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WHAT IS DEDUPLICATION 

Technique for eliminating redundant data 

c1 c2 c3 c2 c4 c1 c3 c2 

c1 c2 c3 c4 
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USE CASES 

OS1 OS2 OS3 

HOST MACHINE 

HARDWARE 
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INTRODUCTION 
Duplicity = Percentage of duplicate 
blocks / Blocks before deduplication 

Deduplication Throughput = Number of 
blocks identified as a duplicate or not / 
second 

Deeper inspection gives higher duplicity 
but at the cost of throughput 

Incremental block level backups have 
lesser locality compared to full backups 

A good balance requires sophisticated 
techniques to identify duplicates. 
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INCREMENTAL BACKUP 
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MOTIVATION 

1 PB Data Backup System 

Block Size: 4KB 

Fingerprint Size: 16 Bytes 

Fingerprint Index Table 

Size: 4 TB 

Cannot fit in RAM!   
DISK 

RAM 
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FINGERPRINT INDEX 

 Can you identify only useful fingerprints and avoid 
storing less useful fingerprints? 

  Is it possible to control the usefulness factor in 
balancing duplicity and throughput? 
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SAMPLED FINGERPRINT 
INDEX: SFI 
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Fingerprint Hash Location on Disk 

#F1 L1 

#F7 L3 

#F18 L1 

#F89 L9 

L1 
L9 

L2 L3 L9 

INCOMING 
FINGERPRINTS 

Query 



SFI 

Day N Day N+1 Day N+1 

DUPLICATE NOT FOUND 

Day N 

DUPLICATE FOUND 

SFI SFI 
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WHY SAMPLING WORKS? 

10 - 100 120-220 980-1200 

3000-3060 3440-3660 

Day N delta list 100-200 300-500 800-900 

Day N+1 delta list 

2000-2030 

1200-1330 

300-400  
820-850 

Day N+2 delta list 

1000-1030 

150-180 

3000-3130 

1200-1330 

STABLE 
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SFI VARIATIONS 
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BOTTLENECKS 

 Accessing the data disk to fetch fingerprints 
pointed to by SFI can be very expensive. 

 How effective is caching? 
  Assuming repeated usage is one hint. 
  Prefetching is another caching strategy. 
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PREFETCHING OPTIONS 

 Fingerprints are better fetched in a group (containers) 
and there are multiple options to choose the basis of 
group formation. 

 Temporal Proximity: Prefetch with the assumption 
that fingerprints created at the same time are referred 
together later. 

 Content Proximity: Prefetch with the assumption that 
fingerprints located near each other are referred together 
later. 

 The most important factor that decides the best of these 
approaches is disk I/O activity.  
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TEMPORAL 
PROXIMITY(TP) 

STORED 
FINGERPRINTS 

INCOMING 
FINGERPRINTS 

STORED 
FINGERPRINTS 

STORED 
FINGERPRINTS 

NEW Stored Fingerprints 

Non-
matched duplicates 
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CONTENT PROXIMITY (CP) 

INCOMING 
FINGERPRINTS 

STORED 
FINGERPRINTS 

STORED 
FINGERPRINTS 
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TP VS CP 

 Similar to write-
optimized file system. 
  Log Structured File System 

 Fewer write I/Os 
 More read I/Os 
 Containers are 100% 

full 

  Similar to read-
optimized file system 

  More write I/Os 
  Fewer read I/Os. 
  Containers are X% full 

to accommodate space 
for future matches 

TP CP 

The approach in which disk I/Os are minimal is the best approach to 
choose  
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CP VS TP PERFORMANCE 
Fill-up 
Threshold 

Dedupe 
Ratio 

Dedupe 
Throughput 

Container 
Read Count 

Container 
Write Count 

Per-Segment 
Comparison 

70 93.11% 282.9K 1.238 0.0743 755 

80 93.17% 290.7K 1.248 0.0739 814 

90 93.14% 288.9K 1.259 0.0733 809 

95 93.16% 287.2K 1.267 0.0733 807 

100 93.26% 295.8K 1.264 0.0732 601 

TP approach performs marginally better than all other CP variants. 
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GARBAGE COLLECTION 

  Blocks have to be removed from the database: 
  Incoming block is a duplicate. 
  A snapshot retires and the block is not referred by any other snapshot. 

Create Snapshot 1 Create Snapshot 2 

B1 

B2 

B4 

B3 

B5 

B6 

B12 

B11 B13 

B10 

Delete Snapshot 1 

B1 should be retained 
because it is still referenced 
by B11 from snapshot 2 

B1 
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WHY IS GC IMPORTANT 
 GC has to maintain some metadata for each 

block in the backup system to keep track of which 
block is referred to by blocks in some other 
snapshot. 

 Metadata size exceeds in-memory requirements. 
 Same problem of disk I/Os as seen with SFI and 

containers. 
 Mishandling GC can bottleneck Deduplication 

process. 
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REFERENCE COUNT 
GARBAGE COLLECTOR 

  Reference count based method: 

  Every volume is configured with an expiration time. 

  Every time a snapshot is taken, increase reference count for all blocks in 
the volume. 

  At the end of expiration time for volume, decrement the reference count 
for all blocks in volume. 

  All those blocks having reference count = 0, will be freed. 

  Costs: 

  Fetch metadata for every block in volume every time a snapshot is taken. 

  To free a block, handle the metadata 2 times: One at the time of creating 
a snapshot and another at the time the snapshot expires. 20 



EXPIRY TIME GARBAGE 
COLLECTOR 

❧  Expiry time based method: 
❧  Every volume is configured with an expiration time. 
❧  Every time a snapshot is taken, update the new expiry time for all 

blocks in the volume to maximum of (current time) or              
(current time + volume expiry time). 

❧  No need to update anything when snapshot is deleted. 
❧  Free all the blocks whose expiry time has passed the current time. 

❧  Costs: 
❧  This is better than reference count method by a factor of 2. 
❧  Since you do not update all blocks at snapshot expiration time. 
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HYBRID GARBAGE COLLECTOR 
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  Each block in delta list has <LBN, CPBN, BPBN> 

  LBN: Logical Block Number 

  CPBN: Current Image Physical Block Number 

  BPBN: Before Image Physical Block Number 

  At snapshot creation time, Reference count for: 

  CPBN is incremented. 

  BPBN is decremented. 

  Expiry time for BPBN is set to maximum of (current value) or 
(current time + volume’s retention time) 

  All blocks whose reference count is 0 are put in a separate queue 
and are freed when expiry time passes the current time.  
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HYBRID GC WORKS! 
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  Reference Count is updated only for modified blocks in 
delta list and NOT for all blocks in the volume. 

  Expiry time is checked only on the blocks that have 
reference count 0 and that are put in a separate queue. 

  Metadata is not updated for any blocks when snapshot is 
expired. 

  Blocks that never get modified, will have reference count 
> 1 and will never get garbage collected as it’s still in use 
by atleast 1 current image. 

  Scalable because delta list is typically much much 
smaller than the entire volume.  



IMPLEMENTING GC 
 Managing metadata updates in GC is non-

trivial because of very low locality 
  Already existing blocks and the 

incoming duplicates have hardly any 
dependency. 

 Use BOSC scheme to batch the updates 
and sequentially commit the batched 
updates to disk periodically. 
  Use TRAIL Logging to ensure data 

persistency 
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!
!

GC Disk 1 GC Disk 2 

Metadata P-Array 

GC Thread 1 
Update 

Bucket N 
GC Thread 2 

Update 
Bucket K 

"! #! "! "! "! "! "! "! #! #! #! "!

Fast Logging 
Disk 

BOSC 
Logging 

Incoming Fingerprints from Sungem to be updated in GC 
Database 
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GC’S INFLUENCE 
Commit 
Threads 

Dedupe 
+Vanilla 
GC 

Dedupe 
+BOSC GC 

Dedupe & 
NO GC 

1 5879 54047 287204 

2 6003 268218 287204 

4 9858 277670 287204 

10 8121 269272 287204 

very much 
comparable 

severe bottleneck 
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FINGERPRINTS PROCESSING 

Load containers 100, 876 

SFI Lookup 

Load HIT containers 

Process HIT fingerprints 
and convert some MISS 
to Pseudo HITS(PH) 

Process MISS 
fingerprints and store in 
nearest container: 876 
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DEDUPLICATION AND GC 
OVERALL VIEW 
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SUSTAINED HIGH 
PERFORMANCE 
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SUMMARY 
 Supports very high throughput across all ranges 

of deduplication ratios. 
 Supports dynamic sampling rate to optimally 

store SFI without hurting the deduplication 
ratio. 

  In depth comparison of TP and CP approaches to 
store containers. 

 Scalable GC technique which scales only with 
changed data and NOT the entire volume size. 
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