Adaptive relay selection in cooperative communication based on space time block code

Xiaokui Li*, Wei Jiang

School of Electrical Information Engineering, Henan Institute of Engineering, 451191, Zhengzhou, China

*Corresponding author’s e-mail: xiangdali@163.com

Received 23 October 2013, www.cmnt.lv

Abstract

Wireless cooperative communication technology share resources with each other, can get space diversity gain and improve the system transmission performance, so that in recent years it has received the extensive attention of many scholars in the field of wireless communications. In view of the flat fading channel, adaptive relay node selection and transmission strategy based on space time block code under decode forward mode is put forward and closed expressions of average outage probability and bit error rate are given under the Rayleigh channel. This strategy applies the opportunistic relay scheme in collaborative space-time coding system, which can get diversity gain and coding gain. The experiment results show that the proposed relay transmission scheme has better performance than fixed relay node transmission strategy.

Keywords: adaptive relay selection, cooperative communication, space time block code, outage probability

1 Introduction

Compared with single antenna system, MIMO system can greatly increase the channel capacity, which increases system transmission rate or improves the reliability of transmission [1, 2]. In transmit diversity technique based on space-time coding, the multi-antenna technology, channel coding and modulation technology are combined together to obtain diversity gain and coding gain at the same time [3], which effectively improve the channel capacity of MIMO system. Cooperative system composed of many single antenna nodes is a kind of virtual MIMO system. For virtual MIMO systems, space-time coding is dispersed in each single antenna node to simulate the multi-antenna transmitter, so that the distributed space-time coding (DSTC) collaboration system is formed. Orthogonal space-time block code (OSTBC) is a kind of coding design theory which introduces into orthogonal matrix. Due to the relatively simple decoding algorithm and good performance, it has been taken as WCDMA standard of 3GPP officially. At present most of the research on collaborative DSTC system is based on the OSTBC.

Laneman firstly put forward the concept of DSTC collaboration system [3] and proved that the proposed DSTC collaboration system can achieve full diversity gain from the viewpoint of information theory, but a specific implementation plan was not given. Performance of distributed space-time coding systems with one and two non-regenerative relays was analyzed by Anghel [4]. Distributed space-time cooperative system with regenerative relays was also given by Anghel [5]. Performance of distributed space time block codes was analyzed by Dohler M [6]. Distributed space time coding for regenerative relay networks was proposed by Scutari G [7]. Performance limits and space time signal design under fading relay channels was given by Nabar [8]. Distributed space time block coding with imperfect channel estimation was proposed by Cheng [9]. Cooperative space time block coding with amplify-and-forward strategy was proposed by He J [10], which gave exact bit error probability and adaptive forward schemes. Randomized space time block coding with limited feedback was proposed by He X [11]. An energy-efficient adaptive cooperative node selection scheme in WSN was proposed by Zhang Y [12]. The joint relay selection with power allocation for outage-optimization in OFDM-based cooperative relaying was given by Wang [13]. Selective relaying in OFDM multihop cooperative networks was proposed by Dai L [14]. Partner assignment algorithm for cooperative diversity in mobile communication systems was proposed by Jung Y S [15]. Energy efficient cooperative communication based on power control and selective single-relay in wireless sensor networks was proposed by Zhou Z [16]. BER performance analysis and optimum power allocation for a cooperative diversity system based on quadrature signalling was proposed by Li J [17]. Distributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game was proposed by Wang B [18]. Game theory for cooperative and relay communications in mobile Ad-Hoc networks was proposed by Lu Y [19]. An experimental framework for the evaluation of cooperative diversity was proposed by G. Bradford [20]. Single and multiple relay selection schemes and their achievable diversity orders were proposed by J. Yindi, which performs much better than the corresponding single relay selection methods and is very close to the SNR-optimal multiple relay selection scheme [21]. In the next section, principle of space time block code is investigated. In Section 3, cooperative communication based on space-time block code is investigated. In section 4, simulation and analysis of adaptive relay selection based on space time block code is given. Finally, some conclusions are given in section 5.
2 Principle of space time block code

Space-time block code system block diagram is shown in figure 1. In this system, there are two transmitting antennas. Supposing that antenna 0 transmits symbol \(s_0 \) and antenna 1 transmits symbol \(s_1 \). In the next symbol cycle, antenna 0 transmits symbol \(-s_1^*\) and antenna 1 transmits symbol \(s_0^*\). The coding matrix is \(S = \begin{bmatrix} s_0 & -s_1^* \\ s_1 & s_0^* \end{bmatrix} \).

* represents conjugate. \(s^0 \) and \(s^* \) represent transmitting sequence of antenna 0 and antenna 1 respectively.

\[
S \cdot S^H = \begin{bmatrix} |s_0|^2 + |s_1|^2 & 0 \\ 0 & |s_0|^2 + |s_1|^2 \end{bmatrix} = (|s_0|^2 + |s_1|^2)I_2
\]

The transmitting sequences at two antennas are orthogonal. The signal detection of space time block code is as follows. Supposing there is \(N \) number of receiving antennas. \(h_{ij} (j = 0,1, \ldots ,N,i = 0,1) \) represents channel fading coefficients from transmitting antenna 0 and antenna 1 to receiving antenna. The channel fading coefficients are constant in two consecutive transmitting antennas. Receiving signal of the \(j \)-th antenna at time \(t \) and time \(t+T \) is described as \(r^j_t \) and \(r^j_{t+T} \) respectively.

\[
r^j_t = h_{ij} s_j + h_{ij} s_j^* + n^j_t
\]

\(n^j_t \) and \(n^j_{t+T} \) are independent complex variables with 0 as its mean value and \(\delta^2 \) as a variance. If the receiver can recover channel fading coefficients \(h_{ij} \) and \(h_{ij}^* \), the two determination results are \(\hat{s}_j \) and \(\hat{s}_j^* \).

\[
\hat{s}_j = \arg \min \left\{ \sum_{j=0}^{N-1} \left(|h_j|^2 + |h_j|^2 -1 \right) (\hat{s}_j) + d^2(\hat{s}_j, s_j) \right\}
\]

\[
\hat{s}_j^* = \arg \min \left\{ \sum_{j=0}^{N-1} \left(|h_j|^2 + |h_j|^2 -1 \right) (\hat{s}_j^*) + d^2(\hat{s}_j^*, s_j^*) \right\}
\]

3 Cooperative communication based on space-time block code

The system is made up of one source node \(S \), one destination node \(D \) and \(M \) number of relay nodes. All the relay nodes are in the same cluster. The distance between all relay nodes and source node are the same. The distance between all relay nodes and destination node are also the same. The maximum transmitting power of each node is \(P \) and each node cannot transmit and receive information at the same time. The channel between any two nodes is flat Rayleigh fading channel and the channel state is constant in one frame time and it varies in different frames. \(H_{\alpha} \) represents channel gain from source node \(S \) to relay node \(R_i \) and \(H_{0i} \) represents channel gain from \(R_i \) to destination node \(D \). \(\alpha \) is independent variables, the mean value of which are \(d_{SR}^2 \) and \(d_{RD}^2 \) respectively. \(d_{SR} \) represents the distance between source node and relay node and \(d_{RD} \) represents the distance between relay node and destination node. \(\alpha \) represents path loss coefficient.

The decode-forward protocol based on space time block code is shown in figure 2. It is supposed the system adopts TDMA cooperation mode and one.

Complete cooperation transmission is made up of two stages. In the first stage, the source node transmits information symbol \(x_0 \) and \(x_1 \) in two consecutive symbol cycles. At the same time, all the relay nodes listen to the channel.

<table>
<thead>
<tr>
<th>(S)</th>
<th>(x_0)</th>
<th>(x_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_j)</td>
<td>(-x_j^*)</td>
<td>(x_j)</td>
</tr>
</tbody>
</table>

In the second stage, relay node \(R_j \) sends \(-x_j^*\) and \(x_j \) to the destination node in two consecutive symbol cycles. \(R_j \) sends \(x_j^* \) and \(x_j \) to the destination node in two consecutive symbol cycles. The transmitted symbol has unit energy and BPSK modulation is used. In the first stage, the receiving SNR of relay node \(R_i \) is set as: \(\gamma_u = \frac{H_{SR} P_{tx}}{N_0} \).

In the second stage, the destination node receives the signal by ML detection and receive SNR of destination node is expressed as: \(\gamma_d = \frac{P(H_{0d} + H_{do})}{N_0} \).

The SNR of destination node determines the performance of the system. In the decode-forward transmission with CRC, any relay node can not decode received information correctly every time. If there is no node to decode the
received information, the current transmission fails. If there is only one relay node to decode the received information, the relay node sends the received information to destination node again. If there are two or more than two relay nodes correctly decoding the received information, the two relay nodes are selected, which has the biggest SNR from relay node to the destination node.

The target value of system capacity is \(R \). When channel capacity between sending and receiving nodes is more than \(R \), no interruption occurs, meaning that the receiving node can correctly decode the received information, otherwise the interrupt occurs. For the Rayleigh fading channel, probability distribution function of receiving SNR of the source node to the arbitrary relay node and arbitrary relay node to the destination node, respectively obey the negative exponential distribution with mean value \(\gamma_{sr} = \frac{P}{d_{sr}^2 N_0} \) and negative exponential distribution with mean value \(\gamma_{rd} = \frac{P}{d_{rd}^2 N_0} \).

For the arbitrary relay node \(R_i \), outage probability is defined as

\[
P_{ro} = \Pr \left(\frac{1}{2} \log_2 (1 + \gamma_{ri}) < R \right) = 1 - \exp \left(-\frac{2^{2R} - 1}{\gamma_{sr}} \right).
\]

Probability of \(L \) number of relay nodes correctly decoding received information is:

\[
P_{ro}^L = \left(\frac{M}{L} \right) (1 - P_{ro})^{L - 1} \left(P_{ro} \right)^{M - L}, \ (0 \leq L \leq M).
\]

Because \(\lim_{t \to 0} (1 - \exp(-t)) = x \), when SNR of relay node is large enough, \(P_{ro} \) is expressed as:

\[
P_{ro}^L = \left(\frac{M}{L} \right) \left(\frac{2^{2R} - 1}{\gamma_{sr}} \right)^{M - L}.
\]

\[
P_{do}^{L-i} = 1 - \exp \left(-\frac{2^{2R} - 1}{\gamma_{rd}} \right).
\]

When \(L \geq 2 \), \(R_i \) and \(R_j \) with the largest \(\gamma_{ri} \) and \(\gamma_{rd} \) are selected. The joint probability distribution function is

\[
P_{ro}^{2} (\gamma_{ri}, \gamma_{rd}) = L(L-1)(P_{ro}(\gamma_{ri}))^{L-2} p_d(\gamma_{rd}) p_d(\gamma_{rd}) = L(L-1) \sum_{k=0}^{L-2} \left(\frac{L-2}{k} \right) \left(1 - \frac{k+1}{\gamma_{rd}} \right) \left(1 - \frac{1}{\gamma_{rd}} \right).
\]

\[
\gamma_{rd} < \gamma_{ri} \cdot p_d \text{ represents probability distribution function and } P_{do} \text{ represents CDF. The outage probability of destination node is}
\]

\[
P_{do}^{L-i} = \Pr \left\{ \frac{1}{2} \log_2 (1 + \gamma_{ri} + \gamma_{rd}) < R \right\}.
\]

\[
P_{o} = P_{ro}^{L-i} + \sum_{i=0}^{M} P_{do}^{L-i} P_{ro}^{i} \cdot P_{o} < P_{ro}^{0} + \sum_{i=1}^{M} P_{ro}^{i} P_{do}^{L-i}.
\]

In the decode-forward protocol using cyclic redundancy check, each relay node can determine whether received information is right. For BPSK signal, bit error rate of an arbitrary relay node \(R_i \) is:

\[
P_{re} = \frac{1}{\pi} \int_{0}^{\pi/2} \exp \left(-\frac{\gamma_{ri}}{\sin^2 \theta} \right) d\theta.
\]

For convenience, considering the transmission of fixed frame length, and each frame contains \(K \) number of symbols. In the first phase of the information transmission, a relay node only correctly decodes \(K \) number of symbols sent by source nodes, the frame is received correctly. Then average error frame rate of relay node is:

\[
P_{re} = 1 - \int_{0}^{\pi/2} (1 - P_{re})^K p_{sr}(\gamma_{ri}) d\gamma_{ri}.
\]

Because \(P_{sr}(\gamma_{ri}) \) represents the probability of distribution function for \(\gamma_{ri} \). When a frame received by relay node is decoded correctly, the relay node becomes active node, then probability of \(L(0 \leq L \leq M) \) number of relay nodes becoming the active nodes is:

\[
P_{re}^{K} = \left(\frac{M}{L} \right) p_{re}^{K} (1 - P_{re})^L.
\]

When \(L = 1 \), there is only one relay node correctly decoding received packets and for BPSK modulation signal under Rayleigh fading channel, the average BER is given for destination node.
\[P_{\text{BER}}^{(L)} = \frac{1}{2} \left(1 - \frac{\gamma_{\text{RD}}}{\sqrt{\gamma_{\text{RD}} + 1}} \right) \]

When \(L \geq 2 \), the selected cooperation relay nodes are \(R \) and \(R' \), bit error rate of destination node is:

\[P_{\text{BER}}^{(L+2)} = \frac{1}{\pi} \int_0^{\pi/2} \int_0^{\pi/2} \exp \left(-\frac{\gamma_{\text{RD}}}{\sin^2 \theta} \right) p(\gamma_{\text{ID}}, \gamma_{\text{ID}'}) d\gamma_{\text{ID}} d\gamma_{\text{ID}'} d\theta. \]

\[P_{\text{BER}}^{(L+2)} = \frac{L(L-1)}{\pi} \sum_{k=0}^{L-2} \left(\frac{1}{k+2} \frac{(-1)^k}{2k} \right) \frac{B \left(\frac{5}{2}, \frac{1}{2} \right) F \left(\frac{5}{2}, \frac{3}{2} \frac{1}{\gamma_{\text{RD}} + 1} \right)}{\gamma_{\text{RD}}} \]

\[B(\cdot, \cdot) \] Represents Beta function and \(F(\cdot) \) represents hyper-geometric function. The bit error rate can be expressed as: \(P_{\text{BER}} = P_{aw}^{(L)} + \sum_{l=1}^{M} P_{aw}^{(l)} P_{\text{BER}}^{(l)}. \)

4 Simulation and analysis

Monte Carlo simulation is used to verify the performance of adaptive relay node selection and transmission strategy based on space-time block code. Flat Rayleigh fading channel is used in the simulation and distance between source node and destination node is unit distance. \(d_{GR} = 0.5 \), \(d_{GD} = 0.5 \), \(\alpha = 2 \), \(N_0 = 1 \). Figure 3 shows outage probability. Fixed relay means outage probability of fixed relay transmission strategy. The green line represents outage probability of adaptive relay selection when the number of relay nodes is 4 and the red line represents outage probability when the number of relay nodes is 5. Outage probability of adaptive relay selection is represented by m6 when the number of relay nodes is 6.

It can be seen that outage probability of the proposed space time block code decreases with the increment of relay nodes. Outage probability of proposed scheme is smaller than outage probability of fixed relay transmission scheme. Figure 4 shows bit error performance. It can be seen that bit error performance of the proposed relay transmission scheme decreases with the increment of relay nodes. Bit error rate of proposed scheme is smaller than bit error rate of fixed relay transmission scheme. Relation between bit error rate and frame length is shown in figure 5 when the number of relay nodes is 5. K40 means the frame length is 40 bits, k60 means the frame length is 60 bits and k80 means the frame length is 80 bits. It can be seen that bit error rate increases with the increment of K and K does not influence the diversity gain of the system. When K is 20, it can save 1.5dB SNR compared with K=60. In the actual system, suitable frame length should be selected to get better bit error rate performance.

5 Conclusions

Under flat fading channel environment, cooperative space time block code transmission problem is investigated. In order to get high diversity gain and coding gain, adaptive relay node transmission scheme is put forward and system average outage probability and bit error rate expression is given. Only two relay nodes participate in cooperative transmission, which is conducive to the realization of the actual system.

References

European Transactions of Telecommunications 10(6) 555-95

Authors

Xiaokui Li, 12/03/1983, Jiaozuo, Henan, China

Current position, grades: university teacher, lecturer
University studies: Signal and Information Processing
Scientific interest: Communication Engineering, Applied Electronic Technology
Publications: The Design and Realization of Wireless Point Of Sale Terminal
Experience: 2006-2009 Studying in Zhengzhou University; 2009-... Working in Henan Institute of Engineering

Wei Jiang, 13/01/1976, Yongcheng, Henan, China

Current position, grades: university teacher, lecturer
University studies: Electronics and Communication Engineering
Scientific interest: Communication Engineering
Publications: An Improved PAPR Suppression Algorithm based on Channel Coding in OFDM System research on wave impedance model of transmission line tower
Experience: 1997-2001 Studying in Henan University; 2001-... Working in Henan Institute of Engineering