
TURNING EULER'S FACTORING METHOD INTO A
FACTORING ALGORITHM

JAMES MCKEE

ABSTRACT

An algorithm is presented which, given a positive integer n, will either factor n or prove it to be prime.
The algorithm takes O(«1/3+e) steps.

1. Introduction

Suppose that n is a positive integer. This paper describes an algorithm which will
factor n, or prove it to be prime, in O(«1/3+e) steps. Here, and in similar expressions,
e is an arbitrarily small positive real number, with the implied constant in the O
depending on e. Of course, an algorithm as slow as this is of no practical interest
compared to the best, probabilistic, factoring methods. On the other hand, algorithms
which are guaranteed to factor n in time better than O(nll2+E) are rather rare creatures,
and so are perhaps of interest as mathematical curiosities, even if they have no other
merit.

The first O(nll3+B) factoring algorithm was devised by R. Sherman Lehman [5].
H. W. Lenstra Jr presented another algorithm [6], which, although not intended
primarily as a factoring algorithm, again showed that n could be factored on O(n1/3+e)
steps. Using FFT techniques, J. M. Pollard [7] and V. Strassen [9] showed that an
O(/i1/4+e) algorithm is possible, although completely impractical for reasonable sizes
of n. This remains the best qualitative result. If one knew the generalised Riemann
hypothesis, then Shanks' class group methods would factor n in time O(«1/5+e) [8].

In this paper, we present another O(«1/3+e) algorithm, which develops a
factoring method of Euler. Euler observed that if one can express n in the form
x2 + dy2 in two essentially distinct ways, with the same d, then one can factor n.
Indeed, if n = x\ + dy\ = x\ + dy\, then Cx^)2 = (jc2j'i)

2(mod«), so that the greatest
common divisor of xlyz — x2y1 and n will be a non-trivial factor of n unless
*i y2 = i - V i (m°d n). Many factoring methods have been based on this observation.
Euler's method applies only to special numbers; here we extend it to cover all cases,
in a practical way. The algorithm is soon better than trial division in practice,
although, of course, it is much slower than the best probabilistic methods. (In a crude
implementation, the algorithm was found (for worst-case numbers) to run about as
fast as naive trial division for 8-digit numbers, about twice as fast for 10-digit
numbers, about ten times as fast for 14-digit numbers and about twenty times as fast
for 16-digit numbers.)

In the next section we describe the algorithm, giving an example of its use, with
a brief discussion of practical considerations. Then the running time is established.
Finally, the validity of the algorithm is proved.

Received 5 December 1994; revised 9 March 1995.

1991 Mathematics Subject Classification 11A51, 11E25.

Bull. London Math. Soc. 28 (1996) 351-355

352 JAMES MCKEE

2. The algorithm

Here a description of the algorithm is given in a manner which is intended to
illustrate its 0{nll3+e) behaviour. In particular, the choice of d in Step 1 of the
algorithm is rather larger than one should use in practice, but such considerations
are not important, since in practice one should instead use a probabilistic method.

We suppose now that n is an odd integer greater than 1. The algorithm either will
find a non-trivial factor of n (that is, a factor other than 1 or n), or, by failing to do
so, will prove n to be prime.

Step 1. Check that n is not the square or higher power of a prime, else we have
a non-trivial factor of n and can stop. Let x0 be the greatest integer below \/(n — n2'3),
and set d = n — x\, so that d « n213. Factorise d (by trial division, say), and compute
quadratic non-residues modulo each odd prime dividing d. If the greatest common
divisor of d and n is a non-trivial factor of n, then stop. Compute all square roots of
n modulo d. Let nv...,nw be these square roots.

Step 2. Test for factors of n below (4d/3)1/4, by trial division. If a non-trivial
factor of n is found, then stop.

Step 3. For 1 ^ a ^ V(4d/3), search for solutions to the equation

an = x2 + dy2 (1)

with x,y positive integers, and y2 ^ a. To this end, first check if a is a square modd,
else there can be no solutions to (1). If a is a square modd, compute one of its square
roots, a, say. To solve (1), if possible, search through x between 1 and \/(an) with
x = cnr}i (mod d), for / = 1,..., w. If a solution an = x\ + dy\ is found, with y\ ^ a, then
proceed to Step 4. If no such solution is found for a in the given range, then n is prime.

Step 4. We have n = xl + d and an = x\ + dy\. Compute the greatest common
divisor of n and xoy1 — xv This will be a non-trivial factor of n.

EXAMPLE. Take n = 1082 154235 955237. Then

« = 32 8960842+ 1893 420181,

so we may take x0 = 32 896084 and d = 1893420181 in Step 1 of the algorithm. The
algorithm will work for any x0 between 1 and \/n, so there is a wide choice for d. In
the above description it was suggested that one should seek d « n213, but this was
merely to simplify the evaluation of the running time in the next section. Given d, Step
3 of the algorithm requires the computation of O(\/d) square roots mod d. For each
a which is a square modd, Step 3 considers O(w\/(an)/d) values of x in (1). If dfalls
below «2/3, then there are more values of x to check, but fewer square roots to
compute. The computation of a square root modd is more expensive than checking
if given values of x and a lead to a solution to (1), so one should in practice take d
considerably smaller than n2'3. Here we have a value of d which is prime, and this
helps the book-keeping with regard to computing square roots mod d.

To complete Step 1, we note that 2 is a non-residue modd, which will help with
the computation of future square roots. The square roots of n mod d are just ±x0.

For Step 2 we use trial division up to (4d/3)1/4 « 224.15. No factor of n is found.
At this point we might check that n is not a square, cube,..., sixth power—if it were
a higher power of a prime, then the trial division would have spotted it. Alternatively,
we may leave this check until the end, since it is so rarely necessary.

EULER'S FACTORING METHOD 353

Step 3: we search through 1 ^ a ^ \/(4d/3) « 50245.0, and try to solve (1).
Actually, we may start the search with a as large as 12562, rather than 1, since any
solution to (1) with a < \/(4d/3)/4 would yield a solution with -\/(4d/3)/4 ^ a ^
V(4d/3) by multiplying JC and y by a suitable power of 2. Here we find

43036« = 2591 8669612 + d-1451012.

(For a = 43036, the search was over 1 ^ x ^ 6824 338041, with x = ±698 446780
(mod d), so involved checking just 7 values of x.) This yields the factorisation

n= 12 345701x87 654337
in Step 4.

3. Running time

We wish only to show that the algorithm runs in time O(n1/3+E) steps, and so take
crude estimates when they are good enough. As a preliminary remark, note that w,
the number of square roots of n (mod d) is O{nE). Indeed, if d has r distinct prime
factors, then w = O(2r). Now r = 0(log d/\og log d) — O(log«/loglog«) [3], so w =

Step 1. Checking that n is not a square or higher power of a prime can be done
in polynomial time (that is, O((log«)r) steps, for some constant r). Computing x0 and
d is also a polynomial time task. Using trial division to factor d takes time 0(«1/3+e).
Computing non-residues of odd primes dividing d takes time O(<^/4+e) = O{nm+e) [1].
Computing the square roots r}x,..-,riw of nmodd takes time 0(wnE) once the non-
residues are known [4], and w = O(nE). Hence Step 1 takes O(nll3+e) steps.

Step 2. O{dxli) • O(nE) = O(nl/6+E) steps.
Step 3. There are O(d112) = O(n1/3) values of a to consider. Checking if a is a

square mod d can be done in polynomial time, given that we know the prime
factorisation of d. Computing a (for given a) can also be done in polynomial time. For
each a there are 0{w^{an)/d) = O(w) = O(nE) values of x to consider, each of which
can be tested in polynomial time. Hence Step 3 takes O(n1/S+E) steps.

Step 4. Polynomial time.
Thus the total time is O(n1/3+E) steps, as claimed.

4. Validity of the algorithm

We need a lemma, the proof of which is standard (see, for example, [2]).

LEMMA. Let d > 1 be an integer and n an odd, positive integer prime to d. Then
the number of distinct square roots of —dmo&n is exactly half the number of
proper representations of n by reduced binary quadratic forms ax2 + Ibxy + cy2 with
b2-ac = -d.

Here proper means that in the representation n = ax2 + 2bxy + cy2, the greatest
common divisor of x and y must be 1, and reduced means that \2b\ ̂ a^c, with
b ^ 0 if either a = \2b\ or a = c. In particular, if ax2 + 2bxy + cy2 is reduced, with
b2-ac = -d, then Ad = 4ac-(2b)2 ^ 3a2, so that a ^ V W 3) .

354 JAMES MCKEE

Using this lemma we shall show that if n is composite and has no factor below
(4d/3)1/4, then Step 3 of the algorithm will find a solution to (1) with / ^ a, and that
any such solution will lead to a non-trivial factor of n in Step 4. We suppose, then,
that n is composite and that we have reached Step 3 of the algorithm. Thus

n = xl + d, (2)

and n has no prime factors below (4d/3)m.
From (2), — d is a square mod n. Since n is odd, and not a prime power, and n and

Jhave greatest common divisor 1, — dmust have at least four square roots modn. By
the lemma, there are at least eight proper representations of n by reduced forms of
discriminant — Ad. Four of these are given by n = (±xo)

2 + d-(± I)2, but there must
be others. Let

n = ax\ + 2bx2 y2 + cy\ (3)

be such a representation, so that if a = 1 (which implies 6 = 0 and c = d), then
y2 ^ + 1. Completing the square gives

an = xt + dyl (4)

where xx = ax2 + by2, yx = y2. Adjusting signs if necessary, we may suppose xx,yx ^
0.

Thus we are certain to find a solution to (1), and provided y\ # a we shall proceed
to Step 4. Suppose, if possible, that y\ = a. Then (3) implies that y1 divides n.
If yx > 1, then we would have a non-trivial factor of n below y/a, hence below
(4d/3)1/4, and this possibility was eliminated in Step 2. If yl = 1, then we would have
a = 1, and (3) would not be essentially distinct from (2), which we insisted it must be.
Thus y\ cannot equal a, and we proceed to Step 4.

We have {x^y^f = x\ (mod n). The greatest common divisor of n and xoyl — x1 will
be a non-trivial factor of n unless xoy1 = i x ^ m o d / i) .

From (4) and (2), we have

0 < x0 < Vn, 0 < yx < y/(an/d\ 0 ̂ xx < \/{an). (5)

(If yx = 0, then x2 = ± 1 , else (3) is not a proper representation of n, but then
n = a < d < n, which is nonsense.) From (5),

0 < xoy1 + x1 <n{^(a/d) + y/a/y/n) < 2ny/a/y/d< n,

provided d> 21. This means that we never find xoyx = -xl(modn). There remains
the possibility that xoyx = .^(modn), which, from the bounds in (5), implies xoyx =
xv Then (4) gives

so ^ = a. We have eliminated this possibility already, and conclude that the factor
of n found in Step 4 must be a non-trivial one.

For an example of the necessity of Step 2, consider n = 789 = 262+ 113, with
d= 113, x0 = 26. The other forms ax2 + 2bxy + cy2 properly representing n with
discriminant — 4<iare given by a = 9, b = ±2, c = 13, with x = ±S,y = ±3 (the sign
of y depending on the signs of/? and x), so that a = yl in (3). Completing the square
gives 9n = 782+113-32, which is just our original representation of n multiplied
through by 9. Here, of course, \/9 = 3 divides n, and 3 < (4d/3)1/4 « 3.50, so the
factor 3 is discovered in Step 2 of the algorithm.

EULER'S FACTORING METHOD 355

References

1. D. A. BURGESS, 'On character sums and primitive roots', Proc. London Math. Soc. 12 (1962) 179-192.
2. H. DAVENPORT, The higher arithmetic (6th edn, Cambridge University Press, 1992).
3. G. H. HARDY and E. M. WRIGHT, An introduction to the theory of numbers (5th edn, Oxford University

Press, 1979).
4. N. KOBLITZ, A course in number theory and cryptography, Graduate Texts in Math. 114 (Springer, New

York, 1987).
5. R. SHERMAN LEHMAN, 'Factoring large integers', Math. Comp. 28 (1974) 637-646.
6. H. W. LENSTRA JR, 'Divisors in residue classes', Math. Comp. 42 (1984) 331-340.
7. J. M. POLLARD, 'Theorems on factorization and primality testing', Proc. Cambridge Philos. Soc. 76

(1974) 521-528.
8. R. J. SCHOOF, 'Quadratic fields and factorization', Computational methods in number theory, Part II,

Math. Centre Tracts 155 (ed. H. W. Lenstra Jr and R. Tijdeman, Mathematisch Centrum,
Amsterdam, 1982).

9. V. STRASSEN, 'Einige Resultate iiber Berechnungskomplexitat', Jahresber. Deutsch. Math.-Verein. 78
(1976/77) 1-8.

Department of Pure Mathematics and Mathematical Statistics
16 Mill Lane
Cambridge CB2 1SB

