
A SCALABLE 
DEDUPLICATION AND 

GARBAGE COLLECTION 
ENGINE FOR 

INCREMENTAL BACKUP 
Dilip N Simha (Stony Brook University, NY & ITRI, Taiwan) 

Maohua Lu (IBM Almaden Research Labs, CA) 

Tzi-cker Chiueh (Stony Brook University, NY & ITRI, Taiwan) 



WHAT IS DEDUPLICATION 

Technique for eliminating redundant data 

c1 c2 c3 c2 c4 c1 c3 c2 

c1 c2 c3 c4 

2 



USE CASES 

OS1 OS2 OS3 

HOST MACHINE 

HARDWARE 

3 



INTRODUCTION 
Duplicity = Percentage of duplicate 
blocks / Blocks before deduplication 

Deduplication Throughput = Number of 
blocks identified as a duplicate or not / 
second 

Deeper inspection gives higher duplicity 
but at the cost of throughput 

Incremental block level backups have 
lesser locality compared to full backups 

A good balance requires sophisticated 
techniques to identify duplicates. 

4 



INCREMENTAL BACKUP 

5 

DIRTY BLOCK 
LIST 

DATA STORE 

SAN, NAS 

DIRTY BLOCK 
TRACKER 

ENTIRE VOLUME 



MOTIVATION 

1 PB Data Backup System 

Block Size: 4KB 

Fingerprint Size: 16 Bytes 

Fingerprint Index Table 

Size: 4 TB 

Cannot fit in RAM!   
DISK 

RAM 

6 



FINGERPRINT INDEX 

 Can you identify only useful fingerprints and avoid 
storing less useful fingerprints? 

  Is it possible to control the usefulness factor in 
balancing duplicity and throughput? 

7 



SAMPLED FINGERPRINT 
INDEX: SFI 

8 

Fingerprint Hash Location on Disk 

#F1 L1 

#F7 L3 

#F18 L1 

#F89 L9 

L1 
L9 

L2 L3 L9 

INCOMING 
FINGERPRINTS 

Query 



SFI 

Day N Day N+1 Day N+1 

DUPLICATE NOT FOUND 

Day N 

DUPLICATE FOUND 

SFI SFI 

9 



WHY SAMPLING WORKS? 

10 - 100 120-220 980-1200 

3000-3060 3440-3660 

Day N delta list 100-200 300-500 800-900 

Day N+1 delta list 

2000-2030 

1200-1330 

300-400  
820-850 

Day N+2 delta list 

1000-1030 

150-180 

3000-3130 

1200-1330 

STABLE 
10 

150-180 



SFI VARIATIONS 

11 

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 10 50 250

D
e-

du
pl

ic
at

io
n 

R
at

io
 (%

)

SFI Size (Kilo Fingerprints)

Fixed SR(SR = 10)
Variable SR(SR = 10, Stable Hit Count=1)
Variable SR(SR = 10, Stable Hit Count=2)
Variable SR(SR = 10, Stable Hit Count=5)

Fixed SR(SR = 256)



BOTTLENECKS 

 Accessing the data disk to fetch fingerprints 
pointed to by SFI can be very expensive. 

 How effective is caching? 
  Assuming repeated usage is one hint. 
  Prefetching is another caching strategy. 

12 



PREFETCHING OPTIONS 

 Fingerprints are better fetched in a group (containers) 
and there are multiple options to choose the basis of 
group formation. 

 Temporal Proximity: Prefetch with the assumption 
that fingerprints created at the same time are referred 
together later. 

 Content Proximity: Prefetch with the assumption that 
fingerprints located near each other are referred together 
later. 

 The most important factor that decides the best of these 
approaches is disk I/O activity.  

13 



TEMPORAL 
PROXIMITY(TP) 

STORED 
FINGERPRINTS 

INCOMING 
FINGERPRINTS 

STORED 
FINGERPRINTS 

STORED 
FINGERPRINTS 

NEW Stored Fingerprints 

Non-
matched duplicates 

14 



CONTENT PROXIMITY (CP) 

INCOMING 
FINGERPRINTS 

STORED 
FINGERPRINTS 

STORED 
FINGERPRINTS 

15 



TP VS CP 

 Similar to write-
optimized file system. 
  Log Structured File System 

 Fewer write I/Os 
 More read I/Os 
 Containers are 100% 

full 

  Similar to read-
optimized file system 

  More write I/Os 
  Fewer read I/Os. 
  Containers are X% full 

to accommodate space 
for future matches 

TP CP 

The approach in which disk I/Os are minimal is the best approach to 
choose  

16 



CP VS TP PERFORMANCE 
Fill-up 
Threshold 

Dedupe 
Ratio 

Dedupe 
Throughput 

Container 
Read Count 

Container 
Write Count 

Per-Segment 
Comparison 

70 93.11% 282.9K 1.238 0.0743 755 

80 93.17% 290.7K 1.248 0.0739 814 

90 93.14% 288.9K 1.259 0.0733 809 

95 93.16% 287.2K 1.267 0.0733 807 

100 93.26% 295.8K 1.264 0.0732 601 

TP approach performs marginally better than all other CP variants. 

17 



GARBAGE COLLECTION 

  Blocks have to be removed from the database: 
  Incoming block is a duplicate. 
  A snapshot retires and the block is not referred by any other snapshot. 

Create Snapshot 1 Create Snapshot 2 

B1 

B2 

B4 

B3 

B5 

B6 

B12 

B11 B13 

B10 

Delete Snapshot 1 

B1 should be retained 
because it is still referenced 
by B11 from snapshot 2 

B1 
18 



WHY IS GC IMPORTANT 
 GC has to maintain some metadata for each 

block in the backup system to keep track of which 
block is referred to by blocks in some other 
snapshot. 

 Metadata size exceeds in-memory requirements. 
 Same problem of disk I/Os as seen with SFI and 

containers. 
 Mishandling GC can bottleneck Deduplication 

process. 

19 



REFERENCE COUNT 
GARBAGE COLLECTOR 

  Reference count based method: 

  Every volume is configured with an expiration time. 

  Every time a snapshot is taken, increase reference count for all blocks in 
the volume. 

  At the end of expiration time for volume, decrement the reference count 
for all blocks in volume. 

  All those blocks having reference count = 0, will be freed. 

  Costs: 

  Fetch metadata for every block in volume every time a snapshot is taken. 

  To free a block, handle the metadata 2 times: One at the time of creating 
a snapshot and another at the time the snapshot expires. 20 



EXPIRY TIME GARBAGE 
COLLECTOR 

❧  Expiry time based method: 
❧  Every volume is configured with an expiration time. 
❧  Every time a snapshot is taken, update the new expiry time for all 

blocks in the volume to maximum of (current time) or              
(current time + volume expiry time). 

❧  No need to update anything when snapshot is deleted. 
❧  Free all the blocks whose expiry time has passed the current time. 

❧  Costs: 
❧  This is better than reference count method by a factor of 2. 
❧  Since you do not update all blocks at snapshot expiration time. 

21 



HYBRID GARBAGE COLLECTOR 

22 

  Each block in delta list has <LBN, CPBN, BPBN> 

  LBN: Logical Block Number 

  CPBN: Current Image Physical Block Number 

  BPBN: Before Image Physical Block Number 

  At snapshot creation time, Reference count for: 

  CPBN is incremented. 

  BPBN is decremented. 

  Expiry time for BPBN is set to maximum of (current value) or 
(current time + volume’s retention time) 

  All blocks whose reference count is 0 are put in a separate queue 
and are freed when expiry time passes the current time.  



23 

1, 10, -1 

2, 11, -1 

3, 12, -1 

4, 13, -1 

1, 14, 10 

2, 15, 11 

5, 16, -1 

6, 17, -1 

1, 18, 14 

7, 19, -1 

5, 20, 16 

8, 21, -1 

Snapshot 1 Snapshot 2 Snapshot 3 



24 

1, 10, -1 

2, 11, -1 

3, 12, -1 

4, 13, -1 

1, 14, 10 

2, 15, 11 

5, 16, -1 

6, 17, -1 

1, 18, 14 

7, 19, -1 

5, 20, 12 

4, 21, 13 

Snapshot 1 Snapshot 2 Snapshot 3 

10 1 

11 1 

12 1 

13 1 

10 0 

11 0 

12 2 

13 1 

14 1 

15 1 

16 0 

17 1 

10 0 

11 0 

12 1 

13 0 

14 0 

15 1 

16 0 

17 1 

18 1 

19 1 

20 1 

21 1 



HYBRID GC WORKS! 

25 

  Reference Count is updated only for modified blocks in 
delta list and NOT for all blocks in the volume. 

  Expiry time is checked only on the blocks that have 
reference count 0 and that are put in a separate queue. 

  Metadata is not updated for any blocks when snapshot is 
expired. 

  Blocks that never get modified, will have reference count 
> 1 and will never get garbage collected as it’s still in use 
by atleast 1 current image. 

  Scalable because delta list is typically much much 
smaller than the entire volume.  



IMPLEMENTING GC 
 Managing metadata updates in GC is non-

trivial because of very low locality 
  Already existing blocks and the 

incoming duplicates have hardly any 
dependency. 

 Use BOSC scheme to batch the updates 
and sequentially commit the batched 
updates to disk periodically. 
  Use TRAIL Logging to ensure data 

persistency 

26 



!
!

GC Disk 1 GC Disk 2 

Metadata P-Array 

GC Thread 1 
Update 

Bucket N 
GC Thread 2 

Update 
Bucket K 

"! #! "! "! "! "! "! "! #! #! #! "!

Fast Logging 
Disk 

BOSC 
Logging 

Incoming Fingerprints from Sungem to be updated in GC 
Database 

27 



GC’S INFLUENCE 
Commit 
Threads 

Dedupe 
+Vanilla 
GC 

Dedupe 
+BOSC GC 

Dedupe & 
NO GC 

1 5879 54047 287204 

2 6003 268218 287204 

4 9858 277670 287204 

10 8121 269272 287204 

very much 
comparable 

severe bottleneck 

28 



FINGERPRINTS PROCESSING 

Load containers 100, 876 

SFI Lookup 

Load HIT containers 

Process HIT fingerprints 
and convert some MISS 
to Pseudo HITS(PH) 

Process MISS 
fingerprints and store in 
nearest container: 876 

29 



DEDUPLICATION AND GC 
OVERALL VIEW 

30 



SUSTAINED HIGH 
PERFORMANCE 

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000  1200
 50

 60

 70

 80

 90

 100
D

ed
up

lic
at

io
n 

Th
ro

ug
hp

ut
 (K

ilo
 F

in
ge

rp
rin

ts
/s

ec
)

D
ed

up
lic

at
io

n 
R

at
io

 (P
er

ce
nt

ag
e)

Input Fingerprint Count (Unit: Million fingerprints)

Deduplication Throughput
Deduplication Ratio

31 



SUMMARY 
 Supports very high throughput across all ranges 

of deduplication ratios. 
 Supports dynamic sampling rate to optimally 

store SFI without hurting the deduplication 
ratio. 

  In depth comparison of TP and CP approaches to 
store containers. 

 Scalable GC technique which scales only with 
changed data and NOT the entire volume size. 

32 



33 


