
Toward Automated Cache Partitioning for the K Computer

Swann Perarnau, Mitsuhisa Sato

RIKEN AICS, Programming Environment Research Team
University of Tsukuba

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 1 / 34



Introduction

The Memory Wall

One access to RAM costs 100 times more than a register access.
→ cache/locality optimization.

Two classes of methods to improve locality
Oblivious algorithms.
Data reorganisation

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 2 / 34



Introduction

Cache Partitioning

Principle
Split the cache and distribute application data among partitions.

Advantages
Isolate thrashing accesses from useful data.
Favor data fitting in cache against others.

On the K Computer
Sector cache: instruction-based, only 2 sectors.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 3 / 34



Introduction

Our Work

Issues
The sector cache is hard to use :

Very low level API.
Requires good knowledge of code locality.
Finding the best partitioning is not obvious.

Our goal
Provide an automated framework to analyze and optimize an application
for the sector cache.

Locality analysis by binary instrumentation.
Automated Optimization discovery.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 4 / 34



Introduction

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 5 / 34



Cache partitioning on the SPARC64 VIIIfx

The K architecture

Computing Node
1 CPU: SPARC64VIIIfx.
8 cores.
16 GB memory.
L2 shared cache.

Cache
6 MB.
12-way associative.
128 bytes line size.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 6 / 34



Cache partitioning on the SPARC64 VIIIfx

Sector Cache

Hardware Cache Partitioning
The cache can be split in two sectors.
Accesses to one sector cannot evict memory from the other.
Special instructions sxar1,sxar2 to configure/use it.

How it works
Sectors are a split of each associative set of the cache.
→ 11 available sizes.

Operation
1 Specify size of each sector
2 Use instruction to tag a load into one sector.
3 Hardware keeps track of the sizes of each sector.
4 If space is needed, eviction is an LRU inside a sector.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 7 / 34



Cache partitioning on the SPARC64 VIIIfx

Instruction Level

Instruction :

load 0x10
sxar 1
load 0x20
load 0x30
sxar2 1 1
load 0x10
load 0x20
load 0x10

Sector :

s0

s1
s0

s1
s1
s0

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 8 / 34



Cache partitioning on the SPARC64 VIIIfx

User API

Compiler Hints
Over a code region, tag an array to be in sector 1.

double myarray[NSIZE];
double otherarray[NSIZE];

void mywork(void)
{

int i;
double sum = 0;

#pragma statement cache_sector_size 1 11
#pragma statement cache_subsector_assign myarray

for(i = 2; i < NSIZE-2; i++)
{

// myarray in sector 1
sum += myarray[i-2] + myarray[i-1] +

myarray[i] + myarray[i+1] +
myarray[i+2] + otherarray[i];

}
}

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 9 / 34



Cache partitioning on the SPARC64 VIIIfx

Difficulties
Optimization must be decided at compile time.
No automatic detection of optimization points.
No automatic optimizations.
Impact of sector cache configuration on performance not obvious.

Our goal
Build an automated framework to:

Detect cache performance hotspots.
Analyze structures locality on these hotspots.
Insert API calls to optimize the application.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 10 / 34



Automated Analysis and Optimization

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 11 / 34



Automated Analysis and Optimization

Overview

Hotspot
detection

Structures/Scope
setup

DWARF reader

Binary
instrumentation

Locality analysis

Code mod-
ification

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 12 / 34



Automated Analysis and Optimization

Overview

DWARF reader
Builds table containing structure location in memory.

Binary instrumentation
Trace memory accesses to each identified structure.

Locality analysis
Use memory trace to predict cache performance of sector configuration.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 13 / 34



Automated Analysis and Optimization Data Structure Localization

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 14 / 34



Automated Analysis and Optimization Data Structure Localization

This Step

Principle
Use debugging information to discover each data structure location.

Operation
User provide a structure name and scope.
Tool reads DWARF debugging information.
Location of structure is saved for future use.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 15 / 34



Automated Analysis and Optimization Data Structure Localization

Structure identification

User information
Data structure name.
Scope: enclosing function or compilation unit.

Limitations
Only works for types supported by the sector cache API (arrays).

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 16 / 34



Automated Analysis and Optimization Data Structure Localization

Debugging Information

DWARF
Standard debugging information format for Linux.
Organised as a tree of all symbols inside the application.

Finding a structure location
DWARF contains beginning address and location expression.
Location expression is a stack automata using machine registers.
→ Save expression to use at runtime.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 17 / 34



Automated Analysis and Optimization Binary Instrumentation

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 18 / 34



Automated Analysis and Optimization Binary Instrumentation

Purpose

Goal
Understand what happens if we push a specific structure into sector 1.

How ?
Use one instrumented run to measure the locality of each data structure.

What to measure ?
Special version of reuse distance for a set of memory accesses.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 19 / 34



Automated Analysis and Optimization Binary Instrumentation

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en
si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 20 / 34



Automated Analysis and Optimization Binary Instrumentation

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en
si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 20 / 34



Automated Analysis and Optimization Binary Instrumentation

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en
si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 20 / 34



Automated Analysis and Optimization Binary Instrumentation

Reuse Distance

Definition
For a memory access : number of unique memory locations touched after
the previous access to the same location.

Access :

load 0x10
load 0x20
load 0x30
load 0x10
load 0x20
load 0x10
load 0x30

Distance :

∞
∞
∞
2
2
1
2

D
en
si
ty

Distance

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 20 / 34



Automated Analysis and Optimization Binary Instrumentation

Our implementation

Binary instrumentation with Pin
Execute a specific code every time a memory access instruction is executed.
Only works on x86/amd64: analysis done outside of the K Computer.

Instrumentation Scope
We limit the instrumentation to either a function scope or a range of
source code lines.
→ improves the speed of the instrumented run.

Reuse Algorithm
Fastest sequential one.
Could be parallelized for better performance.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 21 / 34



Automated Analysis and Optimization Binary Instrumentation

Tracing algorithm

For each traced structure
Measure its locality if alone.
→ reuse histogram of accesses to its addresses.
Measure impact of the sector cache on other accesses.
→ second reuse histogram for all other addresses.

Reuse distance computation
A hash map from address to timestamp.
A balanced binary tree ordered by timestamp, saving addresses.
Each node of the tree maintain a count of its left and right children.

Optimizations
Consider two addresses in the same cache line as the same location.
Only maintain information for the amount of addresses the cache can
contain.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 22 / 34



Automated Analysis and Optimization Locality Analysis

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 23 / 34



Automated Analysis and Optimization Locality Analysis

Principle

Approximate cache requirements using the reuse distance histogram.

Operation
1 For each structure:
2 For each sector cache configuration:
3 Compute cache misses triggered by structure isolation.
4 Find best configuration among all.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 24 / 34



Automated Analysis and Optimization Locality Analysis

Cache model

Assume a fully associative cache, perfect LRU.

Reuse distance is the number of unique locations the program accessed
between two accesses to the same location.
→ corresponds to the number of cache lines fetched from memory.
→ if more lines are fetched that the cache size, a cache miss is triggered.

For the sector cache
Modeled as two caches of specific sizes.
Only accesses inside a sector matter to predict cache misses.

For each structure
Isolated reuse histogram gives approximation of sector 1 cache misses.
Other histogram gives cache misses in sector 0.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 25 / 34



First results

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 26 / 34



First results

Experimental setup

Validation
Analyze and optimize toy application.

A single memory access pattern.
Known locality requirements.
→ Validate analysis.
Test all possible optimizations.
→ Validate optimization.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 27 / 34



First results

Multigrid Stencil

Stencil
Sum of 9 points over 3 matrices,
written to a fourth one.
M1 4 times smaller than M2.
M2 4 times smaller than M3.
Mr is the same size as M3.

Cache Requirements
Each matrix requires only 5 of its
lines in cache.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 28 / 34



First results

Reuse Distances

14K 28K 56K ∞

0

5 · 106

1 · 107

Distance (Num of unique cache lines touched)

C
ou

nt
M1
M2
M3

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 29 / 34



First results

Optimization

Tool’s analysis
Our model gives us an optimal setup with M2 in sector 1 of size 7.

Version Stencil Miss Rate (%) Reduction (%)
Unoptimized 2.10 -

M2(5, 7) 1.68 20

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 30 / 34



First results

Full search results

1 2 3 4 5 6 7 8 9 10 11

0

5

10

15

20

25

Sector Size

C
ac
he

M
is
se
s
R
ed
uc
tio

n
(%

) M1
M2
M3

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 31 / 34



Conclusion

Outline

1 Introduction

2 Cache partitioning on the SPARC64 VIIIfx

3 Automated Analysis and Optimization
Data Structure Localization
Binary Instrumentation
Locality Analysis

4 First results

5 Conclusion

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 32 / 34



Conclusion

Summary

Analysing a data structure
Discover its location in virtual memory.
Trace memory access to it during a run.
Predict its cache behavior.

Optimizing a code
Limit analysis to a specific code region.
Find a good sector cache configuration for the region.

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 33 / 34



Conclusion

Future Work

Toward automation
Hotspot detection.
Source code analysis.
Code transformation.

Using the framework

Optimize HPC benchmarks (NAS NPB, Spec).
Optimize real applications.

Better optimizations
Multiple structures in sector 1 at the same time.
Detect specific locality patterns (streaming).

Perarnau/Sato (RIKEN AICS/Tsukuba) Automated Sector Cache Okinawa 34 / 34


	Introduction
	Cache partitioning on the SPARC64 VIIIfx
	Automated Analysis and Optimization
	Data Structure Localization
	Binary Instrumentation
	Locality Analysis

	First results
	Conclusion

