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Abstract
Increased cellular degradation by autophagy is a feature of many interventions that delay
ageing.We report here that increased autophagy is necessary for reduced insulin-like sig-
nalling (IIS) to extend lifespan in Drosophila and is sufficient on its own to increase lifespan.
We first established that the well-characterised lifespan extension associated with deletion
of the insulin receptor substrate chicowas completely abrogated by downregulation of the
essential autophagy gene Atg5. We next directly induced autophagy by over-expressing the
major autophagy kinase Atg1 and found that a mild increase in autophagy extended life-
span. Interestingly, strong Atg1 up-regulation was detrimental to lifespan. Transcriptomic
andmetabolomic approaches identified specific signatures mediated by varying levels of
autophagy in flies. Transcriptional upregulation of mitochondrial-related genes was the sig-
nature most specifically associated with mild Atg1 upregulation and extended lifespan,
whereas short-lived flies, possessing strong Atg1 overexpression, showed reducedmito-
chondrial metabolism and up-regulated immune system pathways. Increased proteasomal
activity and reduced triacylglycerol levels were features shared by both moderate and high
Atg1 overexpression conditions. These contrasting effects of autophagy on ageing and dif-
ferential metabolic profiles highlight the importance of fine-tuning autophagy levels to
achieve optimal healthspan and disease prevention.
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Author summary
The increasing number of people living with age-related diseases underscores the impor-

tance of ageing research to improve healthspan. Two well-studied evolutionary conserved

interventions that extend lifespan and improve health are dietary restriction and down-

regulation of nutrient sensing pathways, such as glucose sensing by insulin and amino

acid sensing by the target-of-rapamycin signalling pathway. One common characteristic

of these anti-ageing interventions is an increase in autophagy, a cellular pathway that

degrades damaged proteins and organelles to supply essential building blocks and energy.

To help provide a more direct link between autophagy and healthy ageing, we fine-tuned

overexpression of Atg1 kinase, which is critical for autophagy induction, and measured its

effect on longevity in the fruit fly Drosophila. Interestingly, we observed that a moderate

increase in autophagy is beneficial in extending healthy lifespan, whereas strong autop-

hagy up-regulation is detrimental and leads to progressive lipid loss and decreased life-

span. Moderate and stronger Atg1 overexpression displayed opposing transcriptional

profiles of mitochondrial genes, being upregulated in long-lived and down-regulated in

short-lived Atg1 over-expressing animals. Overall, we provide a detailed description of the

phenotypes associated with varying degrees of autophagy up-regulation in vivo, demon-

strating that autophagy enhancement delays ageing only when applied in moderation.

Introduction
Ageing is a complex process [1], yet environmental interventions, such as dietary restriction,

and genetic alterations that lower insulin and target-of-rapamycin (TOR) signalling, can

improve health and extend lifespan in diverse animals [2, 3]. This evolutionary conservation

suggests that a better understanding of the ageing process in model organisms can be trans-

lated into health benefits in humans. Several mechanisms have been proposed to account for

the increased longevity associated with decreased nutrient-sensing signalling, including

improved cellular stress responses, elevated levels of repair processes, and alterations in metab-

olism, mitochondrial physiology and immune responses. However, the optimal target(s) for

improving health and preventing disease are still unclear [1]. Interestingly, most of these can-

didate processes can be modified by macro-autophagy (hereafter referred to as autophagy).

This is a cellular ‘self-eating’ process that degrades cellular proteins and defective organelles

such as mitochondria [4–7]. Moreover, up-regulation of autophagy is a shared feature of a

number of major anti-ageing interventions and lifespan-extending drugs, such as spermidine

and rapamycin [6, 8–10]. The role of autophagy as a crucial player in the ageing process is fur-

ther suggested by the observation that lifespan extension in C. elegans, either by dietary restric-

tion or by down-regulation of insulin or TOR signalling, is blocked by inhibiting autophagy

[9, 11–13].

Autophagy operates at basal levels in all cells to maintain cellular homeostasis and is further

induced by stress, such as starvation stress or a lack of growth factors. During autophagy, the

activated Atg1 kinase initiates the formation of a pre-autophagosomal structure, which then

requires the ubiquitin-activating E1-like enzyme Atg7 to catalyse the conjugation of Atg12 to

Atg5, and of Atg8 to phosphatidylethanolamine (PE). This then leads to the formation of an

autophagosome, which fuses with a lysosome to degrade its cargo, consisting of proteins,

DNA, lipids, glycogen, organelles such as mitochondria, ribosomes, or even entire bacteria [5,

7]. Thus autophagy, by recycling and reorganising the cellular components, is essential for cel-

lular homeostasis and thereby influences all major cellular processes.
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In the context of ageing, it is postulated that a decline in autophagy with age may contribute

to the ageing process, with a reduction in the ability to clear cellular damage and defective

organelles. Indeed, autophagy may have anti-ageing effects via the elimination of dysfunctional

mitochondria, whose malfunction may contribute to the ageing process [14–16]. Additional

evidence linking autophagy and ageing comes from the observation that the worm orthologue

of the transcription factor EB (TFEB), HLH-30, regulates autophagy in C. elegans, leading to

lifespan extension [17].

Although there are considerable indications that modulating autophagy may have anti-age-

ing effects, direct evidence showing that genetic up-regulation of autophagy extends lifespan is

scarce. So far it has been shown that ubiquitous over-expression of Atg5 in mice [18] and neu-

ronal over-expression of Atg8 [19] and Atg1 [20] in flies extends lifespan. In addition, mutant

mice exhibiting up-regulation of the autophagy regulator Becn1, through disruption of its

interaction with its negative regulator BCL2, display increased longevity [7].

Here we tested whether increasing autophagy in a tissue-specific manner in Drosophila can

extend lifespan. We demonstrate that mild over-expression of Atg1 in the fat body, intestine

and Malpighian tubules induces autophagy and extends lifespan in Drosophila. These long-

lived flies are lean and sensitive to starvation. They also display up-regulation of genes in mito-

chondrial-related GO categories, including oxidative phosphorylation. This suggests that

increased mitochondrial metabolism may contribute to their longevity. In contrast, we also

demonstrate that strong Atg1 overexpression is detrimental, resulting in a rapid decrease of

lipid energy stores and shortened lifespan. These short-lived Atg1 over-expressing flies show

increased inflammation, inferred from the up-regulation of several anti-microbial peptides

and localization of hemocytes to the intestine. The metabolism of these short-lived flies is

severely perturbed in association with the down-regulation of mitochondrial–associated gene

expression.

In conclusion, we demonstrate that mild autophagy induction can extend lifespan, and is

associated with an alteration in mitochondrial metabolism. However, strong Atg1 up-regula-

tion in the same tissues is detrimental to the organism, leading to depletion of energy reserves

and impaired tissue homeostasis. These contrasting effects highlight the importance of fine-

tuning the levels of autophagy during ageing to optimise health benefits.

Results
Autophagy is essential for the lifespan extension of insulin signalling
mutant flies
One of the most robust and well examined anti-ageing interventions is down-regulation of

insulin signalling [1]. We examined whether increased autophagy was required for the longev-

ity of insulin receptor substrate (IRS) mutant flies. To do this we used flies homozygous for

chico1, a null mutation in the gene encoding the single Drosophila IRS homologue, and a well-

established long-lived insulin pathway mutant [21, 22]. We first confirmed the longevity of

chico1 null flies under our conditions, and also that their lifespan and that of wild-type controls

was not affected by treatment with RU (RU486/Mifepristone), the agent used to induce the

Drosophila GeneSwitch system (Fig 1A) [23]. To test whether enhanced autophagy is required

for the longevity of chico1 null flies, we employed RNAi against Atg5, which is an essential

gene for autophagosome formation [5]. We over-expressed the UAS-Atg5RNAi construct

ubiquitously in adult flies using the RU-inducible actin-GeneSwitch (actGS) driver, in order to

circumvent any confounding effects of autophagy inhibition during fly development. This led

to transcriptional down-regulation of Atg5 by 37% in chico1 null flies, as determined by quanti-

tative qRT-PCR (S1A Fig). We measured the autophagy status in chico1 null flies by
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Fig 1. Longevity of chico1 null mutants is abolished upon autophagy down-regulation. (A) chico1 null mutants are long-lived relative to their +/+ wild-type controls

(p<0.0001, log-rank test comparing genotypes on–RU and +RU). The presence of RU did not affect the lifespan of the chico1 null and +/+ controls (p = 0.88 and

p = 0.07 respectively, log-rank test comparing ±RU for each genotype). (B) Western blot images and quantification for p62, Atg8a-I and Atg8a-II in control flies, long-

lived chico1 null mutants and chico1 null mutants with autophagy down-regulated by ubiquitous inducible atg5-RNAi overexpression. A representative Western blot of

Atg8a-I (upper band) and Atg8a-II (lower band) levels, with GAPDH as a loading control. Levels of p62 were significantly increased upon down-regulation of

autophagy in chico1/chico1 actGS> UAS-atg5RNAi flies relative to the non-induced condition, chico1 null mutants, and +/+ controls (p = 0.018, p = 0.0006, p = 0.0006;

Student’s t-test). Data are means ±SEM of n = 8 replicates. n.s. p>0.05; � p<0.05; ��� p<0.001. Each lane is a different biological replicate that was probed for p62,

GAPDH and Atg8a. We observed that p62 was variable between different samples while in the same samples Atg8a-I consistently increased upon partial reduction of

Atg5 mRNA. Atg8a-I was significantly higher upon down-regulation of autophagy in chico1/chico1 actGS> UAS-atg5RNAi flies (p = 0.006; Student’s t-test; RU versus

non-RU and p = 1.8x10-5 for comparison with chico1 null mutant; n = 8). Atg8a-II levels also increased in chico1/chico1 actGS> UAS-atg5RNAi flies compared to chico1

null mutants (RU condition comparison; p = 0.001; Student’s t-test; n = 8). (C) Survival of +/+ controls, chico1/chico1, and chico1/chico1 actGS> UAS-atg5RNAi on

standard food (–RU). Both chico1/chico1 mutants (±RU) were longer-lived than their +/+ controls (p<0.0001, log-rank test), but not significantly different from each
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quantifying levels of the Atg8 and p62 proteins. Atg8 exists in two forms: phosphatidylethanol-

amine (PE)-modified Atg8a-II, which associates with autophagosomal membranes and posi-

tively correlates with the autophagy process, and the unlipidated Atg8a-I, which corresponds

to the soluble cytosolic pool. The p62 protein is an autophagy receptor that is degraded by

autophagy, hence it negatively correlates with autophagy, and is a commonly used marker for

autophagic flux. In chico1 null flies p62 levels remained unchanged compared to controls,

which indicates that their autophagy flux is unaltered, despite lower levels of both Atg8a-I and

Atg8a-II levels (Fig 1B). This was unexpected, and we hypothesise that in healthy long-lived

chico1 null animals there might be a lower requirement for autophagy, or perhaps there are

spatiotemporal differences in autophagy that we failed to capture in our experimental

approach. Alternatively, the lack of change in p62 protein levels in chico1 mutants can also be

due to transcriptional upregulation compensating for increased protein turnover, as has been

observed previously during starvation in mammalian cell culture experiments [24]. In support

of this, previous transcriptomic studies have observed p62 upregulation in long-lived chico1

flies [25]. Subsequent western blot analyses confirmed efficacy of the Atg5 RNAi line in reduc-

ing autophagy levels, as shown by increased Atg8a-I and p62 levels in both chico1/chico1

actGS>UAS-atg5RNAi double mutants (Fig 1B) and flies ubiquitously expressing RNAi

against Atg5 (S1B Fig). Lack of down-regulation of Atg8a-II upon Atg5 downregulation is

likely due to its incomplete knockdown (S1A Fig).

Interestingly, the lifespan extension of the chico1 null mutants was completely abolished by

down-regulation of autophagy using the Atg5 RNAi construct (Fig 1C and 1D). Using a further

RNAi construct directed against Atg12, we observed a similar tendency to reduce chico1 null

longevity, although the effects were not significant (S1C–S1F Fig). In wild type flies, reducing

autophagy by actGS>UAS-atg5RNAi did not alter longevity (S1G Fig). This is in agreement

with previous studies in flies showing that only in the presence of bacterial infection does

autophagy reduction decrease lifespan [26].

In conclusion, consistent with several studies in worms [9, 11, 27], we show that autophagy

is required for the lifespan extension of an insulin signalling mutant in Drosophila, highlight-

ing the importance of autophagy as a longevity assurance mechanism. To further investigate

the role of autophagy in ageing we next upregulated this process directly.

Moderate over-expression of Atg1 in a combination of metabolic tissues
produces optimal lifespan extension
To confirm the role of autophagy in ageing, we directly modulated autophagy by over-express-

ing Atg1, a kinase essential for the initiating steps of autophagy. Atg1 is regulated by the TOR

pathway, and its up-regulation is sufficient to initiate autophagy in flies [28, 29]. We tested a

variety of GAL4 drivers, both ubiquitous and tissue specific, as well as constitutive and induc-

ible, in order to thoroughly examine the effect of enhanced autophagy on lifespan. We found

that over-expression of Atg1 under the control of strong constitutive drivers such as actin-
GAL4 (actGAL4) and daughterlessGAL4 (daGAL4) was embryonic lethal, presumably due to

excessive and inappropriate autophagy during development. Using a weak ubiquitous heat-
shockGAL4 (hsGAL4) driver to overexpress Atg1, we did not observe any lifespan differences

compared to controls. Given that induction of Atg1 can induce apoptotic cell death [28], we

other (p = 0.15, log-rank test). (D) Ubiquitous down-regulation of autophagy by Atg5 RNAi abolished the lifespan extension of long-lived chico1 null mutants. Survival

curves for wild-type controls (+/+), chico1/chico1, and chico1/chico1 actGS>UAS-atg5RNAi food on +RU food (200 μM). The chico1/chico1 mutant was longer-lived

than the +/+ control (p<0.0001, log-rank test), however the chico1/chico1 actGS> UAS-atg5RNAi mutant was not significantly different from the +/+ control (p = 0.62,

log-rank test) in the presence of RU. n~210 flies per condition for all lifespan experiments.

https://doi.org/10.1371/journal.pgen.1009083.g001
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next simultaneously overexpressed both Atg1 and the apoptosis inhibitor p35 using hsGAL4.

However, this worsened survival, demonstrating that cell death may not be the factor hinder-

ing lifespan extension under our conditions (S2A Fig). Next, we restricted the overexpression

of Atg1 to adulthood by using the inducible actGS driver. However, this resulted in lifespan

shortening (S2B Fig), suggesting that induction of autophagy under a strong and ubiquitous

promoter was harmful.

To find a tissue that is responsive to autophagy, and in which increased autophagy mediates

pro-longevity benefits to the whole organism, we focused our attention on the major metabolic

tissues of the fly, since alterations in metabolism and energy storage are characteristic of long-

lived mutants [1]. In addition, over-expression of the transcription factor FOXO in the fat

body (the fly equivalent of the liver and adipose tissue) and/or the intestine has already been

associated with longevity effects in flies and worms [30–33].

In order to more finely modulate the level of Atg1 up-regulation, we used two different

UAS constructs, UAS-Atg1(W) and UAS-Atg1(S), mediating weak and strong over-expression

of Atg1, respectively. These UAS constructs were combined with a range of tissue-specific

drivers in the fly and screened for lifespan extension. Induction of autophagy using the strong

UAS-Atg1(S) construct in both the fat body and intestine with the RU-inducible GeneSwitch

S1106 driver led to a dose-dependent lifespan extension (Fig 2A) and increased autophagy flux,

as measured by the GFP-p62 cleavage assay (S2C Fig). However, interestingly, we were unable

to recapitulate this longevity phenotype using drivers specific to individual tissues, notably

NP1GAL4 (intestine), FBGAL4 (fat body) and UOGAL4 (Malpighian tubules, the equivalent of

the fly kidney) (S2D–S2H Fig). When we used the UOGAL4 driver to induce autophagy with

either the weaker UAS-Atg1(W) or stronger UAS-Atg1(S) construct, neither increased fly sur-

vival (S2D Fig). Under our experimental conditions, the NP1GAL4 and FBGAL4 drivers were

lethal in combination with the stronger UAS-Atg1(S) and did not affect lifespan when com-

bined with the weaker UAS-Atg1(W) (S2E–S2H Fig). Furthermore, over-expression of

UAS-Atg1(S) only in adulthood using the RU-inducible GeneSwitch gut specific driver TIGS-2
did not affect lifespan, despite testing a wide range of RU concentrations from 25 μM to

200 μM (S2I and S2J Fig).

These results suggest that autophagy may need to be up-regulated in a combination of

tissues to achieve optimal anti-ageing effects, similar to what we observed using the S1106
driver that is active in both the intestine and the fat body (Fig 2A and 2B). We tested this

hypothesis by using the weak CSGAL4 and strong HRGAL4 drivers, both of which express in

the fat body, intestine and Malpighian tubules (S3A Fig). Accordingly, UAS-Atg1(S) driven by

weaker CSGAL4 and UAS-Atg1(W) driven by stronger HRGAL4 both significantly extended

lifespan (Fig 2C–2F). We also observed that these long-lived Atg1 over-expressing flies

(CSGAL4> UAS-Atg1(S) and HRGAL4> UAS-Atg1(W)) had extended egg-to-adult develop-

ment time, with adults emerging 24 and 65 hours later than wild-type respectively (S3B Fig).

Furthermore, the long-lived Atg1 over-expressing flies were slightly smaller than controls, as

indicated by their reduced wing area (Fig 2G) and body weight (Fig 2H). Importantly, higher

autophagy induction, achieved by combining both the stronger UAS construct and stronger

driver lines (HRGAL4> UAS-Atg1(S); Fig 2F), led to embryonic lethality, highlighting that

excessive autophagy during development is detrimental, in agreement with previous findings

[34].

Next we investigated the importance of the kinase activity of Atg1, since this protein

has both kinase-dependent and -independent roles in autophagy (reviewed in [35]). Over-

expressing a kinase dead version of Atg1 (UAS-Atg1KQ) driven by CSGAL4 did not extend

lifespan (S3C Fig), suggesting that the kinase activity of Atg1 is necessary for the lifespan

extension.
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The pro-longevity effects of moderate autophagy induction are
independent of developmental effects
As over-expression of Atg1 in the fat body, intestine and Malpighian tubules, using the

CSGAL4 and HRGAL4 drivers, resulted in the most pronounced lifespan extension, we focused

on these Atg1 over-expressing flies to explore the mechanisms underlying autophagy-medi-

ated lifespan extension. To avoid any developmental defects, we used the temperature sensitive

GAL4 suppressor tubGAL80ts. Flies therefore developed normally at 18˚C and were then

switched to 27˚C as 2-day old adults in order to inactivate GAL80ts and thus enable Atg1 over-

expression. By confining Atg1 overexpression to adulthood, we avoided any developmental

delay and obtained normal-sized flies, as determined by their wing size (S3D Fig). Moderate

autophagy induction in the CSGAL4 tub-GAL80ts> UAS-Atg1(S) flies resulted in lifespan

extension (Fig 3A), confirming that the pro-longevity effect was not associated with develop-

mental delay. Interestingly, the otherwise lethal HRGAL4> UAS-Atg1(S) over-expressing line

was viable when combined with flies expressing the tubGAL80ts. However, the stronger autop-

hagy induction obtained in this line did not provide any further benefits, and in fact shortened

lifespan significantly, reaching a median survival of only ~25 days at 27˚C (Fig 3A). Therefore,

for beneficial effects on lifespan, it is necessary to have moderate autophagy induction specifi-

cally in a combination of tissues in adulthood. Furthermore, strong overexpression of Atg1 is

deleterious not only during development, but also when confined to adulthood.

We were next interested to understand why different degrees of autophagy stimulation lead

to such strikingly different outcomes for survival. We used the long-lived CSGAL4 tubGAL80ts

> UAS-Atg1(S) flies, with moderate autophagy induction, and the short-lived HRGAL4 tub-
GAL80ts> UAS-Atg1(S) flies, with strong autophagy induction, for all subsequent experi-

ments. We assessed autophagy induction in the relevant tissues by quantifying Atg8a-II levels

in dissected intestine, fat body and Malpighian tubules using Western blot analysis. Indeed,

Atg1 overexpression resulted in increased Atg8a-II protein levels in all three tissues (Fig 3B).

In the intestine and Malpighian tubules, the short-lived HRGAL4 tub-GAL80ts> UAS-Atg1(S)
flies showed higher Atg8a-II protein levels compared to the long-lived CSGAL4 tubGAL80ts>
UAS-Atg1(S) flies (Fig 3B). However, in the fat body, there was no difference in Atg8a-II pro-

tein levels between the long-lived and short-lived flies, possibly due to rapid depletion of fat

body cells upon strong autophagy up-regulation and consequent lower fat body cell content in

the short-lived flies. To obtain more information about autophagic flux, we next measured

both p62 and Atg8 upon feeding flies the autophagy inhibitor hydroxychloroquine (HCQ)

(Fig 3C). Long-lived Atg1 over-expressing flies had increased ratios of p62 between HCQ and

Fig 2. Over-expression of Atg1 in the gut, fat body and Malpighian tubules extends lifespan. (A) Over-expression of Atg1 in the gut and fat body

under control of the inducible S1106 GeneSwitch driver using a range of RU concentrations. Lifespan was not significantly extended at the lowest RU

dose (25 μM; p = 0.076, log-rank test against the 0 μM control), but all higher RU concentrations (50, 100 and 200 μM) significantly increased lifespan

(p = 0.00015, p<0.0001, p<0.0001 respectively, log-rank tests against the 0 μM RU control). n~180 flies per condition. (B) Increased transcription of Atg1
in S1106> UAS-Atg1 flies upon induction with 200 μM RU, in the intestine (p = 0.008, Student’s t-test) and fat body (p = 0.007, Student’s t-test), as

determined by qRT-PCR from dissected tissues normalised to actin5C. Data are means ±SEM of n = 3 samples (��, p<0.01). (C) Over-expression of

UAS-Atg1(S) under control of the CSGAL4 driver significantly extended lifespan (p<0.0001, log rank test against all three control lines). n~120 flies per

condition. CSGAL4 drives expression in the intestine, fat body and Malpighian tubules. (D) Over-expression of UAS-Atg1(W) under control of the

HRGAL4 driver significantly extended lifespan (p<0.0001, log rank test against all three control lines). n~120 flies per condition. HRGAL4 is a stronger

driver than CSGAL4 and they both have the same expression pattern, the intestine, fat body and Malpighian tubules. (E) Expression levels of Atg1 in the

intestine and fat body driven by HRGAL4 and CSGAL4, as determined by qRT-PCR normalised to actin5C. Data are means ±SEM of n = 3 samples.

Statistical significance was determined by a one-way ANOVA Student’s t-test (�, p<0.05; ��, p<0.01; ���, p<0.001). (F) Table illustrating different

strengths of the drivers and the UAS lines used to overexpress Atg1. (G) Wing surface area was significantly decreased in Atg1 over-expressing flies

compared to controls. Data are means ±SEM of n = 10 replicates. Statistical significance was determined by a one-way ANOVA Student’s t-test (�,

p<0.05; ���, p<0.001). (H) Wet body weight was significantly decreased in Atg1 over-expressing flies compared to controls (p<0.001 and p<0.0001 for

the weaker and stronger autophagy enhanced flies, respectively). Data are means ±SEM of n = 6 replicates. Statistical significance was determined by a

one-way ANOVA Student’s t-test (���, p<0.001).

https://doi.org/10.1371/journal.pgen.1009083.g002

PLOS GENETICS Autophagy and ageing

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009083 November 30, 2020 8 / 34

https://doi.org/10.1371/journal.pgen.1009083.g002
https://doi.org/10.1371/journal.pgen.1009083


PLOS GENETICS Autophagy and ageing

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009083 November 30, 2020 9 / 34

https://doi.org/10.1371/journal.pgen.1009083


untreated conditions, indicative of increased autophagic flux at baseline. Similarly, Atg8a-I

and Atg8a-II accumulated once autophagy was blocked by HCQ, confirming that the long-

lived Atg1 over-expressing flies have enhanced autophagy. Surprisingly, short-lived flies with

higher Atg1 expression showed reduced autophagic flux, as evidenced by a reduced fold

increase in p62, Atg8a-I and Atg8a-II proteins once autophagy was inhibited by HCQ.

Atg1 overexpression has previously been linked to negative feedback on mTOR activity in

the larval fat body, leading to lower levels of pS6K, a downstream effector of mTORC1 that

positively correlates with its activity [28]. We measured pS6K levels in our flies and found that

the pS6K to total S6K ratio was not changed upon Atg1 overexpression in either of the Atg1

over-expressing strains (S3E Fig). However, we observed a pronounced increase in both pS6K

and total S6K protein. This is in contrast to the initial observations in Drosophila larvae, where

pS6K was severely reduced upon Atg1 overexpression. This might indicate that different feed-

back loops operate in larval tissues, that are actively growing, compared to postmitotic adult

cells that try to maintain homeostasis upon Atg1 overexpression.

Immunity-related genes are up-regulated in short-lived flies with strong
Atg1 overexpression
To uncover how autophagy up-regulation can have either beneficial or detrimental effects on

lifespan depending on the strength of its induction, we performed genome-wide transcrip-

tional profiling and an unbiased metabolomic analysis on the long- and short-lived Atg1 over-

expressing flies. Our system is unique in allowing us to have side by side comparison of two

contrasting longevity effects of mild (CSGAL4 tubGAL80ts> UAS-Atg1(S)) and strong

(HRGAL4 tubGAL80ts> UAS-Atg1(S)) Atg1 overexpression. For RNA expression profiling,

we extracted RNA from the fat body, intestine and Malpighian tubules, as these were the tis-

sues in which we over-expressed Atg1 to induce autophagy. By using a stringent cut-off point

for both the long-lived (adjusted p-value< 5 x 10−5) and short-lived (adjusted p-value < 1 x

10−10) Atg1 over-expressing lines, we observed 90 and 261 differentially expressed genes

respectively. Fifty-three genes were significantly differentially expressed in both long-lived and

short-lived groups of flies (p-value 1.31 x 10−59), indicating a subset of common transcriptional

changes underlying both moderate and strong autophagy up-regulation (S4 Fig, full list of

genes is available in S1 Data).

To uncover functionally related gene categories that were differentially expressed in the

Atg1 over-expressing flies compared to controls, we performed Catmap analysis based on the

ranked list of differentially expressed genes. We used functional annotations for Drosophila
Gene Ontology (GO) categories and KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways.

Fig 3. Survival of flies with mild vs. strong autophagy induction. (A) CSGAL4 tubGAL80ts> UAS-Atg1(S) flies were

long-lived (p�0.0001, log rank test), while HRGAL4 tubGAL80ts> UAS-Atg1(S) flies were short-lived (p<0.0001, log

rank test) compared to their corresponding driver controls. These lifespan experiments were performed at 27˚C to

inactivate the tubGAL80ts. n~100 flies per condition. (B) Western blot images of Atg8a-I (upper band) and Atg8a-II

(lower band) levels in dissected intestine, fat body and Malpighian tubules, with total protein as a loading control.

Over-expression of Atg1 resulted in increased Atg8a-II levels relative to controls in both the long-lived and short-lived

autophagy enhanced flies. Data are means ±SEM of n = 4 replicates. Statistical significance was determined by a one-

way ANOVA Tukey-Kramer HSD test (�, p<0.05; ��, p<0.01; ���, p<0.001). (C) Western blot analysis of p62 and

Atg8 using intestinal tissue upon treatment with the autophagy inhibitor hydroxychloroquine (HCQ). Fold increase in

band intensity upon HCQ treatment is shown. There was a significant increase of Atg8a-I band intensity upon HCQ

treatment for control, CSGAL4 tubGAL80ts>UAS-Atg1(S) flies and HRGAL4 tubGAL80ts>UAS-Atg1(S) (p = 0.006;

p = 0.002; 0.03, respectively, Student’s t-test). For Atg8a-II comparisons of non-treated and HCQ-treated condition for

controls, long-lived and short-lived flies, p values were 0.006, 0.01 and 0.046; respectively; Student’s t-test). Data are

means ±SEM of n = 4 replicates.

https://doi.org/10.1371/journal.pgen.1009083.g003

PLOS GENETICS Autophagy and ageing

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009083 November 30, 2020 10 / 34

https://doi.org/10.1371/journal.pgen.1009083.g003
https://doi.org/10.1371/journal.pgen.1009083


First, we explored pathways that were differentially represented in the long-lived compared

to the short-lived Atg1 over-expressing flies, in order to identify autophagy-mediated mecha-

nisms for lifespan regulation. We found that expression of immunity-related GO categories

was strongly enriched only in the short-lived Atg1 over-expressing flies (Fig 4A). Namely, cate-

gories such as immune response, hemocyte differentiation and defence response to bacterium

were strongly up-regulated in the short-lived flies and unchanged in the long-lived flies, with

the exception of the wound healing category, which was also increased in the long-lived flies

(Fig 4A). To validate these changes, we quantified the number of hemocytes in the intestinal

midgut region of Atg1 over-expressing flies. We hypothesised that strong autophagy in the

short-lived flies causes cell death and degradation, which then might stimulate an inflamma-

tory response and attract hemocytes to the site of the lesion [36, 37]. Indeed, staining for the

hemocyte-specific marker NimrodC1 [38] revealed a large number of hemocytes in the gut of

the short-lived Atg1 over-expressing flies (Fig 4B). Conversely, the long-lived Atg1 over-

expressing flies had only a few hemocytes localised throughout the gut, resembling those of

wild-type controls (Fig 4B). Furthermore, we measured the expression of several anti-micro-

bial peptides (attacin, diptericin, and metchnikowin) by qRT-PCR (Fig 4C). This revealed that

these anti-microbial peptides were strongly up-regulated in flies with excessive autophagy.

Interestingly, when these Atg1 over-expressing flies were challenged by feeding Pseudomonas
entomophila [39, 40], only flies with strong Atg1 up-regulation were resistant (Fig 4D), which

is in accordance with the enhanced immunity signature. Moreover, higher attacin and dipteri-

cin (Fig 4C) are known to be protective against this orally infectious Gram-negative bacteria

[39].

Mitochondrial-associated genes are up-regulated in long-lived flies with
moderate over-expression of Atg1 and down-regulated in short-lived flies
with strong over-expression of Atg1
In addition to immunity-related changes, transcriptional analysis uncovered an enrichment of

mitochondria-related GO categories between the two groups of Atg1-over-expressing flies (Fig

4E). Interestingly, mitochondrial categories responded in opposite directions: moderate Atg1

overexpression led to transcriptional up-regulation of various mitochondrial-related genes,

whereas stronger Atg1 overexpression resulted in down-regulation of the same gene categories.

To further our understanding of these mitochondrial changes, we assayed a number of mito-

chondrial markers. Measurement of mitochondrial DNA (mtDNA) copy number by

qRT-PCR demonstrated no changes between the Atg1 over-expressing flies and controls, sug-

gesting that altered mitochondrial number might not be responsible for the observed tran-

scriptional changes (S5A Fig). This was corroborated by our transcriptional analysis, where no

change was detected in peroxisome proliferator-activated receptor-γ-coactivator-1α (PGC1α),

the main regulator of mitochondrial biogenesis (Supplementary Data 1). However, we

acknowledge we may have missed subtle differences that can only be detected using more sen-

sitive techniques [41]. We then hypothesised that the transcriptional changes may be associ-

ated with changes in mitochondrial respiratory chain components. We observed an increase

in the protein levels of the subunits NDUFS3 (complex I) and ATP5A (complex V) in the

short-lived flies, while their levels in the long-lived flies remained unchanged (S5B Fig). Pyru-

vate dehydrogenase (PDH), an enzyme that links glycolysis to the TCA cycle by converting

pyruvate into acetyl-CoA, showed significantly increased expression in both long-lived and

short-lived flies, while cytochrome C was lower in both (S5B Fig). Succinate dehydrogenase

(SDHB), which forms mitochondrial complex II, and voltage-selective anion-dependent chan-

nel (VDAC), both remained unaltered upon our autophagic alterations (S5B Fig). In summary,
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while transcriptional changes for mitochondria-related gene processes went in opposite direc-

tions between the long- and short-lived flies, there was no clear pattern of differential expres-

sion between long-lived and short-lived flies of the mitochondrial specific genes we assessed,

with levels of mitochondrial proteins being similarly increased in expression or increased only

in the short-lived flies. We cannot however, exclude the possibility that subtle changes in these

proteins contribute to the phenotypic changes seen in Atg1 over-expressing flies.

We hypothesised that the differential mitochondrial gene expression might lead to a differ-

ence in reactive oxygen species (ROS) production in the short- and long-lived Atg1 over-

expressing flies. We therefore assessed mitochondrial hydrogen peroxide (H2O2) production

using the in vivo ratiometric mass spectrometry probe, MitoB [42]. Mitochondrial H2O2 levels

were essentially unaffected in the long-lived Atg1 over-expressing flies relative to control (S5C

Fig). However, the short-lived Atg1 over-expressing flies had significantly increased levels of

mitochondrial H2O2, suggesting mitochondrial dysfunction.

Next, to gain insight into the respiratory chain activity of these flies, we measured oxygen

consumption from isolated mitochondria. The respiratory chain activity of mitochondria

from the long-lived Atg1 over-expressing flies did not differ from control, but was increased in

the short-lived flies, when supplied with glutamate/malate, succinate, and particularly glyc-

erol-3-phosphate as the respiratory substrate, although the respiratory control ratios were

unaffected (Fig 4F). This was corroborated by metabolomic analysis showing high levels of

dihydroxyacetone phosphate, which is produced by glycerol-3-phosphate dehydrogenase, in

the short-lived flies (S5D Fig). In addition, higher respiration in the short-lived flies from the

complex I-linked substrates glutamate/malate (Fig 4F) are in accordance with increased levels

of complex I subunit NDUFS3 measured by western blot (S5B Fig).

To assess how these flies coped with mitochondrial stress at a physiological level, we mea-

sured their survival in response to treatment with antimycin A, a well-described inhibitor of

mitochondrial respiration. Interestingly, the survival of the long-lived Atg1 over-expressing

lines on antimycin A was significantly enhanced, while the short-lived flies were highly sensi-

tive (Fig 4G), demonstrating a clear difference in their mitochondrial robustness.

Atg1 overexpression is associated with increased proteasomal activity
Based on KEGG pathway analysis, proteasomal activity was the most pronounced commonly

up-regulated category in both Atg1 over-expressing lines, (Fig 5A). We confirmed this

Fig 4. Transcriptomic analysis of the long-lived and short-lived Atg1 over-expressing flies reveals altered immunity and
mitochondrial function. (A) Heat map of the immunity- and stress-related GO categories differentially expressed in the long-lived vs.

short-lived Atg1 over-expressing flies, showing a pronounced immune and stress response in the short-lived flies only. (B) Hemocyte-

specific NimrodC1 staining in the midgut showing increased hemocyte localisation in the short-lived Atg1 over-expressing flies.

Quantification of hemocytes in the gut showed increased numbers in the short-lived flies compared to the control and the long-lived flies,

according to Student’s t-test (��, p<0.01). Data are means ±SEM of n = 10 images. (C) Increased expression of anti-microbial peptides only

in the short-lived Atg1 over-expressing flies, as indicated by qRT-PCR for attacin, metchnikowin and diptericin, normalised to rpl9. Data

are means ±SEM of n = 3 replicates. Statistical significance was calculated by a one-way ANOVA Tukey-Kramer (HSD) test (�, p<0.05; ��,

p<0.01; ��� p<0.001). (D) Stress assay with Pseudomonas entomophila showing improved survival of flies with strong enhancement of

autophagy (HRGAL4 tubGAL80ts>UAS-Atg1(S)) compared to controls and CSGAL4 tubGAL80ts>UAS-Atg1(S) flies (p<0.0001, log-rank

test, n~100). Survival of control flies and flies with mildly enhanced autophagy was not different (p = 0.88, log-rank test, n~100). (E) Heat

map for the mitochondria-related GO categories showing decreased expression of mitochondrial genes in the short-lived flies and increased

expression for the same GO categories in the long-lived autophagy flies. (F) Mitochondrial respiration measurements showing increased

oxygen consumption with glutamate/malate, succinate and glycerol-3P as a substrate only for the short-lived flies. The long-lived autophagy

enhanced flies did not show any difference in respiratory rate compared to the wild-type controls. There was no difference in the

respiratory control ratio. Data are means ±range/SD of n = 2–3 measurements and analysed by one-way ANOVA Student’s t-test (�,

p<0.05; ��, p<0.01; ���, p<0.001). (G) Survival upon treatment with the mitochondrial inhibitor antimycin A (0.25 mM). Significant

sensitivity or resistance was observed for the short-lived and long-lived Atg1 over-expressing flies, respectively (p<0.001, log rank test,

n~150 flies per condition).

https://doi.org/10.1371/journal.pgen.1009083.g004
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biochemically by assaying chymotrypsin-like proteasomal activity in fly extracts and found

that both the long- and short-lived Atg1 over-expressing flies had increased proteasomal activ-

ity (Fig 5B). Since worms with increased proteasomal activity are robustly resistant to heat

shock stress [43], we exposed the Atg1 over-expressing lines to heat shock. Indeed, both the

long-lived and short-lived Atg1 over-expressing flies were protected against heat shock stress

Fig 5. Transcriptomic analysis of the long-lived and short-lived Atg1 over-expressing lines reveals altered protein homeostasis (A) List of KEGG

pathway GO categories that were up-regulated in the Atg1 over-expressing flies. Similar changes were observed in both mild and strong Atg1 over-

expressing, with the exception of oxidative phosphorylation, which was up-regulated only in the long-lived flies having mild Atg1 up-regulation. (B)

Proteasome activity was up-regulated in both Atg1 over-expressing flies (chymotrypsin-like, LLVY substrate). Data are means ±SEM of n = 10

replicates. Statistical significance was calculated by one-way ANOVA Student’s t-test (�, p<0.05; ��, p<0.01; ���, p<0.001). (C) Resistance of 7-day old

(left panel) and 14-day old (right panel) flies to heat shock stress, determined as the proportion of flies recovering after 35 min at 39˚C. Improved heat

shock resistance was observed in both long-lived and short-lived Atg1 over-expressing flies compared to controls for 7-day old flies. Data are means

±SEM of n = 3 samples with 15 flies each. Statistical significance was calculated by one-way ANOVA Student’s t-test (n.s., p>0.05; ��, p<0.01). In

14-day old flies, the improved heat shock resistance was maintained in the long-lived autophagy flies, but lost in the short-lived (n.s., p>0.05; ���,

p<0.001).

https://doi.org/10.1371/journal.pgen.1009083.g005
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at one week of age in keeping with the increased proteasomal activity (Fig 5C). However, this

heat shock resistance was notably lost from the short-lived flies by two weeks of age, coinciding

with their severe deterioration and onset of mortality (Fig 5C).

Atg-1 overexpression leads to reduced lipid levels
One of the most pronounced transcriptional changes in the Atg1 over-expressing flies was

alteration of metabolic pathways (Fig 6A). Autophagy provides cells with amino acids, lipids

and other nutrients [7], and is therefore expected to be involved in various aspects of metabo-

lism. In our study, lipid metabolism featured prominently among the down-regulated KEGG

pathway categories, including fatty acid metabolism, biosynthesis of unsaturated fatty acids

and peroxisome (Fig 6A). Most lipid-related genes were down-regulated in long-lived Atg1
over-expressing flies, although putative triacylglycerol lipases (CG6283 and CG1882) were

both highly expressed in the short-lived Atg1 over-expressing flies (S1 Table). In agreement

with the pronounced down-regulation of lipid-related GO categories, we observed that both

Atg1 over-expressing flies had significantly lower levels of triacylglycerides (TAG) with almost

total loss of TAG in strong Atg1 over-expressing flies (Fig 6B). Free fatty acids (Fig 6C) were

also reduced in both Atg1 over-expressing flies to a similar extent. In keeping with these lipid

modifications, both Atg1 over-expressing fly strains displayed pronounced sensitivity to star-

vation stress (Fig 6D). Oil Red O staining of dissected guts and fat bodies revealed that the

Atg1 over-expressing flies had significantly lower TAG and neutral lipid content compared to

controls, with a more pronounced effect in the strong Atg1 over-expressing flies (S5E Fig).

This loss of lipid stores was accentuated with age in the short-lived flies (S5E Fig), which pro-

gressively lost lipids, ultimately leading to lipid depletion before death. To corroborate other

roles of these lipid metabolism-related genes, we performed metabolomic analysis (S6–S8 Figs

and Fig 6E and 6F). This demonstrated striking alterations in the metabolic profiles of the

Atg1 over-expressing flies, as shown in heat map and principal component analysis (PCA)

plots (S6 Fig). Several carnitine metabolites, which are used as lipid oxidation substrates by

mitochondria, were consistently found to be strongly up-regulated in long-lived flies com-

pared to short-lived ones (S8 Fig), suggesting increased β-oxidation of lipids as a source of

energy, as observed in organisms undergoing dietary restriction.

Long-lived Atg-1 over-expressing flies display a unique pro-longevity
metabolic profile
Further analysis of the metabolic profiles revealed more pronounced changes in the same

metabolites in the short-lived flies than in the long-lived flies (statistically significant correla-

tion between changes in the two autophagy conditions, p = 3.3x10-75). Furthermore, we

observed a great number of unique changes in the short-lived flies, including amino acids and

TCA cycle intermediates, while only a few unique alterations were detected in the long-lived

flies (Fig 6E and 6F). There was an overlap of 25 metabolites that changed in both long-lived

and short-lived Atg1 over-expressing flies, two of which were in the opposite direction (Fig

6F). Unique to the long-lived flies was an increase in glucosamine-1,6-diphosphate and N-ace-

tyl-(L)-arginine, while levels of adenosine and pantothenate were lower (Fig 6F). Interestingly,

food supplementation with different forms of glucosamine, D-glucosamine [44] and N-acetyl

glucosamine [45], has been associated with pro-longevity effects. Also, low adenine has been

shown to be critical for longevity by dietary restriction and in long-lived AMPK over-express-

ing flies [46]. Conversely, aged primary cells are associated with greater secretion of adenosine

into culture media. [47]. Interestingly, N-acetyl-(L)-arginine and pantothenate, which changed

in the opposite direction in our study, are both found to be increased in blood of older human
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donors and are among 14 metabolites that change the most with age [48]. Therefore, a moder-

ate increase in autophagy is accompanied by several known longevity-promoting metabolite

alterations that appear to be absent in short-lived flies with greater Atg1 overexpression.

Discussion
Autophagy in animals evolved primarily to be optimal for survival during starvation, the most

common stress in nature. Here, we developed a novel genetic model to enhance autophagy by

over-expressing Atg1 in the major metabolic tissues of the fly and explored in detail its effect

on ageing. Our results demonstrate that moderate enhancement of autophagy in a combina-

tion of tissues, including the fat body, intestine and Malpighian tubules, is associated with life-

span extension. Conversely, strong or ubiquitous Atg1 expression results in a shortening of

lifespan. However, the pro-longevity benefits associated with moderate autophagy induction

occur at the expense of survival under starvation, as flies with moderate Atg1 up-regulation

display a lean phenotype. These findings suggest that fine-tuning the levels of autophagy in dif-

ferent tissues may be essential for interventions that extend organismal lifespan (Fig 7).

Down-regulation of insulin signalling extends lifespan in all organisms tested, making it

one of the best studied and most evolutionarily conserved anti-ageing interventions [3]. Here

we found that the lifespan extension of chico1 null flies depends on autophagy, since the lon-

gevity of this insulin pathway mutant was abolished in an autophagy-deficient background

achieved through RNAi against atg5. Long-lived daf-2 worms similarly require active autop-

hagy for enhanced lifespan [9, 13, 27, 49], and additional studies in C. elegans have showed tis-

sue-specific roles for autophagy in muscle and intestinal tissues [27]. However, relatively few

studies have directly examined autophagy levels in long-lived IIS mutant mice. Reports of

increased LC3-II and decreased p62 protein levels in aged mouse hepatic tissue with liver-spe-

cific Igf-1 deletion [50], a manipulation that extends healthy lifespan [51], suggest that

increased autophagy could play a role in some long-lived mice with reduced IIS. Taken

together with our results, these studies suggest that a careful examination of autophagy in addi-

tional long-lived mutant models may be a fruitful direction for future research.

Interestingly, as well as down-regulation of insulin signalling, some other known anti-age-

ing interventions (including dietary restriction, down-regulation of the TOR signalling path-

ways, and the anti-ageing drugs rapamycin and spermidine) share up-regulation of autophagy

as a common feature [13]. However, these interventions are pleiotropic, and may lead to other

anti-ageing effects besides autophagy, such as decreased translation. Moreover, upstream alter-

ations in the IIS and TOR pathways often result in undesirable side-effects, and long-lived

mutant model organisms frequently have increased lipid levels and delayed development [1].

Fig 6. Transcriptomic analysis of the long-lived and short-lived Atg1 over-expressing flies reveals decreased lipid metabolism. (A) The KEGG pathway GO

categories that were primarily down-regulated upon autophagy induction were related to lipid metabolism. The trend of transcriptional changes was similar in both

the long-lived and short-lived Atg1 over-expressing flies. The categories down-regulated only in the short-lived Atg1 over-expressing flies were metabolic pathways,

oxidative phosphorylation, and citrate cycle (TCA cycle). (B) Reduced TAG levels in the autophagy enhanced flies compared to controls. Data are means ±SEM of

n = 8 replicates. Statistical significance was calculated by one-way ANOVA Student’s t-test (�, p<0.05; ��, p<0.01). (C) Reduced free fatty acid levels in both Atg1

over-expressing flies compared to controls. Data are means ±SEM of n = 5 replicates. Statistical significance was calculated by Student’s t-test (�, p<0.05). (D) Flies

with up-regulated autophagy were significantly more sensitive to starvation stress (p<0.001, log rank test compared to controls). (E) Side-by-side comparison of

changes for amino acid and TCA cycle intermediates in Atg1 over-expressing flies. Two controls are used for normalisation: C1 = driver control CSGAL4

tubGAL80ts, and C2 = UAS-Atg1(S). Major differences between the long-lived (L) and short-lived (S) flies are represented. Colours show logFC, stars indicate

significance: FDR<0.05 = �, FDR<0.01 = ��, FDR<0.001 = ���. (F) Comparison of metabolic changes in Atg1 over-expressing flies. Scatterplot visualising the

correlation of changes in short-lived and long-lived flies. For illustrative purposes, only the comparison against C1 is shown. Linear regression is provided in the

Fig. Two annotated metabolites in the scatterplot change in opposite directions in the Atg1 over-expressing flies. Venn diagram illustrating metabolite changes in

Atg1 over-expressing flies that are consistent in comparison to both controls, C1 = CSGAL4 tubGAL80ts, and C2 = UAS-Atg1 (S). Only metabolites with a logFC

amplitude>1 and significance of FDR<0.05 are considered. The Venn diagram is further broken down according to the direction of change in a selected subset of

data with some of the metabolites highlighted.

https://doi.org/10.1371/journal.pgen.1009083.g006
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Therefore, in order to clarify the mechanism by which these nutrient signalling pathways

extend lifespan, and to eliminate any unfavourable side-effects, it is crucial to examine the

down-stream effectors of these anti-ageing interventions.

We therefore studied the effect of varying the extent and distribution of Atg1 overexpres-

sion by using diverse tissue-specific drivers. We found that strong ubiquitous up-regulation of

autophagy was detrimental to the organismal lifespan. However, when autophagy was

increased solely in the major metabolic tissues of the fly—the fat body, intestine and

Fig 7. Scheme illustrating the effect of varying Atg1 levels on fly physiology. Organisms with decreased autophagy

accumulate damaged macromolecules and organelles, such as mitochondria (damaged mitochondria are represented

in red and healthy in orange). Moderate autophagy induction is beneficial for survival, owing to improved damage

removal, but leads to compromised survival during starvation, likely as a consequence of the lower lipid content in

these flies. Strong Atg1 overexpression does not provide any further longevity benefits, and in fact impairs survival.

Moreover, strong Atg1 overexpression is accompanied by induction of an inflammatory response and transcriptional

down-regulation of various mitochondrial genes. Overall, the levels of autophagy present in a wild-type organism are

optimised for starvation resistance, which is the major stress encountered in nature, rather than for maximised

lifespan.

https://doi.org/10.1371/journal.pgen.1009083.g007
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Malpighian tubules—it resulted in viable, long-lived, stress-resilient adults. Expression of the

Atg1 transgene in the fat body and intestine also led to increased longevity, while induction of

autophagy in a single tissue was ineffective. This suggests that for these metabolic tissues,

autophagy levels are not optimal for longevity and up-regulation is required for overall lifespan

extension. Similarly, over-expression of Atg8 and Atg1 in the fly nervous system can extend

lifespan [19, 20]. Furthermore, ubiquitous overexpression of Atg5 [18] or down-regulation of

Becn1 activity in mice results in increased lifespan [7]. Interestingly in C. elegans, lifespan

extension was observed with post-reproductive autophagy inhibition using RNAi specifically

against genes implicated in the early stages of autophagy, suggesting that increased autophagy

induction and/or inefficient completion of the process in aged animals can also be harmful

[52].

We also explored the effect of enhancing autophagy only in adulthood, thus bypassing

developmental effects, in both long- and short-lived Atg1 over-expressing flies, with moderate

and strong autophagy up-regulation respectively. This demonstrated that the pro-longevity

effects associated with moderate autophagy induction were independent of development and

were not associated with any developmental delay.

In order to further study the underlying mechanisms mediating the lifespan-extending

effects of moderate autophagy induction, we used an unbiased transcriptomic and metabolo-

mic analysis approach. This provided a detailed and comprehensive description of the changes

in the long-lived and short-lived Atg1 over-expressing flies. This tissue-specific transcriptional

analysis uncovered many similarities between the two over-expressing lines, but also clearly

indicated some pronounced differences. For instance, several immunity-related GO categories

were unchanged in the long-lived Atg1 over-expressing flies, but were strongly up-regulated in

the short-lived flies. This was manifested in the elevated expression of all three anti-microbial

peptides tested, and additionally in the accumulation of hemocytes in the intestine. To the best

of our knowledge, this is the first demonstration that high levels of autophagy can contribute

to hemocyte accumulation in the intestine, and poses interesting questions regarding the

potential role of the autophagy process in intestinal regeneration [36, 37, 53].

Another major difference between the long- and short-lived Atg1 over-expressing flies was

the strikingly different transcriptional regulation of various mitochondrial-related GO catego-

ries: short-lived flies displayed decreased transcription of mitochondrial genes whereas long-

lived flies showed markedly increased transcription of the same gene categories. More specifi-

cally, oxidative phosphorylation was significantly up-regulated exclusively in the long-lived

Atg1 over-expressing flies, while it was down-regulated in the short-lived flies, together with

metabolic pathways and TCA cycle GO categories. One significant result was the resistance

against the mitochondrial inhibitor antimycin A seen in the long-lived flies. This demonstrates

their mitochondrial robustness and differentiates them from the antimycin A sensitive short-

lived Atg1 over-expressing flies, thereby confirming our mitochondrial transcriptional signa-

tures. Detrimental effects of high autophagy levels have also been observed in worms, in the

context of serum/glucocorticoid regulated kinase-1 (sgk-1) mutants, where increased mito-

chondrial permeability was observed [54]. However, this likely does not fully explain the short

lifespan upon strong Atg1 overexpression in our study, as levels of cytochrome C were lower,

and VDAC levels unaltered under our conditions, the latter being contrary to the sgk-1 mutant

study [54](S5B Fig).

Although the role of mitochondria in ageing is a well-researched and debated topic, it is

still not entirely clear how mitochondria affect lifespan [1, 55, 56]. For instance, mitochondrial

ROS production has been proposed as an explanation for ageing, initially as a pro-ageing fac-

tor causing damage accumulation [57], and more recently as an anti-ageing mechanism by

eliciting beneficial compensatory pathways and extending lifespan through mitohormesis [58,
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59]. These contrasting effects of elevated ROS can be reconciled if there is a threshold level,

below which ROS are a beneficial mitohormetic, and above which they become detrimental.

The high H2O2 levels seen in the strong Atg1 over-expressing flies could therefore contribute

to their short lifespan.

Our mitochondrial analysis and measurements of oxygen consumption revealed higher

activity of mitochondrial complex I and complex II, as well as glycerol-3-phosphate dehydro-

genase (G3PDH) only in the short-lived flies. However, interpretation of these results is lim-

ited given the fact that we used whole fly tissue for respiration analysis, while transcriptional

analysis was done on dissected intestine, fat body and Malpighian tubules, the sites of Atg1

transgene overexpression. Most of the mitochondria in the whole fly come from the flight

muscle in the thorax, so any subtle respiration effects in mitochondria from the abdominal tis-

sue, would be masked by the flight muscle mitochondria.

Another potential link between mitochondria and ageing is the observation that dietary

restriction can exert some of its pro-longevity effects through increased mitochondrial biogene-

sis. However, some studies have failed to find increased mitochondrial mRNA or protein levels

with dietary restriction [60]. Indeed, the most accessible measures of mitochondrial biogenesis,

including PGC1α activity and mitochondrial DNA, mRNA, and protein levels, are not a defini-

tive readout of mitochondrial biogenesis per se, which requires more sensitive techniques such

as the use of stable isotopic tracers [41]. The increased mitochondrial mRNA expression, and

unchanged mitochondrial DNA content, we observe in our long-lived flies therefore suggest

that altered mitochondrial function may underlie some beneficial effects in our long-lived flies,

but additional studies are required to specify the exact nature of these mitochondrial changes.

Autophagy was initially perceived as a protein-degrading process. However, the degrada-

tion of lipids by autophagy, or lipophagy, upon fasting has been described in mouse liver,

where autophagy inhibition leads to lipid accumulation [61]. Lipid metabolism has also been

associated with ageing, although the underlying mechanisms are unclear, as long-lived

mutants can be either lean (eat-2 worm model for dietary restriction) or have increased adi-

posity (daf-2 long-lived worms). This suggests that the quality of the lipids and the sites of fat

deposition, rather than the simple overall lipid content, might play a key role in determining

ageing [62, 63]. Interestingly, in C. elegans, mutants deficient in autophagy are characterised

by low lipid content, clearly pointing to a complex and tissue-specific role of autophagy in

lipid metabolism [64]. Our study, in addition to Ulgherait and co-workers [20], is one of the

first to investigate the role of autophagy up-regulation in lipid metabolism. We observed that

both Atg1 over-expressing lines with increased autophagy were lean, with reduced gut lipid

content. While the long-lived flies maintained low levels of lipids with age, the short-lived flies

progressively lost total lipid content as measured by Oil Red O staining.

The decrease in lipids observed upon increased autophagy could be caused by increased

lipolysis, decreased lipid storage and/or decreased lipid biosynthesis. Further insight into the

underlying processes was obtained from our transcriptional analysis, which confirmed that

autophagy induction triggers lipid remodelling. In particular, we demonstrated that enhanced

autophagy can impact on the expression of various lipases and lead to a distinct lipid profile.

In turn, these observed changes in lipases may lead to the release of various lipid-derived sig-

nalling molecules, which can potentially alter major cellular processes [65, 66].

Interestingly, one of the transcriptionally down-regulated categories upon autophagy

induction is the biosynthesis of unsaturated fatty acids. A decrease in unsaturated fatty acids

was shown to correlate with lifespan extension in worms, and the explanation suggested was

that a high lipid peroxidation index is detrimental for ageing as it can lead to accumulation of

cellular damage [67]. Accumulation of damage is one of the hypotheses and hallmarks of age-

ing [1], indicating that proteasomal degradation of damaged proteins may play an important
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role in longevity. In keeping with this, we demonstrated increased proteasome activity with

Atg1 overexpression, consistent with previous work showing that genetic over-expression of

the RPN-6 subunit of the proteasome alone is sufficient to extend lifespan in worms and ame-

liorate proteotoxic stress resistance [43]. There is also evidence that inhibition of either one of

the major degradation pathways, autophagy or proteasomal activity, leads to compensatory

up-regulation of the other pathway [68]. Here, we provide novel evidence of the interdepen-

dence of these pathways when autophagy is genetically up-regulated, and show how this can

lead to broad up-regulation of cellular proteolysis, a situation similar to what is observed upon

TOR inhibition [69].

In conclusion, here we describe a full transcriptomic and metabolomic analysis of long-

lived and short-lived flies displaying varying degrees of Atg1 overexpression. We demonstrate

that moderate genetic up-regulation of autophagy in a combination of metabolic tissues

extends lifespan, while excessive Atg1 overexpression is detrimental to longevity. We also

show that moderate autophagy induction is associated with a pro-longevity profile across

many cellular pathways. In particular, long-lived Atg1 over-expressing flies display increased

mitochondrial gene expression and proteasomal activity, in addition to a lean fat body and gut

phenotype. Taken together, our data suggest that careful manipulation of the autophagy pro-

cess is crucial for health benefits, and that any potential applications of autophagy induction,

such as autophagy-stimulating drugs, in treating age-related diseases [70], should be tested

cautiously and carefully designed.

Materials andmethods
Fly stocks and husbandry
Mutants and transgenes were back-crossed into the white Dahomey (wDah) wild-type back-

ground for at least eight generations. All stocks were maintained, and all experiments were

conducted, at 25˚C, except tubGAL80ts experiments, which were set up at 18˚C and then

switched to 27˚C 2 days after the flies eclosed. Flies were kept on a 12 h light:12 h dark cycle at

constant humidity using standard sugar/yeast/agar (SYA) medium [71]. For all experiments,

flies were reared at standard larval density by transferring 18 μl of egg suspension into SYA

bottles [71]. Eclosing adults were collected over a 12-h period and allowed to mate for 48 h

before sorting into single sexes.

The following autophagy lines were used: UAS-Atg5-RNAi, UAS-Atg1KQ, UAS-Atg1(S) and

UAS-Atg1(W) [26, 28, 72]. The UAS-Atg1(S) line corresponds to UAS-Atg16B, generated by clon-

ing cDNA (AT02023) into pUAST. The UAS-Atg1(W) line corresponds to UAS-Atg1GS10797
from the Kyoto Drosophila Genetic Resource Center and has a UAS regulatory sequence inserted

upstream of the endogenous atg1 gene. chico1/Cyo [73] was a kind gift from Ernst Hafen. The

driver lines actGS [74], TIGS-2 [75], FBGAL4 [76], UOGAL4 [77] were generous gifts from John

Tower, Laurent Seroude, Sebastian Grönke and Julian Dow, respectively. tubGAL80ts was

obtained from the Bloomington Drosophila Stock Center. S1106 is a kind gift from the R. Davis

laboratory [78] and NP1GAL4 was obtained from the Kyoto Drosophila Genetic Resource Center.

HRGAL4 and CSGAL4 are 6g1Cs-GAL4-1a and 6g1HR-GAL4-6c, respectively [79]. For the

inducible GeneSwitch system, standard SYA food was supplemented with the drug RU486

(Mifepristone, Sigma) typically at a dose of 200 μM unless otherwise indicated.

Lifespan assays
Flies reared at standard density were maintained at 10 or 15 flies per vial. Flies were transferred

to fresh food vials every 2–3 days and scored for deaths. All lifespan experiments were per-

formed using female flies and were repeated at least twice (except the chico1/chico1
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actGS> UAS-Atg5-RNAi and chico1/chico1 actGS> UAS-Atg12-RNAi lifespan). At least 100

flies were used for each genotype.

Wing and weight measurements
Wing surface area from 7-day old flies (n>10 per genotype) was measured as previously

described [73]. Whole body wet weight (n = 10 per genotype) was measured using a precision

balance.

Stress assays
Flies for stress assays were reared and maintained as for lifespan experiments. For starvation

stress, 7-day old flies were transferred to vials containing 1% agar and deaths were scored sev-

eral times per day. For heat shock stress, 7- or 14-day old flies were incubated at 39˚C for 35

min, then scored for recovery. For the antimycin A survival assay, we used fly food containing

0.25 mM antimycin A (Sigma, A8674), which was dissolved in ethanol as a 100 mM stock solu-

tion. For oral infection of flies with Pseudomonas entomophila, vials containing SYA food

without nipagin nor propionic acid was covered with 50 μl of overnight bacterial culture

grown in LB media. After approximately 2h, when the liquid was absorbed, flies were trans-

ferred to P. entomophila containing vials and scored for deaths periodically [39].

Proteasome assay
Dissected fat body, intestine and Malpighian tubules from 2–4 fresh flies were homogenised in

25 mM Tris-HCl (pH 7.5) buffer on ice and centrifuged. Protein concentration in the superna-

tant was measured using Bradford reagent (Bio-Rad). 20 μg of sample was loaded onto a black

96-well plate with 25 μM of the proteasome substrate N-Succinyl-Leu-Leu-Val-Tyr-7-amido-

4-methylcoumarin (LLVY-AMC; Sigma, S6510) in a 200 μl final volume. The excitation/emis-

sion wavelengths were 350/440 nm, and enzyme kinetics were recorded at 25˚C in a tempera-

ture-controlled fluorimetric microplate reader (Tecan Infinite M200). Proteasome activity was

quantified using 7-amino-4-methylcoumarin (AMC; Sigma, A9891) as a standard, and deter-

mined from the slope of AMC accumulation over time.

Lipid measurements
To quantify triacylglyceride (TAG) content, 10 batches of two flies were homogenised in

0.05% Tween and assayed using Triglyceride Infinity Reagent (Thermo Scientific, TR22421) as

previously described [76]. Free fatty acids were assayed with the Free Fatty Acid Quantification

Kit (Abcam, 65341). Measurements were normalised to total protein content as determined

using the BCA Protein Assay Kit (Pierce). For Oil Red O staining, dissected guts and fat body

tissue were fixed on a microscope slide in 4% formaldehyde (Polysciences, 11814), rinsed in

PBS and stained for 20–30 min with a filtered freshly prepared solution of 0.06% Oil Red O in

60% isopropanol. The tissue was mounted in 100% glycerol and imaged.

Western blots
Whole flies or dissected fly tissue were homogenised in 2x Laemmli loading sample buffer

(100 mM Tris pH 6.8, 20% glycerol, 4% SDS; Bio-Rad) containing 50 mM DTT. Extracts were

cleared by centrifugation and approximately 20–40 μg of protein extract was loaded per lane

on a polyacrylamide gel. Proteins were separated and transferred to a nitrocellulose mem-

brane. The following antibodies were used at the indicated dilutions: β-actin (Abcam, ab8227;

1:4000), Atg8 (a generous gift from Katja Köhler; 1:2000; [80], PDH (Abcam, Ab110334),
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NDUFS3 (Abcam, ab14711), GAPDH (GeneTex, GTX100118), cytochrome C (BioLegend,

612503, clone 7H8.2C12), SDHB (Abcam, ab14714), ATP5A (Abcam, ab14748), VDAC

(Abcam, ab14734). The HRP-conjugated anti-rabbit secondary (Abcam, ab6721; 1:12000) was

used. Blots were developed using the ECL detection system (GE, Amersham), and analysed

using FIJI software (US National Institutes of Health). To quantify total protein, we used TGX

stain-free gels from Bio-Rad (567–8123 or 567–8124) according to the manufacturer’s instruc-

tions. For hydroxychloroquine (HCQ) treatment, HCQ was dissolved in water to give a 10M

stock. The stock was then added to standard SYA fly food to give a final concentration of

30mM. Flies were pretreated 24h with HCQ before western blot analysis.

X-Gal staining
X-Gal staining of tissues was carried out as described [81]. Briefly, the dissected tissue was

fixed in paraformaldehyde, washed in PBS and in a pre-warmed Fe/NaP buffer before incuba-

tion in a standard X-Gal staining solution. After PBS washes the tissue was mounted on a slide

with gel/mount solution and imaged.

Hemocyte staining
For imaging of the gut and hemocytes, flies (n = 10 per genotype) were dissected in cold PBS

and fixed for 20–30 min in 4% methanol-free formaldehyde (Polyscience, 11814). After PBST

(PBS + 0.1% Triton-X 100) washes, tissues were blocked in 5% donkey serum for 1 h, incu-

bated overnight at 4˚C with NimrodC1 primary antibody (a generous gift from István Andó;

1:50), then with secondary antibody for 2 h at room temperature (Life Technologies, A21202;

1:200). Tissues were then mounted in mounting medium (Vectashield Laboratories, H-1200)

containing DAPI (1.5 μg/ml) and imaged using a Zeiss LSM 700 confocal microscope.

Larval development
For larval development experiments, eggs were collected over a period of 3 h. Embryos were

allowed to hatch and first instar larvae were hand-picked and transferred to give 25 per vial on

standard food. When adult flies started to hatch the number of eclosed Atg1 over-expressing

flies and control flies was counted in regular intervals.

Mitochondrial copy number
Total DNA was extracted from fly abdomens without ovaries (n = 5–10 flies per sample) using

the Qiagen Blood and Tissue Kit. Relative mitoDNA was measured by qPCR using primers for

mitoDNA: GCTCCTGATATAGCATTCCCACGA and CATGAGCAATTCCAGCGGATA

AA; for nucDNA: CGAGGGATACCTGTGAGCAGCTT and GTCACTTCTTGTGCTGCC

ATCGT. Fast SYBR Green Master Mix (Applied Biosystems) was used according to the manu-

facturer’s recommendations.

Mitochondrial respiration
Whole fly mitochondria were isolated as previously described [82]. Oxygen consumption was

measured using a 1 ml Clark-type oxygen electrode at 25˚C. Mitochondria (0.2 mg protein/

ml) were energised with either glutamate/malate (5 mM), succinate (5 mM) or glycerol-

3-phosphate (5 mM) as the respiratory substrate. The state 3 rate was determined following

addition of ADP (1 mM). The respiratory control ratio (RCR) was calculated from state 3/state

4.
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Mitochondrial H2O2 levels
In vivo mitochondrial H2O2 levels were measured using the ratiometric mass spectrometry

probe MitoB as described previously [83], with injected flies (n = 5, in cohorts of 10) incubated

for 4 h at 27˚C prior to analysis.

Statistical analysis
Statistical analysis was performed using JMP software (version 4.0.5; SAS Institute). Log rank

tests were performed on lifespan and stress survival curves. Other data were tested for normal-

ity using the Shapiro-Wilk W test on studentised residuals and where appropriate log-trans-

formed. One-way analysis of variance (ANOVA) and planned comparisons of means were

made using Tukey-Kramer HSD and Student’s t-test test.

Microarray analysis
For Dros2 Affymetrix microarray analysis, the fat body, intestine and Malpighian tubules were

dissected from n = 15 flies per sample, with 5 replicates per genotype. To facilitate statistical

analysis, each of the autophagy conditions was compared to two controls—the corresponding

driver and the UAS-Atg1(S) line. Raw data (cel files) were processed to correct for probe-

sequence biases, and R’s implementation of the Affymetrix’s MicroArray Suite 5.0 software

was used to determine present target transcripts [84]. Data were normalised using LOESS nor-

malisation and a linear model was fitted to identify a set of differentially expressed genes using

the R LIMMA package [85]. All individual probes were mapped against all known and pre-

dicted transcripts of the Drosophila melanogaster genome release version 5.4. FlyBase gene IDs

were mapped to Gene Ontology (GO) IDs (version 1.107). For functional analysis using all

expressed genes, we used the Wilcoxon rank sum test implemented in Catmap [86]. Ranks of

genes were based on the Bayes t-statistic for differential expression and, for a given functional

category, the significance of the rank sum for all genes in the category was calculated analyti-

cally based on a random gene-rank distribution. Array data is deposited in ArrayExpress

under the accession number E-MTAB-9391.

Metabolomics analysis
For metabolomics analysis, 10 whole flies were homogenised with a micropestle in 500 μl of

80% methanol, then sonicated for 1 min and centrifuged for 10 min at 15000 g, 4˚C. The

supernatant was collected and stored at –80˚C. Samples were then analysed by hydrophilic

interaction liquid chromatography-mass spectrometry (UltiMate 3000 RSLC; Thermo Fisher)

with a 150 x 4.6mm ZIC-HILIC column running at 300 μl/min and Orbitrap Exactive

(Thermo Fisher). Raw mass spectrometry data were processed using a standard pipeline, con-

sisting of XCMS for peak picking [87], MzMatch for filtering and grouping [88], and IDEOM

[89]. Core metabolite identifications were validated against a panel of unambiguous standards

by mass and retention time. Additional putative identifications were assigned by mass and pre-

dicted retention time [90–92]. Means and SEM were generated for all groups of picked peaks

and uploaded to Ingenuity pathway analysis software. Statistical analysis was performed using

R. For each metabolite, differences between experimental groups were determined using linear

modelling on log2 transformed metabolite peak intensities. Principal component analysis

(PCA) was performed using unsupervised multivariate analysis. Significance of differences

was evaluated within the linear models using pooled standard errors with the subsequent Ben-

jamini-Hochberg FDR correction for multiple testing. Differences were considered statistically

significant when Benjamini-Hochberg FDR< 0.05 as indicated in the Figure, Figure labels or
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experimental methods. Asterisks denote corresponding statistical significance: �FDR< 0.05;
��FDR< 0.01; ���FDR< 0.001, unless stated otherwise. Data are presented as the mean ±SD

from at least 3 independent biological replicates, unless stated otherwise in the Figures,

Figure labels or experimental methods. Enrichment of KEGG pathways for metabolites was

evaluated using log transformed metabolite peak intensities and the “Pathway analysis” tool on

MetaboAnalyst 3.0 [93, 94].

RNA extraction and quantitative RT-qPCR
Total RNA was extracted from whole flies or dissected tissues using TRIzol (GIBCO) accord-

ing to the manufacturer’s instructions. mRNA was reverse transcribed using oligo(dT) primers

and the Superscript II system (Invitrogen). RT-qPCR was performed using the Fast SYBR

Green Master Mix (Applied Biosystems, 4385612) according to the manufacturer’s instruc-

tions. Primers were optimised following the procedure from Advanced Biosystems, and rela-

tive quantities determined by normalising against actin5C (relative standard curve method).

Primers used for RT-qPCR were: atg1-F ACCAGAGGCAGAACGCATAC and atg1-R GCA

GCCAATTAGCGTAAAGC; atg5-F GACATCCAACCGCTCTGCGCA and atg5-R CAGA

CGATGACTTCACGTACACC; actin5C-F GAGCGCGGTTACTCTTTCAC and actin5C-R

GCCATCTCCTGCTCAAAGTC; attacin-F CCAAGGGCATTGGCAATC and attacin-R

TTTCCGGCGGCGAAA; metchnikowin-F GCAACTTAATCTTGGAGCGATT and metch-

nikowin-R GAAAATGGGTCCCTGGTGA; drosomycin-F CTGCCTGTCCGGAAGATAC

AA and drosomycin-R TCCCTCCTCCTTGCACACA; rpl9-F CATGATCAAGGGAGTCA

CGT and rpl9-R ATGTACTTCTCACCCAAGAAG. Primers for attacin, metchnikovin and

drosomycin are from reference [95].

Supporting information
S1 Fig. Characterising the effect of autophagy down-regulation on lifespan. (A) Confirma-

tion of decreased Atg5 transcription upon overexpression of UAS-Atg5 RNAi. Quantification

of Atg5 mRNA levels by qRT-PCR in chico1/chico1 actGS> UAS-atg5RNAi flies ±RU

(200 μM). Data are normalised to actin5C, and are means ±SEM of n = 3 samples (p = 0.01,

Student’s t-test, �� p<0.01). (B) Western blot analysis showing an increase in Atg8a-I upon

inducing down-regulation of Atg5 transcription using RU in actGS> UAS-atg5RNAi flies

(p = 0.0002; Student’s t-test). Data are means ±SEM of n = 4 samples. (C) Confirmation of

decreased Atg12 transcription upon overexpression of UAS-Atg12 RNAi. Quantification of

Atg12 mRNA levels by qRT-PCR in chico1/chico1 actGS> UAS-atg12RNAi flies ±RU

(200 μM). Data are normalised to actin5C, and are means ±SEM of n = 3 samples (p = 0.019,

Student’s t-test, � p<0.05). (D) Survival of +/+ controls, chico1/chico1, and chico1/chico1 actGS
> UAS-atg12RNAi on standard food (–RU). Both chico1/chico1 mutants were longer-lived

than the +/+ controls (p<0.0001; log-rank test), but not significantly different from each other

(p = 0.65, log-rank test). Survival of +/+ controls and chico1/chico1 are same as in Fig 1. (E)

Survival of +/+ controls, chico1/chico1, and chico1/chico1 actGS> UAS-atg12RNAi on RU

food. Both chico1/chico1 mutants were longer-lived than the +/+ controls (p<0.0001 and

p = 0.001; log-rank test), but not significantly different from each other (p = 0.21, log-rank

test). (F) Down-regulation of autophagy by Atg12 RNAi showed a tendency to shorten the life-

span extension of long-lived chico1 null mutants (p = 0.091, log-rank test). Survival curves for

chico1/chico1 actGS> UAS-atg12RNAi on control and +RU food (200 μM). n~210 flies per

condition for all lifespan experiments. (G) Down-regulation of Atg5 transcription upon RNAi

in the adult flies using inducible actGS driver did not affect longevity (p = 0.23, Student’s t-test,
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n~210 flies per condition).

(PDF)

S2 Fig. Survival analysis of Atg1 overexpression under the control of different drivers. (A)

Constitutive over-expression of UAS-Atg1(W) under weak ubiquitous heat shock hsGAL4 did

not alter lifespan compared to driver alone, and lifespan was worsened when overexpression

of autophagy was combined with the apoptosis inhibitor p35 (p<0.001, log-rank test compari-

son of hsGAL4>UAS-Atg1(W)UAS-p35 with hsGAL4). Inhibition of apoptosis shortened life-

span (p<0.001, log-rank test comparison of hsGAL4>UAS-p35 with hsGAL4; n~100 flies per

condition). (B) Ubiquitous over-expression of UAS-Atg1(W) under actGS, an inducible ubiq-

uitous GeneSwitch driver, led to lifespan shortening in the presence of 100 μM RU (p<0.001,

log-rank test; n~180 flies per condition). (C) GFP-p62 cleavage assay for measurements of

autophagy flux demonstrated an apparent decrease in GFP-p62 cleavage in the autophagy flies

in the absence of autophagy inhibitor chloroquine but, contrarily, a significant increase in

GFP-p62 cleavage under non-saturating levels of chloroquine, suggesting increased flux upon

Atg1 overexpression. (p<0.005, Student’s t-test). (D) Over-expression of Atg1 with the Malpi-

ghian tubule driver UOGAL4 did not extend lifespan (p = 0.91 and p = 0.38 for the log-rank

test comparison of the UOGAL4 control with UOGAL4> UAS-Atg1(W) and UOGAL4>
UAS-Atg1(S) respectively; n~180 flies per condition). (E) Over-expression of Atg1 using the

gut driver NP1GAL4 did not extend lifespan. (p = 0.49, log-rank test comparison of

NP1GAL4> UAS-Atg1(W) with the wild-type control, n~160 flies per condition). No signifi-

cant differences were observed between any of the represented lifespans (p>0.05, log-rank

test). NP1GAL4> UAS-Atg1(S) flies were developmentally lethal. (F) qRT-PCR analysis of

Atg1 expression in the intestine and fat body of flies from (E) showing a statistically significant

increase of Atg1 expression in the intestine of the NP1GAL4> UAS-Atg1(W) flies (p = 0.047,

Student’s t-test; �, p<0.05) but not in the fat body (p = 0.2638, Student’s t-test). (G) Fat body

over-expression of UAS-Atg1(W) under control of the FBGAL4 driver did not extend lifespan

(p = 0.30, log-rank test comparison of FBGAL4> UAS-Atg1(W) with FBGAL4, n~150 flies per

condition). No significant differences were observed between any of the represented lifespans

(p>0.05, log-rank test). FBGAL4> UAS-Atg1(S) flies were developmentally lethal. (H)

qRT-PCR analysis of Atg1 expression in the intestine and fat body of flies from (G) showing a

statistically significant increase of Atg1 expression in the fat body (p = 0.02, Student’s t-test; �,

p<0.05) but not in the intestine (p = 0.42, Student’s t-test) of the FBGAL4> UAS-Atg1(W)
flies. (I) No lifespan extension in TIGS-2> UAS-Atg1(S) flies in the presence of different RU

concentrations (p>0.05 for all comparisons with the 0 μM RU control, log-rank test, n~180

flies per condition). TIGS-2 is an inducible gut-specific GeneSwitch driver. (J) qRT-PCR analy-

sis of Atg1 expression in the intestine and fat body of flies from (G) showing a statistically sig-

nificant increase of Atg1 expression in the intestine of the TIGS-2> UAS-Atg1(S) flies on the

200 μM RU food relative to the 0 μM control (p = 0.0003, Student’s t-test; ���, p<0.001), but

not in the fat body (p = 0.42, Student’s t-test).

(PDF)

S3 Fig. Characterisation of the drivers and Atg1 over-expressing flies. (A) Representative

X-Gal staining for the CSGAL4, HRGAL4 and NP1GAL4 drivers. (B) Development time of the

autophagy enhanced flies. Flies with increased autophagy by over-expression of Atg1 driven by

CSGAL4 or HRGAL4 displayed delayed egg to adult development. n~100 flies per condition.

(C) Over-expression of a kinase dead mutant of Atg1, UAS-Atg1KQ, driven by CSGAL4 did

not extend lifespan (p = 0.9936, log-rank test comparison of CSGAL4> UAS-Atg1KQ with the

CSGAL4 driver control). The long-lived autophagy enhanced flies CSGAL4> UAS-Atg1(S)
was significantly longer lived than the CSGAL4 control (p<0.0001, log-rank test). n~120 flies
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per condition. (D) Body size as inferred from wing area measurement in the Atg1 over-

expressing flies. Data are means ±SEM of n = 10 females per genotype. There are no statisti-

cally significant differences in wing size among the represented genotypes, as calculated by a

one-way ANOVA Tukey-Kramer (HSD). (E) Western blot analysis showing no significant

change in pS6K/tS6K in Atg1 over-expressing flies compared to controls (UAS-Atg1(S) com-

pared to CSGAL4 tubGAL80ts> UAS-Atg1(S) p = 0.76, Student’s t-test; and UAS-Atg1(S) com-

pared to HRGAL4 tubGAL80ts> UAS-Atg1(S) p = 0.35, Student’s t-test).

(PDF)

S4 Fig. Transcriptional profiling of the Atg1 over-expressing flies. There was significant

over-representation of the differentially expressed genes between the two autophagy enhanced

lines. The cut-off point of the adjusted p-value was < 5 x 10−5 for the long-lived Atg1 over-

expressing flies and<1 x 10−10 for the short-lived Atg1-over-expressing flies.

(PDF)

S5 Fig. Mitochondrial characterisation and Oil Red O staining for lipids of the autophagy
enhanced flies. (A) Relative mitochondrial copy number measured by qRT-PCR showed

undetectable differences in Atg1 over-expressing flies. (B) Western blot analysis for different

mitochondrial proteins showed increased PDH in the long-lived (p = 0.005, Student’s t-test)

and the short-lived flies (p = 0.037, Student’s t-test). Both SDHB levels (p = 0.44 and 0.55 for

long-lived and short-lived flies, Student’s t-test) and VDAC levels (p = 0.50 and 0.11 for long-

lived and short-lived flies, respectively, Student’s t-test, n = 9) were unaltered. NDUFS3 and

ATP5A were increased in short-lived (p = 0.042 and 0.005, Student’s t-test) but not in long-

lived flies (p = 0.11 and p = 0.27, Student’s t-test). Cytochrome C was downregulated in both

the long-lived (p = 0.012; Student’s t-test; n = 8) and the short-lived flies (p = 0.006; Student’s

t-test). GAPDH was used for normalisation. Data are means ±SEM. (C) Production of mito-

chondrial H2O2 in the Atg1 over-expressing flies in vivo measured by the mass spectrometry

probe MitoB. Data are means ±SEM of n = 6 samples (each containing 10 flies). Statistical sig-

nificance was determined by a one-way ANOVA Tukey-Kramer HSD test (���, p<0.001). (D)

The short-lived Atg1 over-expressing flies had increased levels of dihydroxyacetone phosphate,

as determined by metabolomics analysis. Statistical significance was calculated by a one-way

ANOVA Tukey-Kramer HSD test (���, p<0.001). (E) Oil Red O staining for lipids showed

decreased lipid content in autophagy enhanced flies. This lipid loss was very pronounced in

the short-lived flies, resulting in almost complete lipid disappearance by day 12.

(PDF)

S6 Fig. Metabolomic profiling of the autophagy enhanced flies. (A) Heat map of metabolite

profiles for Atg1 over-expressing flies with different longevity phenotypes and controls. Rela-

tive metabolite levels shown by colour scale, hierarchical clustering done by Euclidean dis-

tance. Hierarchical clustering of raw data revealed that the long-lived fly metabolomics

samples clustered closer to controls than short-lived fly samples. (B) Principal component

analysis (PCA) of metabolomics data. Unsupervised multivariate analysis indicates consistent

metabolic profiles associated with each phenotype. The short-lived flies exhibited a metabolic

profile that is very different from controls, as represented by the 1st principal component. The

long-lived flies display a metabolic profile that is different from both controls and short-lived

flies. Differences between controls and long-lived flies are represented by the 2nd principal

component.

(PDF)

S7 Fig. Side-by-side comparison of KEGG pathway enrichment for metabolite changes in
the mild and strong Atg1 over-expressing flies. Numerous metabolic pathways are affected
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upon autophagy up-regulation. Metabolic changes are more pronounced in the short-lived

flies, compared to the long-lived flies. No unique pathway changes are observed in the long-

lived flies. L stands for long-lived (CSGAL4 tubGAL80ts> UAS-Atg1(S)); S for short-lived

(HRGAL4 tubGAL80ts> UAS-Atg1(S)); C1 for control 1 (CSGAL4 tubGAL80ts); C2 for control

2 (UAS-Atg1(S)).
(PDF)

S8 Fig. Volcano plot representing metabolic differences between the long-lived (L) and the
short-lived (S) Atg1 over-expressing flies. Metabolites with absolute changes logFC>1 and a

FDR significance of<0.05 are marked. Red indicates an increase and blue a decrease in the

amount of metabolite.

(PDF)

S1 Data. Transcriptomic data for Atg1 over-expressing flies.
(XLSX)

S1 Table. List of lipid metabolism-related genes that were transcriptionally regulated in
the long- and the short-lived Atg1 over-expressing flies.
(PDF)
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PLOS GENETICS Autophagy and ageing

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1009083 November 30, 2020 28 / 34

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009083.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009083.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009083.s010
https://doi.org/10.1371/journal.pgen.1009083


Writing – original draft: Ivana Bjedov.

Writing – review & editing: Ivana Bjedov, Helena M. Cochemé, Nathaniel S. Woodling, Kerri
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