for the

dynamics of protein expression regulated by oligomerization of TF

and by miRNA. The model shows that both oligomerization and

miRNA can induce thresholds in protein synthesis, which increase

the robustness of gene expression towards stochastic fluctuations at

a single cell level as well as towards random variation of parameter

values. The latter variation may represent the variation that arises

between cells in a population. By extending the model with two

messenger RNAs (ceRNAs) binding to the same miRNA, we show

that TF can modulate the level of the different proteins formed by

this minimal ceRNA network, even if TF only promote the

transcription of one gene in the network. This result supports

previous observations showing that, through ceRNA network, TF

regulatory potency could be much larger than expected [33]. In

that framework, we further show that the robustness of gene

expression elicited by the oligomerization of TF can be propagated

to the profiles of expression of the other genes formed by the

network. This result might have great implications for the

robustness of the dynamics of gene expression in ceRNA networks.

Moreover, we proposed a minimal ‘‘Goodwin-oscillator’’ model,

which includes a miRNA. We show that the presence of miRNA

in this oscillator creates a time-delay, which relaxes the strong

requirement of high oligomerization between repressor molecules

for the occurrence of sustained oscillations. Finally, the addition of

ceRNAs in the latter oscillator indicates that the proteins formed

by such ceRNA network can oscillate in phase with the protein

directly involved in the negative feedback loop. This might greatly

increase the oscillatory capability of the numerous proteins that

Figure 9. Wiring diagram of a ‘‘Goodwin-like’’ oscillator embedded in a minimal ceRNA network. One messenger RNA (RNA) ensures the
synthesis of a protein, which can be converted into a repressor. This repressor down-regulates the synthesis of the RNA. By forming an inhibitory
complex (RNAi) with the RNA, the miRNA reduces the level of messenger RNA. We hypothesize that the same miRNA also binds to other messenger
RNAs (ceRNAs): RNAs 2 and 3. Those RNAs encode their respective proteins: Proteins 2 and 3.
doi:10.1371/journal.pone.0083372.g009
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may be formed by a ceRNA network. Thus, the model suggests

that miRNAs can be seen as vectors allowing the propagation of

robustness in protein expression as well as oscillatory dynamics

within ceRNA networks.

Methods

The different models proposed are described by a set of kinetic

equations (see sections 1 to 4 here below) representing the time

evolution of the concentration of the main variables driving the

dynamics of protein expression. The different variables of the

model are defined in Table 1, while the description of the

parameters, together with their numerical values used in the

simulations, are found in Table 2. The stochastic version of the

minimal model for protein expression (see Fig. 1A) is presented in

Table 3, while the stochastic version of the ‘‘Goodwin-like’’

oscillator embedded in a ceRNA network (see scheme in Fig. 9) is

presented in Table 4. Both stochastic models consist of a set of

reactions, which are directly related to the deterministic kinetic

reactions and is simulated with the Gillespie algorithm [87].

Kinetic equations of the model
All variables of the different models rest mainly on mass-action

kinetics. The oligomerization of transcription factors (TF) for the

control of messenger RNA synthesis is modeled with a Hill

function, which includes the coefficient of cooperativity, n [43].

1. Minimal model: one messenger RNA regulated by a

miRNA (see scheme in Fig. 1A).

dRNA

dt
~VSRNA

: TF n

(KARNA)nzTFn

� �

{k1
:miRNA:RNAzk2

:RNAi{kDRNA
:RNA

ð1Þ

dProt

dt
~kSPROT

:RNA{kDPROT
:Prot ð2Þ

dRNAi

dt
~k1

:miRNA:RNA{k2
:RNAi{kDRNAI

:RNAi ð3Þ

dmiRNA

dt
~VSMIRNA{k1

:miRNA:RNA

zk2
:RNAi{kDMIRNA

:miRNA

ð4Þ

2. Minimal model: 3 ceRNAs regulated by the same

miRNA (see scheme in Fig. 5). This model is described by the

Eqs. [1] to [3] representing the time evolution of RNA, Prot and

RNAi. The Eq. [4] representing the time evolution of miRNA is

replaced by Eq. [49] to include the terms of association and

dissociation between miRNA and RNA2 as well as between

miRNA and RNA3. Moreover, the Eqs. [5] to [10] describe the

time evolution of RNA2, Prot2, RNA2i, RNA3, Prot3, and

RNA3i, respectively.

dmiRNA

dt
~VSMIRNA{k1

:miRNA:RNAzk2
:RNAi

{k3
:miRNA:RNA2zk4

:RNA2i

{k5
:miRNA:RNA3zk6

:RNA3i{kDMIRNA
:miRNA

ð49Þ

Figure 10. Propagation of oscillatory behavior within a ceRNA
network. Time evolution of protein, protein 2, protein 3 and miRNA is
illustrated in the presence of low (VSMIRNA = 0.1), intermediate
(VSMIRNA = 0.18) and high (VSMIRNA = 0.25) level of miRNA in panels A,
B, and C, respectively. An appropriate level of miRNA creates a proper
time-delay that favors the occurrence of sustained oscillations (see
panel B). An elevated level of miRNA strongly represses the level of the
different proteins, which abolishes the occurrence of sustained
oscillatory behavior (panel C). Even if proteins 2 and 3 are not directly
involved in the core of the oscillator, the model predicts that they can
oscillate in phase with the protein directly involved in the negative
feedback loop of the oscillator. Parameter values are as in Table 2 with
n = 4.
doi:10.1371/journal.pone.0083372.g010
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dRNA2

dt
~VSRNA2{k3

:miRNA:RNA2

zk4
:RNA2i{kDRNA2

:RNA2

dProt2

dt
~kSPROT2

:RNA2{kDPROT2
:Prot2 ð6Þ

dRNA2i

dt
~k3

:miRNA:RNA2{k4
:RNA2i{kDRNAI2

:RNA2i ð7Þ

dRNA3

dt
~VSRNA3{k5

:miRNA:RNA3zk6
:RNA3i

{kDRNA3
:RNA3

dProt3

dt
~kSPROT3

:RNA3{kDPROT3
:Prot3 ð9Þ

dRNA3i

dt
~k5

:miRNA:RNA3{k6
:RNA3i

{kDRNAI3
:RNA3i

3. ‘‘Goodwin-like’’ oscillator including a miRNA (see

scheme in Fig. 8A).

dRNA

dt
~VSRNA

: (KIMRNA)n

(KIMRNA)nzrepn

� �

{k1
:miRNA:RNAzk2

:RNAi{kDRNA
:RNA

dRNAi

dt
~k1

:miRNA:RNA{k2
:RNAi{kDRNAI

:RNAi ð12Þ

Table 4. Stochastic version of the ‘‘Goodwin-like’’ oscillator embedded in a ceRNA network (see scheme in Fig. 9).

Reaction
number Reaction Propensity of reaction

1 {{�?miRNA w1~VSMIRNA
:V

2 miRNA,RNA {{�?RNAi
w2~

k1

V
:miRNA:RNA

3 RNAi {{�?miRNA,RNA w3~k2
:RNAi

4 miRNA,RNA2 {{�?RNA2i w4~
k3
V
:miRNA:RNA2

5 RNA2i {{�?miRNA,RNA2 w5~k4
:RNA2i

6 miRNA,RNA3 {{�?RNA3i w6~
k7
V
:miRNA:RNA3

7 RNA3i {{�?miRNA,RNA3 w7~k8
:RNA3i

8 miRNA {{�? w8~kDMIRNA
:miRNA

9 {
Rep
{�?RNA w9~VSMRNA

:V:
KiMRNA

:Vð Þn

KiMRNA
:Vð Þnz Repð Þn

� �

10 RNA {{�? w10~kDRNA
:RNA

11 RNAi {{�? w11~kDRNAI
:RNAi

12 {
RNA
{�?Prot w12~kSPROT

:RNA

13 Prot {{�?Rep w13~k5
:Prot

14 Rep {{�?Prot w14~k6
:Rep

15 Prot {{�? w15~kDPROT
:Prot

16 Rep {{�? w16~kDREP
:Rep

17 {{�?RNA2 w17~VSRNA2
:V

18 RNA2 {{�? w18~kDRNA2
:RNA2

19 {
RNA2
{{�?Prot2 w19~kSPROT2

:RNA2

20 Prot2 {{�? w20~kDPROT2
:Prot2

21 RNA2i {{�? w21~kDRNA2I
:RNA2i

22 {{�?RNA3 w22~VSRNA3
:V

23 RNA3 {{�? w23~kDRNA3
:RNA3

24 {
RNA3

{�?Prot3 w24~kSPROT3
:RNA3

25 Prot3 {{�? w25~kDPROT3
:Prot3

26 RNA3i {{�? w26~kDRNA3I
:RNA3i

doi:10.1371/journal.pone.0083372.t004

(10)

(11)
(8)

(5)

Robustness of ceRNA Network Driven by microRNA

PLOS ONE | www.plosone.org 16 December 2013 | Volume 8 | Issue 12 | e83372



dmiRNA

dt
~VSMIRNA{k1

:miRNA:RNA

zk2
:RNAi{kDMIRNA

:miRNA

dProt

dt
~kSPROT

:RNA{k7
:Protzk8

:Rep{kDPROT
:Prot ð14Þ

dRep

dt
~k7

:Prot{k8
:Rep{kDREP

:Rep ð15Þ

4. ‘‘Goodwin-like’’ oscillator with a miRNA regulating 3

ceRNAs (see scheme in Fig. 9). This model is described by

Eqs. [11] to [15], where Eq. [13] representing the time evolution

of miRNA is replaced by Eq. [49] to include the terms of

association and dissociation between miRNA and RNA2 as well as

between miRNA and RNA3. Furthermore, Eqs. [5] to [10]

representing the time evolution of RNA2, Prot2, RNA2i, RNA3,

Prot3, and RNA3i are also added to the model.

Supporting Information

Figure S1 Molecular noise in protein synthesis buffered
by oligomerization of TF and by miRNA regulation of
messenger RNA. Maximum number of protein molecules vs TF

are shown in the absence (VSMIRNA = 0 in A, C) or presence of

miRNA (VSMIRNA = 0.01 in B, D), as well as in the absence (n = 1

in A, B) or presence of oligomerization of TF (n = 4 in C, D). Red

lines indicate the arbitrary threshold of protein needed to ensure a

cellular response. The presence of oligomerization of TF and

miRNA induce an abrupt threshold in protein expression as a

function of TF, below which protein is robustly repressed. 100

stochastic cells are considered for each condition. Parameter

values are as in Table 2.

(TIFF)

Figure S2 A ceRNA can act as a miRNA sponge. Steady-

state levels of protein 2 as a function of TF are shown with

moderate (VSMIRNA = 0.1 in A) and with high levels of miRNA

(VSMIRNA = 1 in B). For each case, different rates of synthesis of

RNA 3 are considered: VSRNA3 = 0, 0.05, 0.1, and 0.25. As a result

of common miRNA regulation, the level of TF (which only directly

regulates protein 1 expression) can control the level of protein 2

(see also conditions of Fig. 7D). (A) An increase in the level of RNA

3 sponges the available miRNA, which prevents the miRNA from

controlling the level of protein 2. (B) If a high level of miRNA is

present, the level of RNA 3 is not large enough to sponge the

miRNA. A significant amount of miRNA is still available to

regulate the level of protein 2. Other parameter values can be

found in Table 2.

(TIFF)

Figure S3 Temporal dynamics of the minimal ceRNA
network for different kinetics of transcription and
translation of gene 3 (see scheme in Fig. 5). Time evolution

of RNA, RNA2, RNA3, Prot, Prot2, Prot3 and miRNA is

illustrated with the default set of parameter values in panel A (see

also conditions in Fig. 7B, D, F); with fast (set 2 in panel B) and

slow kinetics of transcription and translation of gene 3 (set 3 in

panel C). In set 2: VSRNA3 = 0.2, kDRNA3 = 1.3, kSPROT3 = 50,

kDPROT3 = 2, kDRNAI3 = 1.6, k5 = 100; while in set 3:

VSRNA3 = 0.002, kDRNA3 = 0.01, kSPROT3 = 0.5, kDPROT3 = 0.02,

kDRNAI3 = 0.01, k5 = 1. Other parameter values are as in Fig. 7B,

D, F.

(TIFF)

Figure S4 Propagation of robustness in protein synthe-
sis within a ceRNA network for different kinetics of
expression of gene 3. Levels of protein 2 (A, B) and protein 3

(C, D) are represented in a heterogeneous cell population (100

cells) as a function of the percentage of random variation around

the default value for each parameter of the model. Simulations are

performed with the set 2 (A, C) and the set 3 (B, D) of parameter

values (see legend of Fig. S3). Red lines define the arbitrary

threshold of protein needed to generate a cellular response. Other

parameter values are as in Fig. S3.

(TIFF)

Figure S5 miRNA as a source of time delay in a
‘‘Goodwin-like’’ oscillator. Steady-state levels of protein as

a function of the rate of synthesis of miRNA, VSMIRNA, are

represented for an intermediate (n = 4 in A) and for a high degree

of oligomerization between repressor molecules (n = 12 in B). Solid

curves: stable steady states or envelope, i.e. minima and maxima,

of the sustained oscillations; dashed curves: unstable states. (C)

Dynamical behavior of the model illustrated in a two-parameter

bifurcation diagram defined by the degree of oligomerization, n,

and the rate of synthesis of miRNA, VSMIRNA. Parameter values

are as in Table 2.

(TIFF)

Figure S6 Domain of oscillatory behavior of a ‘‘Good-
win-like’’ oscillator embedded in a minimal ceRNA
network. Steady-state levels of protein, protein 2, protein 3 and

miRNA as a function of the rate of synthesis of miRNA, VSMIRNA,

are shown in panels A to D, respectively. Solid curves: stable

steady states or envelope of the sustained oscillations; dashed

curves: unstable states. Intermediate levels of miRNA are needed

to promote the occurrence of sustained oscillations within the

ceRNA network. Parameter values are as in Fig. 10.

(TIFF)

Figure S7 Effect of stochastic fluctuations on the
dynamics of the ‘‘Goodwin-like’’ oscillator embedded
in a ceRNA network (see scheme in Fig. 9). Stochastic time

evolution of miRNA, protein, proteins 2 and 3 in the presence of

low (VSMIRNA = 0.1 in A, B), intermediate (VSMIRNA = 0.18 in C,

D) or high (VSMIRNA = 0.25 in E, F) levels of miRNA. Simulations

are performed in the presence of low (V= 10000 in A, C, E) or

large (V= 1000 in B, D, F) molecular noise. The stochastic version

of the ‘‘Goodwin-like’’ oscillator embedded in a ceRNA network is

described in Table 4. Parameter values are as in Fig. 10.

(TIFF)

Figure S8 Robustness of the ‘‘Goodwin-like’’ oscillator
embedded in a ceRNA network within a heterogeneous
cell population. Proportion of oscillating and non-oscillating

cells is plotted towards the percentage of random variation on

every parameter of the model for increasing rates of synthesis of

miRNA, VSMIRNA. From condition A to F, VSMIRNA = 0.01, 0.05,

0.1, 0.18, 0.25, and 0.5, respectively. Default values for the

parameters are as in Fig. 10.

(TIFF)
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