Learning to Hash on Structured Data

Qifan Wang, Luo Si and Bin Shen
Computer Science Department, Purdue University
West Lafayette, IN 47907, US
wang868@purdue.edu, lsi@purdue.edu, bshen@purdue.edu

Abstract
Hashing techniques have been widely applied for large scale similarity search problems due to the computational and memory efficiency. However, most existing hashing methods assume data examples are independently and identically distributed. But there often exists various additional dependency/structure information between data examples in many real world applications. Ignoring this structure information may limit the performance of existing hashing algorithms. This paper explores the research problem of learning to Hash on Structured Data (HSD) and formulates a novel framework that considers additional structure information. In particular, the hashing function is learned in a unified learning framework by simultaneously ensuring the structural consistency and preserving the similarities between data examples. An iterative gradient descent algorithm is designed as the optimization procedure. Furthermore, we improve the effectiveness of hashing function through orthogonal transformation by minimizing the quantization error. Experimental results on two datasets clearly demonstrate the advantages of the proposed method over several state-of-the-art hashing methods.

Introduction
With the explosive growth of the Internet, a huge amount of data has been generated, which indicates that efficient similarity search becomes more important. Traditional similarity search methods are difficult to be directly used for large scale applications since linear scan between query example and all candidates in the database is impractical. Moreover, the similarity between data examples is usually conducted in high dimensional space. Recently, hashing methods (Wang, Zhang, and Si 2013b; Bergamo, Torresani, and Fitzgibbon 2011; Liu et al. 2011; 2012b; Salakhutdinov and Hinton 2009; Wang et al. 2014b; 2014a) are proposed to address the similarity search problem within large scale data. These hashing methods design compact binary code in a low-dimensional space for each data example so that similar examples are mapped to similar binary codes. In the retrieval process, these hashing methods first transform each query example into its corresponding binary code. Then similarity search can be simply conducted by calculating the Hamming distances between the codes of available data examples and the query and selecting data examples within small Hamming distances, which can be calculated using efficient bitwise operator XOR.

Hashing methods generate promising results by successfully addressing the storage and search efficiency challenges. However, most existing hashing methods assume that data examples are independently and identically distributed. But in many applications, the dependencies between data examples naturally exist and if incorporated in models, they can potentially improve the hashing code performance significantly. For example, many webpages have hyperlinks pointing to other related webpages (see Fig.1(a)). The contents of these linked webpages are usually relevant, which present similar topics. The hyperlinks among webpages provide important structure knowledge. Another example is that similar images often share semantic labels (see Fig.1(b)). The more labels two images have in common, the more similar the images are. The shared semantic labels among images offer valuable information in binary codes learning. These structure information have been utilized in clustering (Shen and Si 2010) and classification (Zhang et al. 2011) problems, and proven to be helpful knowledge. Therefore, it is important to design hashing method that preserve the structure information among data examples in the learned Hamming space.

This paper proposes a novel approach of learning to Hash on Structured Data (HSD) that incorporates the structure information associated with data. The hashing function is
learned in a unified learning framework by simultaneously ensuring the structural consistency and preserving the similarities between data examples. In particular, the objective function of the proposed HSD approach is composed of two parts: (1) Structure consistency term, which ensures the hashing codes to be consistent with the structure information. (2) Similarity preservation term, which aims at preserving the similarity between data examples in the learned hashing codes. An iterative gradient descent algorithm is designed as the optimization procedure. We further improve the quality of hashing function by minimizing the quantization error. Experimental results on two datasets demonstrate the superior performance of the proposed method over several state-of-the-art hashing methods.

The rest of this paper is organized as follows. Section 2 reviews previous hashing methods. Section 3 presents the formulation of the proposed HSD hashing method. Section 4 describes the optimization method together with the orthogonal transformation. Some analysis of the algorithm is also provided. The experimental results and discussions are given in Section 5. Section 6 concludes and points out some future directions.

Related Work

Locality-Sensitive Hashing (LSH) (Datar et al. 2004) is one of the most commonly used data-independent hashing methods. It utilizes random linear projections, which are independent of training data, to map data points from a high-dimensional feature space to a low-dimensional binary space. This method has been extended to Kernelized Locality-Sensitive Hashing (Raginsky and Lazebnik 2009; Kulis and Grauman 2009) by exploiting kernel similarity for better retrieval efficacy. Another class of hashing methods are called data-dependent methods, whose projection functions are learned from training data. These data-dependent methods include spectral hashing (SH) (Weiss, Torralba, and Fergus 2008), principal component analysis based hashing (PCAH) (Lin, Ross, and Yagnik 2010), self-taught hashing (STH) (Zhang et al. 2010) and iterative quantization (ITQ) (Gong et al. 2012). SH learns the hashing codes based on spectral graph partitioning and forcing the balanced and uncorrelated constraints into the learned codes. PCAH utilizes principal component analysis (PCA) to learn the projection functions. STH combines an unsupervised learning step with a supervised learning step to learn effective hashing codes. ITQ learns an orthogonal rotation matrix to refine the initial projection matrix learned by PCA so that the quantization error of mapping the data to binary codes is minimized. Compared with the data-independent methods, these data-dependent methods generally provide more effective hashing codes.

Recently, supervised hashing methods (Liu et al. 2012a; Wang, Zhang, and Si 2013a; Wang et al. 2013; Wang, Si, and Zhang 2014; Wang et al. 2014c) have incorporated labeled data/information, e.g., semantic tags, for learning more effective hashing function. For example, in semi-supervised hashing (Wang, Kumar, and Chang 2012) method, pairwise similarity constraints are imposed in the learning framework. In work (Wang, Si, and Zhang 2014), tags are incorporated to obtain more effective hashing codes via a matrix factorization formulation. More recently, some multi-view hashing methods (Gong et al. 2014; Zhang, Wang, and Si 2011; Ding, Guo, and Zhou 2014) have been proposed to deal with multi-modal data for cross-view similarity search. These multi-view methods can be applied by treating the structure information as second view. However, structure information is usually very sparse, e.g., each webpage may contain very few hyperlinks. Directly using it as a second information source can lead to unreliable results. More discussion will be provided later in the experiments.

Hashing on Structured Data

Problem Setting

Before presenting the details, we first introduce some notations. Assume there are total n training examples. Let us denote their features as: $X = \{x_1, x_2, \ldots, x_n\} \in \mathbb{R}^{d \times n}$, where d is the dimensionality of the feature. A directed or undirected graph $G = (V,E)$ is used to depict the structure between data examples. Each node $v \in V$ corresponds to a data example, and an edge $e = (i,j) \in E$ with a weight w_{ij} represents a link/connection between nodes i and j. The larger the weight w_{ij} is, the more relevant x_i and x_j should be. We will discuss how to assign w_{ij} later. The goal is to obtain a linear hashing function $f: \mathbb{R}^d \rightarrow \{-1, 1\}^k$, which maps data examples X to their binary hashing codes $Y = \{y_1, y_2, \ldots, y_n\} \in \{-1, 1\}^{k \times n}$ (k is the length of hashing code). The linear hashing function is defined as:

$$y_i = f(x_i) = \text{sgn}(H^T x_i)$$

where $H \in \mathbb{R}^{d \times k}$ is the coefficient matrix representing the hashing function and sgn is the sign function, $y_i \in \{-1, 1\}^k$ is the binary hashing code\(^1\) of x_i.

The objective function of HSD is composed of two components: (1) Structure consistency, which ensures that the hashing codes are consistent with the structure information. (2) Similarity preservation, which aims at preserving the data similarity in the learned hashing codes. In the rest of this section, we will present the formulation of these two components respectively. Then we will describe the optimization algorithm together with a scheme that can further improve the quality of the hashing function by minimizing the quantization error.

Structure Consistency

Our motivation is that the similarity between the learned hashing codes should agree or be consistent with the structure information defined on the graph G. Specifically, a pair of nodes linked by an edge tend to have similar hashing codes. The larger the weight between nodes i and j, the smaller the Hamming distance between their codes should be. For webpages, we define the weight w_{ij} associated with edge (i,j) to be the number of hyperlinks between the two webpages. Similarly for images, we assign weight w_{ij} using the number of common labels shared by image x_i and x_j.

\(^1\)We generate hashing bits as $\{-1, 1\}$, which can be simply converted to $\{0, 1\}$ valued hashing codes.
Then a structure consistency component can be directly formulated as:

\[
\sum_{(i,j) \in E} w_{ij} d_H(y_i, y_j) = \frac{1}{4} \sum_{(i,j) \in E} w_{ij} \|y_i - y_j\|^2
\]

(2)

where \(d_H(y_i, y_j) = \frac{1}{2} \|y_i - y_j\|^2\) is the Hamming distance between binary codes \(y_i\) and \(y_j\). This definition says that for each linked node pair \((i, j)\), the Hamming distance between the corresponding hashing codes \(y_i\) and \(y_j\) should be consistent with the edge weight \(w_{ij}\). In other words, we assign a heavy penalty if two strongly connected data examples are mapped far away.

By substituting Eqn.1 with some additional mathematical operations, the above equation can be rewritten as a compact matrix form as:

\[
tr(Y \tilde{W} Y^T) = tr\left(\text{sgn}(H^T X) \tilde{W} \text{sgn}(X^T H)\right)
\]

(3)

where \(tr()\) is the matrix trace function, \(\tilde{W} = D - W\) is called graph Laplacian (Weiss, Torralba, and Fergus 2008) and \(D\) is a diagonal \(n \times n\) matrix whose entries are given by \(D_{ii} = \sum_j w_{ij}\). By minimizing the structure consistency term, structure information is well preserved in Hamming space by hashing function \(H\).

Similarity Preservation

One of the key problems in hashing algorithms is similarity preserving, which indicates that similar data examples should be mapped to similar hashing codes within a short Hamming distance. To measure the similarity between data examples represented by the binary hashing codes, one natural way is to minimize the weighted average Hamming distance as follows:

\[
\sum_{i,j} S_{ij} \|y_i - y_j\|^2
\]

(4)

Here, \(S_{ij}\) is the pairwise similarity between data example \(x_i\) and \(x_j\). To meet the similarity preservation criterion, we seek to minimize this quantity, because it incurs a heavy penalty if two similar examples have very different hashing codes.

There are many different ways of defining the similarity matrix \(S\). In SH (Weiss, Torralba, and Fergus 2008), the authors used the global similarity structure of all data pairs, while in (Zhang, Wang, and Si 2011), the local similarity structure, i.e., \(k\)-nearest-neighbors, is used. In this paper, we use the local similarity, due to its nice property in many machine learning applications. In particular, the corresponding weights are computed by Gaussian functions:

\[
S_{ij} = \begin{cases}
\frac{1}{\sigma_{ij}} e^{-\frac{x_{ij}^2}{2\sigma_{ij}^2}}, & \text{if } x_i \in N_k(x_j) \text{ or } x_j \in N_k(x_i) \\
0, & \text{otherwise}
\end{cases}
\]

(5)

The variance \(\sigma_{ij}\) is determined automatically by local scaling (Zelnik-Manor and Perona 2004), and \(N_k(x)\) represents the set of \(k\)-nearest-neighbors of data example \(x\). Similarly, Eqn.4 can be rewritten as a compact form:

\[
tr(Y \tilde{S} Y^T) = tr\left(\text{sgn}(H^T X) \tilde{S} \text{sgn}(X^T H)\right)
\]

(6)

By minimizing this term, the similarity between different data examples can be preserved in the learned hashing codes.

Overall Objective

The entire objective function consists of three components: the similarity consistency term in Eqn.3, the similarity preservation term given in Eqn.6 and an orthogonal constraint term as follows:

\[
\min_H tr\left(\text{sgn}(H^T X) \tilde{W} \text{sgn}(X^T H)\right) + \alpha tr\left(\text{sgn}(H^T X) \tilde{S} \text{sgn}(X^T H)\right) + \beta \|H^T H - I\|_F^2
\]

(7)

where \(\alpha\) and \(\beta\) are trade-off parameters to balance the weights among the terms. The orthogonality constraint enforces the hashing bits to be uncorrelated with each other and therefore the learned hashing codes can hold least redundant information.

Optimization Algorithm

Relaxation

Directly minimizing the objective function in Eqn.7 is intractable since it is an integer programming problem, which is proven to be NP-hard to solve. Therefore, we use the signed magnitude instead of the sign function as suggested in (Wang et al. 2013; Wang, Si, and Zhang 2014). Then the relaxed objective function becomes:

\[
\min_H tr\left(\tilde{H}^T L \tilde{H}\right) + \beta \|\tilde{H}^T H - I\|_F^2
\]

(8)

where \(L = X(\tilde{W} + \alpha \tilde{S}) X^T\) and can be pre-computed. \(\tilde{H}\) represents the relaxed solution. Although the relaxed objective in Eqn.8 is still non-convex, it is smooth and differentiable which enables gradient descent methods to be applied for efficient optimization. The gradients of the two terms with respect to \(\tilde{H}\) are given below:

\[
\frac{d}{d \tilde{H}} \text{Eqn.8} = 2L \tilde{H} + 4\beta (\tilde{H}^T \tilde{H} - I)
\]

(9)

With this obtained gradient, L-BFGS quasi-Newton method (Liu and Nocedal 1989) is applied to solve the optimization problem.

Orthogonal Transformation

After obtaining the optimal hashing function \(\tilde{H}\) from the relaxation, the hashing codes \(Y\) can be generated using Eqn.1. It is obvious that the quantization error can be measured as \(\|Y - \tilde{H}^T X\|_F^2\). Inspired by (Gong et al. 2012), we propose to further improve the hashing function by minimizing this quantization error using an orthogonal transformation. We first prove the following orthogonal invariant theorem.

Theorem 1. Assume \(Q\) is a \(k \times k\) orthogonal matrix, i.e., \(Q^T Q = I\). If \(\tilde{H}\) is an optimal solution to the relaxed problem in Eqn.8, then \(\tilde{H}Q\) is also an optimal solution.

Proof. By substituting \(\tilde{H}Q\) into Eqn.8, we have:

\[
tr\left((\tilde{H}Q)^T L \tilde{H}Q\right) = tr\left(Q^T \tilde{H}^T L \tilde{H} Q\right) = tr\left(\tilde{H}^T L \tilde{H}\right),
\]

and \(\| (\tilde{H}Q)^T \tilde{H}Q - I \|_F^2 = \| Q^T (\tilde{H}^T \tilde{H} - I) Q \|_F^2 = \| \tilde{H}^T \tilde{H} - I \|_F^2\).

Thus, the value of the objective function in Eqn.8 does not change by the orthogonal transformation. \(\square\)
According to the above theorem, we propose to find a better hashing function \(H = \tilde{H}Q \) by minimizing the quantization error between the binary hashing codes and the orthogonal transformation of the relaxed solution as follows:

\[
\min_{Y,Q} \|Y - (\tilde{H}Q)^T X\|_F^2 \quad \text{s.t.} \quad Y \in \{-1, 1\}^{k \times n}, \quad Q^T Q = I
\]

(10)

Intuitively, we seek binary codes that are close to some orthogonal transformation of the relaxed solution. The orthogonal transformation not only preserves the optimality of the relaxed solution but also provides us more flexibility to achieve better hashing codes with low quantization error. The idea of orthogonal transformation is also utilized in ITQ (Gong et al. 2012). However, ITQ method is not designed for incorporating structure information into learning effective hashing function and it does not preserve the local similarities among data examples. The above optimization problem can be solved by minimizing Eqn.10 with respect to \(Y \) and \(Q \) alternatively as follows:

Fix \(Q \) and update \(Y \). The closed form solution can be expressed as:

\[
Y = \text{sgn}\left((\tilde{H}Q)^T X \right) = \text{sgn}(H^T X)
\]

(11)

which is identical with our linear hashing function in Eqn.1.

Fix \(Y \) and update \(Q \). The objective function becomes:

\[
\min_{Q^T Q = I} \|Y - \tilde{H}^T X\|_2^2 \quad \text{subject to} \quad Q^T Q = I
\]

(12)

In this case, the objective function is essentially the classic Orthogonal Procrustes problem (Schonemann 1966), which can be solved efficiently by singular value decomposition using the following theorem (we refer to (Schonemann 1966) for the detailed proof).

Theorem 2. Let \(SAV^T \) be the singular value decomposition of \(YX^T \tilde{H} \). Then \(Q = VS^T \) minimizes the objective function in Eqn.12.

We then perform the above two steps alternatively to obtain the optimal hashing codes and the orthogonal transform matrix. In our experiments, we find that the algorithm usually converges in about 40–60 iterations. The full learning algorithm is described in Algorithm 1.

Complexity Analysis

This section provides some analysis on the training cost of the optimization algorithm. The optimization algorithm of HSD consists of two main loops. In the first loop, we iteratively solve for \(\tilde{H} \) to obtain the relaxed solution, where the time complexities for computing the gradient in Eqn.9 are bounded by \(O(nkd + nk^2) \). The second loop loop iteratively optimizes the binary hashing codes and the orthogonal transformation matrix, where the time complexities for updating \(Y \) and \(Q \) are bounded by \(O(nk^2 + nk + k^3) \). Moreover, both two loops take less than 60 iterations to converge in our experiments. Thus, the total time complexity of the learning algorithm is bounded by \(O(nkd + nk^2 + k^3) \), which scales linearly with \(n \) given \(n \gg d > k \). For each query, the hashing time is constant \(O(dk) \).

Experimental Results

Datasets and Setting

We evaluate our method on two datasets: WebKB and NUS-WIDE. WebKB contains 8280 webpages in total collected from four universities. The webpages without any incoming and outgoing links are deleted, resulting in a subset of 6883 webpages. The tf-idf (normalized term frequency and log inverse document frequency) (Manning, Raghavan, and Schütze 2008) features are extracted for each webpage. 90% documents (6195) are randomly selected as training data, while the remaining (688) documents are used for testing. NUS-WIDE3 (Chua et al. 2009) is created by NUS lab for evaluating image annotation and retrieval techniques. It contains 270k images associated with 81 ground truth labels. A subset of 21k images associated with these semantic labels are used in our experiments. 500-dimensional visual features are extracted using a bag-of-visual-word model with local SIFT descriptor (Lowe 2004). We randomly partition this dataset into two parts, 1k for testing and 20k for training.

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-2400 CPU 3.1GHz and 8GB RAM. The parameter \(\alpha \) and \(\beta \) are tuned by 5-fold cross validation through the grid \(\{0.01, 0.1, 1, 10, 100\} \) on the training set and we will discuss more details on how it affects the performance of our approach later. We repeat each experiment 10 times and report the result based on the average over these runs. Each run adopts a random split of the dataset.

Comparison Methods

The proposed Hashing on Structure Data (HSD) approach is compared with five different hashing methods, including Locality Sensitivity Hashing (LSH) (Datar et al. 2004), Spectral Hashing (SH) (Weiss, Torralba, and Fergus 2008), Iterative Quantization (ITQ) (Gong et al. 2012), Composite Hashing from Multiple Information Sources (CHMIS) (Zhang, Wang, and Si 2011) and Collective Matrix Factorization Hashing (CMFH) (Ding, Guo, and Zhou 2014). LSH, SH and ITQ methods do not use any structure knowledge for learning hashing codes. We use the standard settings in

\[\text{http://www.cs.cmu.edu/~webkb} \]

\[\text{http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm} \]
<table>
<thead>
<tr>
<th>Methods</th>
<th>8 bits</th>
<th>16 bits</th>
<th>32 bits</th>
<th>64 bits</th>
<th>128 bits</th>
<th>8 bits</th>
<th>16 bits</th>
<th>32 bits</th>
<th>64 bits</th>
<th>128 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSD</td>
<td>0.606</td>
<td>0.669</td>
<td>0.732</td>
<td>0.763</td>
<td>0.786</td>
<td>0.406</td>
<td>0.409</td>
<td>0.445</td>
<td>0.478</td>
<td>0.493</td>
</tr>
<tr>
<td>CMFH</td>
<td>0.571</td>
<td>0.635</td>
<td>0.650</td>
<td>0.704</td>
<td>0.722</td>
<td>0.371</td>
<td>0.411</td>
<td>0.427</td>
<td>0.436</td>
<td>0.468</td>
</tr>
<tr>
<td>CHMIS</td>
<td>0.511</td>
<td>0.558</td>
<td>0.613</td>
<td>0.646</td>
<td>0.674</td>
<td>0.334</td>
<td>0.367</td>
<td>0.369</td>
<td>0.373</td>
<td>0.386</td>
</tr>
<tr>
<td>ITQ</td>
<td>0.523</td>
<td>0.548</td>
<td>0.604</td>
<td>0.637</td>
<td>0.652</td>
<td>0.253</td>
<td>0.306</td>
<td>0.308</td>
<td>0.315</td>
<td>0.322</td>
</tr>
<tr>
<td>SH</td>
<td>0.504</td>
<td>0.513</td>
<td>0.536</td>
<td>0.541</td>
<td>0.547</td>
<td>0.251</td>
<td>0.264</td>
<td>0.282</td>
<td>0.297</td>
<td>0.304</td>
</tr>
<tr>
<td>LSH</td>
<td>0.339</td>
<td>0.377</td>
<td>0.389</td>
<td>0.387</td>
<td>0.401</td>
<td>0.234</td>
<td>0.226</td>
<td>0.247</td>
<td>0.258</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Table 1: Precision of the top 100 retrieved examples using Hamming Ranking on both datasets with different hashing bits.

Figure 2: Precision on both datasets with different bits. (a)-(b): Precision of the top 100 returned examples using Hamming Ranking. (c)-(d): Precision within Hamming radius 2 using Hash Lookup.

Results and Discussion

We first report precisions for the top 100 retrieved examples and the precisions for retrieved examples within Hamming ball with radius 2 by varying the number of hashing bits in the range of \{8, 16, 32, 64, 128\} in Table 1 and Fig.2. From these comparison results, we can see that HSD provides the best results among all compared methods in most cases. LSH does not perform well since LSH method is data-independent, which may generate inefficient codes compared to those data-depend methods. SH and ITQ methods learn the hashing codes from data and try to preserve similarity between data examples. Thus they usually obtain higher precision results than LSH method. But both SH and ITQ methods do not utilize the structure information contained in data. CHMIS and CMFH methods achieve better performance than SH and ITQ due to incorporating structure information as an additional view into hashing codes learning. However, learning a common space between the two views by treating the structure as a second view may lead to unreliable results especially when structure information is very sparse or incomplete (more discussion will be provided later). Moreover, the data similarity is not well preserved in their hashing function learning. On the other hand, our HSD not only exploits structure information via modeling the structure consistency, but also preserves data similarity at the same time in the learned hashing function, which enables HSD to generate higher quality hashing codes than the hashing methods. In Fig.2(c)-(d), we observe the precision of Hash Lookup for most of the compared methods decreases significantly with the increasing number of hashing bits. The reason is that the Hamming space becomes increasingly sparse with longer hashing bits and very few data points fall within the Hamming ball with radius 2, which makes many queries have 0 precision. However, the precision of HSD is still consistently higher than the other methods for Hash Lookup.

We also evaluate the effectiveness of the proposed HSD when partial structure information is available since the structure knowledge may be very sparse in real world ap-
To prove the robustness of the proposed method, we conduct parameter sensitivity experiments on both datasets. In each experiment, we tune the trade-off parameter β from the grid $\{0.5, 1, 2, 4, 8, 32, 128\}$. We report the precision of top 100 examples with 32 hashing bits in Fig. 3. It is clear from these experimental results that the performance of HSD is relatively stable with respect to β in a wide range of values. We also observe similar behavior of parameter α. But due to space limit, they are not presented here.

Conclusion

This paper proposes a novel approach of learning to Hash on Structured Data (HSD), which aims at incorporating the structure information associated with data. The hashing function is learned in a unified learning framework by simultaneously ensuring the structural consistency and preserving the similarities between data examples. We develop an iterative gradient descent algorithm as the optimization procedure. The quality of hashing function is further improved by minimizing the quantization error through orthogonal rotation. Experimental results on two datasets demonstrate that structure information is indeed useful in hashing codes learning. We also show the superior performance of the proposed method over several state-of-the-art hashing methods. In future, we plan to form theoretical analysis on the generalization error bound of the HSD method. We also plan to apply some sequential learning approach to accelerate the training speed.

Acknowledgments

This work is partially supported by NSF research grants IIS-0746830, DRL-0822996, CNS-1012208, IIS-1017837, CNS-1314688 and a research grant from Office of Naval Research (ONR-11627465). This work is also partially supported by the Center for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement CCF-0939370.

![Figure 3: Parameter sensitivity results of precision of the top 100 retrieved examples with 32 hashing bits.](Figure3.png)

<table>
<thead>
<tr>
<th>Methods</th>
<th>WebKB</th>
<th>NUS-WIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSD</td>
<td>24.13</td>
<td>0.6x10^{-4}</td>
</tr>
<tr>
<td>CMFH</td>
<td>58.82</td>
<td>0.6x10^{-4}</td>
</tr>
<tr>
<td>CHMIS</td>
<td>42.59</td>
<td>0.7x10^{-4}</td>
</tr>
<tr>
<td>ITQ</td>
<td>10.67</td>
<td>0.6x10^{-4}</td>
</tr>
<tr>
<td>SH</td>
<td>13.22</td>
<td>4.2x10^{-4}</td>
</tr>
<tr>
<td>LSH</td>
<td>4.75</td>
<td>0.6x10^{-4}</td>
</tr>
</tbody>
</table>

Table 3: Training and testing time (in second) on both datasets with 32 hashing bits.
References

