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Abstract: This paper utilizes the generalized Fisher index (GFI) to decompose the factors of carbon
emission and exploits improved particle swarm optimization-back propagation (IPSO-BP) neural
network modelling to predict the primary energy consumption CO2 emissions in different scenarios
of Beijing-Tianjin-Hebei region. The results show that (1) the main factors that affect the region are
economic factors, followed by population size. On the contrary, the factors that mainly inhibit the
carbon emissions are energy structure and energy intensity. (2) The peak year of carbon emission
changes with the different scenarios. In a low carbon scenario, the carbon emission will have a
decline stage between 2015 and 2018, then the carbon emission will be in the ascending phase
during 2019–2030. In basic and high carbon scenarios, the carbon emission will peak in 2025 and
2028, respectively.

Keywords: carbon emissions; generalized fisher index; IPSO-BP neural network model;
Beijing-Tianjin-Hebei region

1. Introduction

Global warming is a hot topic in the world, and the issue of carbon emission has attracted extensive
attention worldwide. China made its own contributions in the Paris Agreement, which were that the
CO2 emissions will peak in 2030, and the carbon emission intensity will decrease by 60–65% based on
2005 [1]. Currently, China is the largest carbon emission country in the world, and the carbon emission
of the Beijing-Tianjin-Hebei region is about one fifth of the emissions from China. At the same time, the
population of the region has exceeded 100 million, and it is facing serious ecological problems [2].

Beijing-Tianjin-Hebei region is defined as the “Capital Circle” of China. Beijing is the capital
of China, it is also an international metropolis and a center for science and technology innovation.
Tianjin is one of the first coastal open cities, it has essential ports. Hebei is an important grain and
cotton production region of China, which is rich in resources [3]. In 2004, the National Development
and Reform Commission (NDRC) proposed a “langfang consensus” on some principles of economic
integration of Beijing-Tianjin-Hebei region [4]. In 2006, the development of Beijing-Tianjin-Hebei region
was included in the “11th five-year plan” [5]. In 2011, the “12th five-year plan” was released, and the
concept of “capital economic circle” was built. In 2016, the Supreme People’s Court promulgated the
documents of “The legal services of the supreme people’s court on the coordinated development of
Beijing-Tianjin-Hebei”, which was put forward to guarantee the development concepts [6]. Thus, the
Beijing-Tianjin-Hebei region is of significance to the environment and economic development in China.

The study of carbon emission in Beijing-Tianjin-Hebei region is very meaningful. Reference [7]
established a Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT)
model, and the study found that the principal factor which affected this region was the economic
factors. Reference [8] adopted a mixed method to study the air pollution prevention and control action
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plan in Beijing-Tianjin-Hebei. Reference [9] constructed an internationally compatible method, and
compared the differences of carbon emission between the urban and non-urban areas in industry,
agriculture, households and transport. Reference [10] developed a life cycle footprint analysis method,
and assessed the tourism-related direct and indirect water consumption under four scenarios in
Beijing-Tianjin-Hebei region. Reference [11] undertook a study on the key energy-intensive industries
of the Beijing-Tianjin-Hebei, and decomposed the factors by the Malmquist index, the research showed
that the principal influence factor was technological progress. Reference [12] took an air pollutants
emission inventory of Beijing-Tianjin-Hebei region, and analyzed the emission of different pollutants
such as CO2, SO2, and NOx in 2013. In order to study the energy-related CO2 emissions in China,
reference [13] used the Logarithmic Mean Divisia Index (LMDI) method to decompose the influencing
factors. The results indicated that energy intensity had a positive effect on decreasing the CO2 emissions.
Therefore, we can conclude that, it is meaningful to study the Beijing-Tianjin-Hebei, especially, the
primary energy-related carbon emissions of this region. This paper decomposed the influence factors of
carbon emission by the Generalized Fisher Index (GFI), and predicted the energy-related CO2 emissions
in Beijing-Tianjin-Hebei region using the improved particle swarm optimization-back propagation
(IPSO-BP) neural network model and scenario analysis methods.

2. Literature Review

There is considerable research about energy-related CO2 emissions, and the factors that influence
the CO2 are different. Reference [14] used time series modelling to assess the relationship between
foreign direct investment (FDI) and energy consumption. Relying on the Generalized Divisia Index,
reference [15] decomposed the changes in the energy-related Greenhouse Gas (GHG) emissions.
To analyze the relationship between the industrial structural transformation and carbon dioxide
emissions, reference [16] applied panel data from 1995 to 2009, and found out the most effective way
to reduce the emissions was industrial structural adjustment. Reference [17] employed a Renewable
Energy Country Attractiveness Index, and investigated the effects of renewable energy consumption
on the economic growth of major renewable energy consuming countries in the world. Reference [18]
developed an allocation principle, which was based on the efficiency levels, and constructed the links
between energy intensity and efficiency. Reference [19] established a Logarithmic Mean Divisia Index
method, and analyzed the methods of controlling the coal consumption of three major CO2 emitters.
Reference [20] calculated the primary energy consumption and energy-related CO2 emissions in five
countries. These studies have shown that the influencing factors of the energy-related CO2 emissions
vary from country to country.

A large number of scholars have studied the methods of decomposing factors which influence
carbon emissions, and the commonly used methods are structural decomposition method (SDA)
and index decomposition analysis (IDA). The SDA method can be divided into two categories:
decomposition method and input-output method. Currently, the IDA method can be divided into the
Laspeyres index and the Divisia index. The main idea of Laspeyres index was proposed in the late
1970s, and has been further improved since then [21]. Reference [22] compared the difference between
the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index (LMDI). As a consequence,
both methods agreed that the most important factor to the increase of CO2 emissions was income effect.
Reference [23] summarized the properties of the Divisia index and the Laspeyres index, meanwhile,
the research provided recommendations when selecting the method. Reference [24] decomposed the
factors into CO2 emissions coefficient, technology effect, and change in final demand, it found that
the main influencing factors were varied from time to time. A detailed review of the methods of
decomposing factors is presented in Table 1.
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Table 1. Detailed review of the methods of decomposing factors.

Author(s) Methodologies Factors

[25] Structural decomposition analysis (SDA) structural change, technological improvements
[26] Structural decomposition analysis (SDA) GDP, Aggregate carbon intensity

[27] Structural decomposition analysis (SDA)
Generalized Fisher index(GFI) Population, GDP, energy intensity

[28] Structural decomposition analysis (SDA)
Multiplicative decomposition

Total ratio changes, Emission intensity effect,
Leontief structure effect, Domestic export effect

[29] Structural decomposition analysis (SDA) carbonization, energy intensity, technology,
structural demand, consumption pattern and scale.

[30] Structural decomposition analysis (SDA)
Input-Output model GDP, Population, energy intensity

[31] Structural decomposition analysis (SDA)
Index decomposition analysis (IDA)

energy intensity effect, Leontief effect, structure
effect, affluence effect, population

[32] Index decomposition analysis (IDA)
per capital income, energy prices, population growth,

fossil fuel energy consumption, the investment
capital ratio, country fixed effect

[33] Index decomposition analysis (IDA) activity effect, structure effect, sub-structure effect,
intensity effect

[34] index decomposition analysis (IDA)
Advanced sustainability analysis

total primary energy supply, final energy
consumption, GDP, population

[35] Index Decomposition Analysis-Logarithmic
Mean Divisia Index (IDA-LMDI)

carbonization, the substitution of fossil
fuels, the penetration of renewable energy, energy

intensity, wealth and population

[36] Logarithmic Mean Divisia Index (LMDI) activity, structural, energy intensity, fuel share, and
emission effects

[37] Logarithmic Mean Divisia Index (LMDI) economic scale effect, industry structure effect,
energy intensity effect, energy structure

[38] Logarithmic Mean Divisia Index (LMD-I)
Inter-sector structural change, Per capital GDP
change, Business energy intensity, Household

energy intensity

[39] Logarithmic Mean Divisia Index (LMDI) cement output, clinker share, process structure,
specific energy consumption

[40] Logarithmic Mean Divisia Index (LMDI) energy structure, energy intensity, industry structure,
economic output, population scale effects

Many scholars have used different prediction methods to study CO2 emissions. To forecast
CO2 emissions, reference [41] established an improved Gaussian processes regression method, which
was based on a modified PSO algorithm proposed. Reference [42] proposed an improved particle
swarm optimization-back propagation algorithm (IPSO-BP) method, and contrasted the result with
the Grey prediction model GM(1,1) and a simple BP neural network. By applying Extreme Learning
Machine (ELM), reference [43] predicted GDP based on emissions, and made a comparison with genetic
programming (GP) and artificial neural networks (ANN). Reference [44] applied panel data to examine
the relation between CO2 emissions, renewable and non-renewable energy consumption, and economic
growth. Reference [45] utilized the model of Equation specification and Panel cointegration approach to
study the CO2 emissions of renewable energy. By exploring the auto-regressive distributed lag (ARDL)
model, reference [46] analyzed the validity of the Environmental Kuznets Curve (EKC) with the
indicators of CO2 emissions and the ecological footprint. Reference [47] built a hierarchical structure
method, and verified the connection with CO2 emissions and economic growth. Reference [48]
predicted the CO2 emission by using Support Vector Machine (SVM). Another important contribution
of the study was that it compared the results with the Artificial Neural network (ANN) and Genetic
Programming (GP) methods.

Most of the previous researches utilized structural decomposition method (SDA) or index
decomposition analysis (IDA) when decomposing the factors. However, these models have certain
defects, which cannot explain part of the changes in CO2 emissions. Further, Fisher index method (GFI)
can overcome the defects of these methods [49,50]. Meanwhile, those researches rarely considered
the CO2 emissions from energy consumption in Beijing-Tianjin-Hebei region. To compensate the
defects of the existing studies, this paper applies the GFI model to analyze the influencing factors of
energy consumption related CO2 emissions, then combines the IPSO-BP neural network with scenario
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analysis to predict energy consumption related CO2 emissions in Beijing-Tianjin-Hebei region during
2015–2030. The remainder of this study is organized as follows: Section 3 introduces the methods and
data source of this research. Section 4 analyzes and discusses the empirical results. Finally, we draw a
conclusion in Section 5.

3. Methods and Date Source

3.1. The Estimation of CO2

This paper mainly studies the carbon dioxide produced by primary energy consumption in
Beijing-Tianjin-Hebei, and the selected fossil fuels including coal, coke, crude oil, gasoline, kerosene,
diesel oil, fuel oil, and natural gas. Conversion coefficient and CO2 emissions conversion coefficient
for various types of energy, which were recommended by the intergovernmental panel on climate
change (IPCC) [51], are shown in Table 2. And the total carbon emissions produced by primary energy
consumption can be calculated as Equation (1).

CE =
9

∑
i=1

Ei ∗ Ci ∗ Ki∗
12
44

(1)

where, CE represents the total of CO2 emissions of primary energy consumption; i represents the
fossil energy, involving coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, and natural gas; Ei
represents the consumption of different kinds of energy; Ci and Ki represent conversion coefficient and
CO2 emissions conversion coefficient, respectively; 12/44 is the ratio between the mass of one carbon
atom and the mass of one carbon dioxide molecule.

Table 2. Conversion coefficient and CO2 emissions conversion coefficient of different kinds of energy.

Energy Statistical Unit Conversion Coefficient CO2 Emissions Conversion
Coefficient (C/(t/t))

Coal million ton 0.7143 kgce/kg 0.747
Coke million ton 0.9714 kgce/kg 0.855

Crude oil million ton 1.4286 kgce/kg 0.585
Gasoline million ton 1.4714 kgce/kg 0.553
Kerosne million ton 1.4714 kgce/kg 0.571
DieSl oil million ton 1.4571 kgce/kg 0.592
Fuel oil million ton 1.4286 kgce/kg 0.618

Natural gas billion cubic meters 1.2721 kgce/m3 0.448

3.2. Generalized Fisher Index

The traditional calculation model of Fisher index decomposition is as Equation (2).

V = ∑
i

Vi = ∑
i

X1i · X2i, (2)

where V denotes an indicator to be decomposed, and i is the subcategory of the indicator; and X1i
and X2i represent the decomposed influencing factors. The effect associated with the changes in V
from 0 year to T year can be decomposed into DX1 and DX2 , the specific expression is presented as
Equation (3).

V =
VT

V0 =

∑
i

X1i
T · X2i

T

∑
i

X1i
0 · X2i

0 = DX1 · DX2 (3)

Based on the Fisher index model, DX1 and DX2 can be expressed as Equations (4) and (5).
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DX1 =

∑
i

X1i
T · X2i

0

∑
i

X1i
0 · X2i

0 ·
∑
i

X1i
T · X2i

T

∑
i

X1i
0 · X2i

T

 (4)

DX2 =

∑
i

X1i
T · X2i

0

∑
i

X1i
0 · X2i

0 ·
∑
i

X1i
T · X2i

T

∑
i

X1i
0 · X2i

T

 (5)

In order to overcome the residual problem and the limitation of the two-factor analysis of
traditional Generalized Fisher Index, reference [50] proposed an extend Generalized Fisher Index (GFI).
The specific process is presented as Equation (6).

V = ∑
i

X1i · X2i · X3i · ... · Xni (6)

Suppose that a set can be expressed as N = {1, 2, 3, ..., n}, where n is the cardinality of N, and
V is the total index which is made up of n elements. The subset of N is denoted as S, of which the

cardinality is s [37]. Define the function V(S) = ∑
[

∏
i∈S

Xi
T ∏

m∈NS
Xm

0
]

and V(H) = ∑
[

∏
m∈N

X0
m

]
, and

H is the null set. On the basis of the “geometric average” principle, VT/V0 can be decomposed into n
parts, and the decomposition results of each factor Xj (j = 1, 2, 3, ...., n) can be expressed as Equation (7).

DXj = ∏
S ∈ N
j ∈ S

[
V(S)

V(S\{j})

] 1
n ·[

1

n− 1
s− 1

]

= ∏
S ∈ N
j ∈ S

[
V(S)

V(S\{j})

] (s−1)!(n−1)!
n!

(7)

DXj (j = 1, 2, 3, ...., n) is the decomposition factors of Generalized Fisher Index model.
The Kaya identity was put forward by Yoichi Kaya [52]. Given its simple structure and ignoring

the effect of energy structure, this paper adds energy structure as a factor to the Kaya identity.
The combination of GFI and expansion of Kaya identity is represented as Equation (8).

DXj = ∏
S ∈ N
j ∈ S

[
V(S)

V(S\{j})

] 1
n ·[

1

n− 1
s− 1

]

= ∏
S ∈ N
j ∈ S

[
V(S)

V(S\{j})

] (s−1)!(n−1)!
n!

, (8)

where C is conceived as the total carbon emissions; Ci represents the carbon emissions of ith fossil
energy, and i refers to fossil energy types; Ei and E denote the consumption of ith fossil energy and the
total energy consumption, respectively; Y is the gross domestic product; and P represents population.
X1i = Ci/Ei represents the energy-related CO2 emission coefficient; X2i = Ei/E is energy structure,
which denotes the proportion of ith fossil energy in total energy consumption; X3i = E/Y is energy
intensity, which refers to the energy consumption of per unit GDP; and X4i = Y/P represents per capital
of GDP; X5i = P refers to population scale.

Therefore, the influencing factors of carbon emissions from energy consumption in
Beijing-Tianjin-Hebei region are energy structure, energy intensity, economic growth and population
scale. The variation of carbon emissions can be decomposed as Equations (9) and (10).

AT/A0 = DX1 DX2 DX3 DX4 (9)
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DX1 =

[
∑
i

X1i
T X2

0X3
0X4

0

∑
i

X1i
0X2

0X3
0X4

0

] 1
4

·
[

∑
i

X1i
T X2

T X3
0X4

0

∑
i

X1i
0X2

T X3
0X4

0

] 1
12

·
[

∑
i

X1i
T X2

0X3
T X4

0

∑
i

X1i
0X2

0X3
T X4

0

] 1
12

·
[

∑
i

X1i
T X2

0X3
0X4

T

∑
i

X1i
0X2

0X3
0X4

T

] 1
12

·
[

∑
i

X1i
T X2

T X3
T X4

0

∑
i

X1i
0X2

T X3
T X4

0

] 1
12

·
[

∑
i

X1i
T X2

T X3
0X4

T

∑
i

X1i
0X2

T X3
0X4

T

] 1
12

·[
∑
i

X1i
T X2

0X3
T X4

T

∑
i

X1i
0X2

0X3
T X4

T

] 1
12

·
[

∑
i

X1i
T X2

T X3
T X4

T

∑
i

X1i
0X2

T X3
T X4

T

] 1
4

(10)

where AT represents the carbon emissions in year T; A0 refers to the carbon emissions in the base year;
DX1 is the energy structure effect; X1 is the product of energy structure (Ei/E) and the corresponding
carbon emission coefficient (Ci/Ei); DX2 is the energy intensity effect; DX3 is the economic output
effect; and DX4 is the population scale effect. DX2 , DX3 and DX4 can be derived from DX1 .

3.3. Establishment of Predicting Method

3.3.1. Particle Swarm Optimization Algorithm(PSO)

Particle Swarm Optimization Algorithm (PSO) was put forward in 1995 and it was originated
from the social psychological behavior [53].

Supposed a D-dimensional space is consisted of n particles, xi = (xi1, xi2.. . . . xiD) and
Vi = (vi1, vi2.. . . . viD) represent the position and velocity of ith particle in the space respectively;
the pbest which are the individual extrema are represented by Pi = (pi1, pi2, pi3.. . . . piD); the gbest
which are the global extrema can be denoted as gi = (gi1, gi2, gi3. . . . giD). Each particle is initialized
at commencement, by means of updating its velocity and position, the particle can explore the best
track of pbest and gbest, then modify the search coverage by the inertia weight, which is generally
represented by ω [40]. The inertia weight reflects the inertia of the current velocity to the particle and
the degree of inheritance the last iteration. The larger the weight, the more beneficial to global search,
meanwhile, the small weight can strengthen the capacity of the local search. In order to balance the
global search capability and local search capability, the algorithm can use a large weight in the initial
stage to strengthen the global search capability, at the end of the algorithm, a small weight can be
used to facilitate local search [54]. The improved inertia weight and update formula of particles can be
expressed as Equations (11)–(13).

w = (wmax − wmin) ∗
[
(kmax − k)

kmax

]t
+ wmin (11)

vid = wvid + c1rand1(pid − xid) + c2rand2(gid − xid) (12)

xid = xid + vid k = 1, 2, . . . , n; d = 1, 2, . . . , D. (13)

where ω represents the inertia weight; ωmax and ωmin are the maximum and minimum inertia weight
respectively, generally speaking, they can be set as 0.9 and 0.4; k is the current iteration number, and
κmax is the maximum iteration number; c1 and c2 are learning factors, which are suggested to be
2; rand1 and rand2 are usually in the interval [0,1]; and the velocity of particles are often limited to
[−Vmax, Vmax]. It should be noted that t is the nonlinear modulation index, which is equal to 1.2.

3.3.2. IPSO-BP Neural Network Method

The online learning is composed of two processes, which are the positive transmission of the input
signal and the backward propagation of errors. In the process of the positive transmission, the input
signal comes from the input layer, and it can handle step by step through the hidden layer. Each layer
of neurons state affects only the next layer of neurons state. If the desired output cannot be obtained
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in the output layer, the propagation will reverse, and the error signal is returned along the original
connection channel. By modifying the weight of each layer of neurons, the error signal is minimized.

BP neural network is sensitive to the initial weight and threshold value, as a result, the change of
initial weight will affect the convergence speed and accuracy of the network. When the initial weights
and threshold are determined, the convergence direction of the network is also ascertained. As a new
evolutionary algorithm, the improved particle swarm algorithm has high robustness and strong global
search ability. It can optimize the initial weights and threshold value of BP neural network, meanwhile,
it can better overcome the deficiencies of the BP neural network and improve the generalization ability
of the network, as well as the convergence speed and precision.

3.3.3. The Scenario Prediction Method

The “Scenario” was first proposed in 1967, and the scenario analysis is considered as a
comprehensive prediction method [55]. Compared with the traditional forecasting methods, the
scenario analysis method can recognize the diversification of the future development, simultaneously,
it will pay special attention to analyze the consistency of key factors that play an important role in the
development of the organization. In this paper, the scenario analysis and the IPSO-BP neural network
were utilized to predict carbon emissions from energy consumption in Beijing-Tianjin-Hebei region.
Specific ideas were as follows:

Step1: This paper set three scenarios of influencing factors of carbon emissions, and analysis the
energy structure, energy intensity, economic output, and population scale, in accordance with the
national policy and the economic development policy of Beijing-Tianjin-Hebei region.

Step2: We selected the relevant influencing factors data of carbon emissions during the period of
1995–2009 as the training samples, and the remaining data during the period of 2010–2014 as the test
samples. The aim was to determine the parameters of the model and make sure the best results are
achieved, such as the number of iterations, population scale and other parameters through several
training networks.

Step3: We predicted the carbon emissions in Beijing-Tianjin-Hebei region for different scenarios
in 2015–2030, using the IPSO-BP neural network model.

3.4. Date Source

This paper decomposed the factors of the carbon dioxide produced by primary energy
consumption in Beijing-Tianjin-Hebei region, and predicted the CO2 emissions at three scenarios.
The dates were from the “China Statistical Yearbook”, “Beijing Economic Yearbook”, “Tianjin Economic
Yearbook”, and “Hebei Economic Yearbook”. Given no official carbon emissions data, we collected
and calculated the relevant data regarding the energy consumption of Beijing-Tianjin-Hebei, which
covered 1995 to 2014. And the energy consumption of various fossil energy types were collected from
the “China Energy Statistical Yearbook”, involving the energy consumption of coal, coke, crude oil,
gasoline, kerosene, diesel oil, fuel oil and gas. The total population and GDP of Beijing, Tianjin and
Hebei provinces were derived from the “Beijing Statistical Yearbook”, “Tianjin Statistical Yearbook”,
and “Hebei Statistical Yearbook”. Moreover, the GDP was converted to 1995 price to eliminate inflation.

4. Results and Discussion

4.1. Evolution of Primary Energy Consumption, Carbon Emissions, and GDP

The total of the primary energy consumption in Beijing-Tianjin-Hebei region is shown in Figure 1.
The amount of total energy consumption increased to 57,548.90 ktce in 2014 from 20,436.89 ktce in 1995,
with a 9.08% annual increasing degree on average. Meanwhile, the coal consumption ratio in energy
declined from 73.78% to 66.62% during the period of 1995–2014. On the whole, coal consumption had
an absolute advantage, while the proportion of natural gas, oil and other energy sources were also
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increasing slowly in recent years, and the results demonstrate that the energy consumption structure
will develop in the direction toward benign.
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Figure 1. The total of primary energy consumption in the Beijing-Tianjin-Hebei region from 1995 to 2014.

Figure source: The dates of primary energy consumption of various fossil energy types (1995–2014)
were collected from the China Energy Statistical Yearbook, involving the energy consumption of raw
coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, and gas.

The relationship between the carbon emissions of the energy consumption and economic growth is
shown in Figure 2. From 1995 to 2014, the energy-related carbon emissions increased from 13,714.73 kt
to 36,076.75 kt, with an average annual growth of 8.15%. During the same period, the average growth
rate of economic growth and energy consumption were 33.44% and 8.40% respectively. Consequently,
there was a strong correlation and synchronization between the economic growth and carbon emissions
from energy consumption in Beijing-Tianjin-Hebei province.Energies 2018, 11, x FOR PEER REVIEW    9 of 17 
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Figure 2. The relationship between the total carbon emissions and GDP in the Beijing-Tianjin-Hebei
region from 1995 to 2014.

Figure source: The GDP of Beijing, Tianjin, Hebei provinces were derived from the Beijing
Statistical Yearbook, Tianjin Statistical Yearbook, and Hebei Economic Yearbook. Moreover, the GDP
was be converted to 1995 price to eliminate inflation.



Energies 2018, 11, 1489 9 of 17

4.2. Generalized Fisher Index Results

Aiming to investigate the effective factors of carbon emissions from primary energy consumption
in the Beijing-Tianjin-Hebei region, this study decomposed the influencing factors of carbon emissions
into energy structure effect, energy intensity effect, economic output effect, and population scale
effect. And we took 1995 as the base year and made yearly decompositions underlying the GFI model.
The annual decomposition results and the contribution rate of influencing factors of carbon emissions
are presented in Table 3 and Figure 3.

Table 3. Annual decomposition analysis results of changes in carbon emissions from energy
consumption in the Beijing-Tianjin-Hebei region (1995–2014).

Time
Interval

Energy Structure
Effect

Energy Intensity
Effect

Economic
Output Effect

Population
Scale Effect

Total Carbon
Emissions Effect

1995–1996 0.9987 0.8981 1.1042 1.0176 1.0078
1996–1997 1.0038 0.8928 1.1145 1.0028 0.9963
1997–1998 1.0000 0.9271 1.0943 1.0064 1.0209
1998–1999 0.9966 0.9312 1.0897 1.0071 1.0185
1999–2000 0.9968 1.0139 1.0730 1.0286 1.1154
2000–2001 1.0011 0.9524 1.0952 1.0055 1.0500
2001–2002 1.0026 0.9633 1.0977 1.0085 1.0691
2002–2003 1.0015 0.9680 1.1119 1.0078 1.0864
2003–2004 1.0008 0.9881 1.1270 1.0097 1.1252
2004–2005 1.0025 0.9680 1.1206 1.0114 1.0997
2005–2006 0.9986 0.9617 1.1186 1.0151 1.0905
2006–2007 0.9994 0.9460 1.1193 1.0167 1.0760
2007–2008 0.9858 0.9317 1.0885 1.0208 1.0206
2008–2009 1.0098 0.9448 1.0938 1.0187 1.0631
2009–2010 0.9953 0.9695 1.0924 1.0329 1.0888
2010–2011 1.0009 0.9299 1.0994 1.0153 1.0389
2011–2012 0.9984 0.9427 1.0854 1.0147 1.0366
2012–2013 0.9998 0.9334 1.0765 1.0139 1.0185
2013–2014 0.9943 0.9354 1.0630 1.0122 1.0007
1995–2014 0.9813 0.3543 5.9105 1.3009 2.6733

Table source: Data interval covered 1995 to 2014. Energy structure X2i = Ei/E denotes the
proportion of ith fossil energy in total energy consumption; Energy intensity X3i = E/Y refers to
the energy consumption of per unit GDP; X4i = Y/P represents per capital of GDP; and X5i = P
refers to population scale. The total population and GDP of the Beijing, Tianjin, Hebei provinces
were derived from the Beijing Statistical Yearbook, Tianjin Statistical Yearbook, and Hebei Economic
Yearbook. Moreover, the GDP was converted to 1995 price to eliminate inflation.
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Figure 3. The influencing factors of carbon emissions from primary energy consumption in
Beijing-Tianjin-Hebei (1995–2014).

Figure source: The contribution rate of carbon emissions from energy consumption in
Beijing-Tianjin-Hebei (1995–2014) were calculated using the GFI model.
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4.2.1. Energy Structure Effect

The energy structure effect in the Beijing-Tianjin-Hebei region showed larger fluctuations during
the period of 1995–2014. The cumulative energy structure effect of 1995 to 2014 was 0.9813, and the
cumulative contribution rate was 12%. Overall, the larger fluctuation was divided into the stages of
1995–2005 and 2006–2014. At the first stage, energy structure effect values were all generally greater
than 1, which denotes that energy structure effect is the main factor that promoted the increment
of carbon emissions. Energy structure effect values were all generally smaller than 1 in the period
of 2006–2014. Therefore, the inhibition of energy structure effect of carbon emissions from energy
consumption became stronger in recent years. The results demonstrate that the predominance of
energy consumption structure in Beijing-Tianjin-Hebei region was gradually optimized.

4.2.2. Energy Intensity Effect

The energy intensity effect was an important factor that restricts carbon emissions from energy
consumption in the Beijing-Tianjin-Hebei region. The cumulative energy intensity effect of 1995 to
2014 was 0.3543, and the cumulative contribution rate was 4%. According to the yearly decomposition
results, the energy intensity effect values were generally smaller than 1 from 1995 to 2014, which
indicates that the energy intensity effect mainly inhibited carbon emissions from energy consumption.
The energy intensity decreased from 2.7402 standard coal/million Yuan to 0.9709 standard coal/million
Yuan, this shows that the technological progress and energy efficiency were significantly improved in
Beijing-Tianjin-Hebei region. In other words, the decline of energy intensity denotes that the economy
was developing rapidly in the Beijing-Tianjin-Hebei region, while the ratio of energy consumption
was declining.

4.2.3. Economic Output Effect

The results of yearly decomposition show that economic output was a positive driving effect on
carbon emissions from energy consumption, and it had a great contribution in this region from 1995
to 2014. The cumulative economic output effect of 1995 to 2014 was 5.9105, and the cumulative
contribution rate was 69%, which was much larger than other factors and devotes the greatest
contribution on carbon emission growth. Meanwhile, there were great differences in the extent
of variation and change direction of carbon emissions during the three periods: 2001–2005, 2006–2008,
and 2009–2014. During 2001–2005, the economic output of Beijing-Tianjin-Hebei region was on the
rise, accordingly, the carbon emissions also increased. As a consequence of the arrival of twenty-first
Century, Beijing-Tianjin-Hebei’s economy was in a period of vigorous development environment, thus
the increment of carbon emissions was reasonable. During 2006–2008, the growth rate of economic
output effect was gradually slowing down. On account of the Olympic Games in 2008, China adopted
the energy conservation and other measures to protect the environment, accordingly, the energy
consumption of the Beijing-Tianjin-Hebei region growth was limited. During 2009–2014, the region
was affected by the financial crisis and the government’s policy of industrial structure adjustment, the
economic output effect first rose and then declined.

4.2.4. Population Scale Effect

Population scale effect was another positive factor of carbon emissions in Beijing-Tianjin-Hebei
region. The cumulative economic output effect of 1995 to 2014 was 1.3009, and the cumulative
contribution rate was 15%. On the whole, the annual growth rate was relatively small, merely 1.47%.
From 1995 to 2010, the population scale effect presented a rising trend, however, it began to decline
year by year since 2011. The Beijing-Tianjin-Hebei region belongs to China’s important heavy industry
and energy consumption areas, and the advantages of resources are more concentrated, especially,
as the capital of China, Beijing attracts more and more talented people. Hebei is a province with a
large population in China. The rigid demand for energy consumption contributes to the continuous
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increment of carbon emissions. From the overall development trend, the population scale effect of
Beijing-Tianjin-Hebei region was enhancing year by year.

4.3. The Inspection Results of IPSO-BP Neural Network Model

Using the MATLAB (R2016a, MathWorks, Natick, MA, United States) programming language,
this paper selected the data of carbon emissions from energy consumption in Beijing-Tianjin-Hebei
region during the period of 1994–2009 as training samples, and used the remaining data during the
period of 2010–2014 as testing samples. The aim was to train the IPSO-BP neural network and obtain
the important parameters. The specific inspection results of this model are shown in Figure 4.
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The IPSO-BP neural network can achieve the highest prediction accuracy through many training
times when complying with the following conditions: The maximal algebra of network iteration is
140 times, meanwhile, the error precision and the learning rate are set to 0.0001 and 0.1, respectively.
In the IPSO algorithm, the maximal algebra of iteration was 80 times, the number of population was 50,
and the mutation probability was set to be 0.9; moreover, the search space was limited in [−3, 3], and
velocity of swarm particles was in the interval [−1, 1]. The input indicators of this model were energy
structure, energy intensity, economic output and population size, while the output indicator was carbon
emissions from energy consumption in the Beijing-Tianjin-Hebei region. Under the above conditions,
this paper employed the trained IPSO-BP neural network to predict the carbon emissions from energy
consumption in the Beijing-Tianjin-Hebei region during 2010–2014, and through five training times, it
obtained the average value. The results demonstrate that IPSO-BP neural network could better reflect
the developing trend of carbon emissions during the time slot of 2010–2014. In predictive accuracy,
the annual average relative error of IPSO-BP neural network was 2.53%, and it was believed that this
model is well fitted to conduct the following study.
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4.4. The Results of Scenario Prediction

4.4.1. Scenario Analysis Results for Influencing Factors

According to the decomposition results of carbon emissions from energy consumption in the
Beijing-Tianjin-Hebei region, the main influencing factors were energy structure, energy intensity,
economic output, and population scale. The decomposition results indicated that in the energy
consumption structure, the proportion of coal consumption was the main proportion of energy
consumption. Therefore, this paper employed the proportion of coal consumption instead of energy
structure. The specific scenario prediction results of each influencing factors were as follows.

(1) The Scenario Analysis for Energy Structure

The result shows that the main source of the carbon emissions from energy consumption in
Beijing-Tianjin-Hebei region was coal. Although the proportion of the oil and gas was slightly rising in
recent years, the coal in energy consumption structure still accounted for a large proportion. Therefore,
this paper employed the developing law of the proportion of the coal consumption in 2005–2014 to
set the values in high carbon scenarios, and it could be obtained that the annual decline rate of coal
consumption ratio was 0.86% during the period of 2015–2030 in high carbon scenario. According
to the “energy development strategy action plan (2014–2020)”, China’s coal consumption ratio will
be controlled within 62% by 2020. The national “12th Five-Year plan” clearly stated that non-fossil
energy consumption accounted for 15% of total energy consumption by 2020. It can be obtained that
the annual decline rate of coal consumption ratio was 0.99% in 2015–2030 in basic carbon scenario
through calculation. In accordance with the experience of “China Energy Mid-and Long Term (2030,
2050) Development Strategy Research”, the annual decline rate of coal consumption ratio was 1.99% in
low carbon scenario.

(2) The Scenario Analysis for Energy Intensity

On the basis of the decomposition results, the energy intensity effect was the main factor to
inhibit the carbon emissions from energy consumption in Beijing-Tianjin-Hebei region. To ensure the
objectivity of the high carbon scenario, this paper employed the developing law of energy intensity
in 2005–2014 to set the values in high carbon scenarios, and it was obtained that the annual decline
rate of energy intensity was 3.99%. According to the “2009 China sustainable development strategy
report”, energy intensity will decrease by 40–60% in 2020. As the critical area of energy conserving
and emission reduction, the Beijing-Tianjin-Hebei region is bound to accomplish these objectives.
Therefore, this paper sets the decline rate of 60% as the basic scenario, and the decline rate of 65% as the
low carbon scenario. Therefore, the annual decline rate of energy intensity in 2015–2030 under basic
scenario and low carbon scenario will take the proportion of the value 4.77% and 5.96%, respectively.

(3) The Scenario Prediction for Population Scale

As the consequence of the “two-child policy” implemented widely in China in 2011, the growth
rate of the population in the Beijing-Tianjin-Hebei region is likely to rise in recent years. Thus, this
paper adopts the population development law of the past five years (2010–2014) to set the value of
population scale in high carbon scenario, and it was obtained that the annual growth rate of population
scale was 1.14% in 2015–2030. Based on the requirements of “Beijing 13th Five-Year Plan”, the total
of resident population will reach approximately 1350 million in Beijing by the end of 2020. Similarly,
in accordance with the “Tianjin 13th Five-Year Plan”, the total of residents population in Tianjin will
be controlled within 18 million at the end of 2020. According to the “Hebei provincial population
development strategy review meeting” in 2006, Hebei Province has entered the peak of the fourth
birth population for more than ten years, and the total population will reach the peak around 2024,
which is about 76.29 million. According to the above requirements, the annual population growth
rate of Beijing, Tianjin, and Hebei in basic scenario were respectively designated as 0.98%, 2.67%, and
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0.30% in 2015–2030. In compliance with the “the report on the population development strategy of
Beijing, Tianjin and Hebei”, the total population will continue to maintain a slow growth trend by 2020.
Moreover, restricted by the regional water resources, the Beijing-Tianjin-Hebei region has a reasonable
population capacity of about 110 million. Therefore, in low carbon scenario, the annual population
growth rate of Beijing-Tianjin-Hebei region can be set to 0.60% in 2015–2030.

(4) The Scenario Prediction for Economic Output

According to the results, the per capital GDP of Beijing-Tianjin-Hebei region was 36793.36 Yuan
in 2014. The average annual growth rate of per capital GDP in Beijing-Tianjin-Hebei was 7.31%
from 2010 to 2014. On the basis of the law of economic development in the developed countries,
and accompanied with the rapid economic development, the trend tends of economic growth will
be gentle. Consequently, it is reasonable to set the annual average growth rate in 2015–2020 and
2021–2030 as 7.31% and 6.81% in the high carbon scenario, respectively. In the basic scenario and the
low carbon scenario, this paper firstly set the variation tendency of GDP. Then, the corresponding
per capital GDP was calculated with the given data of population, according to the “Collaborative
Development Planning of Beijing, Tianjin and Hebei Province” and the “13th Five-Year Plan” for the
Beijing, Tianjin and Hebei province, which maintained an annual average growth rate of 6.5%, 8.5%,
and 7% respectively in 2015–2020. In order to set the values of low carbon scenario, this study referred
the scenario prediction for GDP put forward by reference [56], which believed that GDP will reduce by
0.5 percentage points per stage based on the basic scenario.

4.4.2. Scenario Prediction Results

In the light of the analysis and calculation, the specific scenario prediction values of four
influencing factors was obtained during 2015–2030. Then, the well-trained IPSO-BP neural
network model was applied to forecast the carbon emissions from energy consumption in the
Beijing-Tianjin-Hebei region during 2015–2030 under the three different scenarios. Owing to the
variation of the energy structure, energy intensity, economic output, and population scale, the total
carbon emissions from energy consumption and the peak time were different under different scenarios.
As shown in Figure 5, the predicted carbon emissions in high carbon scenario during 2015–2030 were
the highest, followed by the basic scenario and low carbon scenario. In high carbon scenario, the
carbon emissions will peak in 2028, which will be 40,280 million tons. In basic scenario, the carbon
emissions will arrive at a peak around 2025 with 38,892 million tons, which was lower than the high
carbon emissions. In low carbon scenario, the carbon emissions will have a decline stage between 2015
and 2018, with an annual decline rate of 0.38%, and then the carbon emissions will be in the ascending
phase during 2019–2030. Furthermore, the peak of carbon emissions in the basic scenario will be three
years ahead of the high carbon scenario and the peak value will also have a certain degree of reduction,
which can reach 1388 million tons.
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Figure 5. The results of the CO2 emission predicted by IPSO-BP neural network model in the
Beijing-Tianjin-Hebei region at three different scenarios during 2015–2030.

Figure source: Application of the well trained IPSO-BP neural network model to forecast the
carbon emissions from energy consumption in the Beijing-Tianjin-Hebei region during 2015–2030
under three different scenarios, then obtaining the scenario prediction results of IPSO-BP neural
network model.

5. Conclusions

In this study, the GFI model was utilized to delve into the influencing factors of carbon
emissions from primary energy consumption, simultaneously, the IPSO-BP neural network and
scenario prediction were exploited to analyze the carbon emissions from energy consumption in
the Beijing-Tianjin-Hebei region under three scenarios during 2015–2030. The major conclusions are
presented as follows:

(1) Results reveal that energy consumption structure was developing toward benign direction in
Beijing-Tianjin-Hebei region. Considering a strong correlation between the economic growth and
carbon emissions from energy consumption, it is conducive to inhibit the increment of carbon
emissions to some extent by reducing economic growth appropriately.

(2) Over the study period, the effect of four driving factors on carbon emissions were different both
in magnitude and in direction. The factors that drive the growth of carbon emissions from energy
consumption in the Beijing-Tianjin-Hebei region were economic output and population scale, and
the cumulative effect values were 5.9105 and 1.3009. Meanwhile, the contribution rates were 69%
and 15%. On the contrary, the factors that mainly inhibited the carbon emissions were energy
structure and energy intensity. The cumulative effect values were 0.3543 and 0.9813, and the
contribution rates were 4% and 12%, respectively.

(3) The predicted carbon emissions in high carbon scenario during 2015–2030 were the highest,
followed by the basic scenario and low carbon scenarios. In the high carbon scenario, the carbon
emissions will peak in 2028, which will be 40,280 million tons. In basic scenario, the carbon
emissions will peak around 2025. In low carbon scenario, the carbon emissions will have a decline
stage between 2015 and 2018, with an annual decline rate of 0.38%, and then the carbon emissions
will be in the ascending phase during 2019–2030.
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