
Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro

Stony Brook University, NY

A General-Purpose Counting Filter:

Making Every Bit Count

Approximate Membership Query
(AMQ)

• An AMQ is a lossy representation of a set.
• Operations: inserts and membership queries.
• Compact space:

• Often taking < 1 byte per item.
• Comes at the cost of occasional false positives.

AMQ

insert(X)

yes/no

isMember(X)

• A Bloom filter is a bit-array + k hash functions.  
(Here k=2.)

0 0 0 0 0 0
m

Bloom filter
[Bloom, 1970]

1 0 1 0 0 0
m

Insertions in a Bloom filter

• A Bloom filter is a bit-array + k hash functions.  
(Here k=2.)

W

1 0 1 1 0 0
m

Insertions in a Bloom filter

• A Bloom filter is a bit-array + k hash functions.  
(Here k=2.)

XW

1 0 1 1 0 1
m

Insertions in a Bloom filter

• A Bloom filter is a bit-array + k hash functions.  
(Here k=2.)

YXW

1 0 1 1 0 1

Membership query in a Bloom filter

query(W)

YXW

• The Bloom filter has a bounded false-positive rate.

1 0 1 1 0 1

Membership query in a Bloom filter

query(W)

YES

YXW

• The Bloom filter has a bounded false-positive rate.

1 0 1 1 0 1

Membership query in a Bloom filter

query(W) query(U)

YES

• The Bloom filter has a bounded false-positive rate.

YXW

1 0 1 1 0 1

Membership query in a Bloom filter

query(W) query(U)

YES NO

• The Bloom filter has a bounded false-positive rate.

YXW

1 0 1 1 0 1

Membership query in a Bloom filter

query(W) query(U) query(Z)

YES NO

• The Bloom filter has a bounded false-positive rate.

YXW

1 0 1 1 0 1

YXW

Membership query in a Bloom filter

query(W) query(U) query(Z)

YES NO YES

• The Bloom filter has a bounded false-positive rate.

false	positive

Bloom filters are ubiquitous

Storage systems

NetworkingStreaming applications

Computational biology

Databases

Counting filters: AMQs for multisets

• A counting filter is a lossy representation of a multiset.
• Operations: inserts, count, and delete.
• Generalizes AMQs

• False positives ≈ over-counts.

Counting
filter

insert(X)

count
getCount(X)

delete(X)

Why is counting important?

• Counting filters have numerous applications:
• Computational biology, e.g., k-mer counting.
• Network anomaly detection.
• Natural language processing, e.g., n-gram counting.

• Counting enables AMQs
 to support deletes.

Many real data sets have skewed counts

Counting filters should handle skewed data
sets efficiently.

Number of items: ~19.6B
Number of distinct items: ~1.1B

100 101 102 103 104 105 106 107

Frequency

100

102
103
104
105
106
107
108
109

101

N
um

be
r o

f i
te

m
s w

ith
 th

e
fre

qu
en

cy Number of items: ~19.6B
Number of distinct items: ~1.1B

Many real data sets have skewed counts

Counting filters should handle skewed data
sets efficiently.

Number of items: ~19.6B
Number of distinct items: ~1.1B

100 101 102 103 104 105 106 107

Frequency

100

102
103
104
105
106
107
108
109

101

N
um

be
r o

f i
te

m
s w

ith
 th

e
fre

qu
en

cy Number of items: ~19.6B
Number of distinct items: ~1.1B

4 0 7 4 0 1

insert(W,4) insert(X,3) insert(Y,1)

Counting Bloom filters
[Fan et al., 2000]

• Counters must be large enough to hold count of most frequent item.
• Counting Bloom filters are not space-efficient for skewed data sets.

4 0 7 4 0 1

insert(W,4) insert(X,3) insert(Y,1)

Counting Bloom filters
[Fan et al., 2000]

• Counters must be large enough to hold count of most frequent item.
• Counting Bloom filters are not space-efficient for skewed data sets.

RNA-seq dataset
Total number of items: 19.6 Billion

Number of distinct items: 1.1 Billion
Maximum frequency: ~8 Million

Space usage of a CBF: ~38GB

This paper: The counting quotient filter (CQF)

• A replacement for the (counting) Bloom filter.

• Space and computationally efficient.

• Uses variable-sized counters to handle skewed
data sets efficiently.

CQF space ≤ BF space + O(∑ log c(x))
x∈S

}
Asymptotically optimal

This paper: The counting quotient filter (CQF)

• A replacement for the (counting) Bloom filter.

• Space and computationally efficient.

• Uses variable-sized counters to handle skewed
data sets efficiently.

CQF space ≤ BF space + O(∑ log c(x))
x∈S

RNA-seq dataset
Total number of items: 19.6 Billion

Number of distinct items: 1.1 Billion
Maximum frequency: ~8 Million

Space usage of a CQF: ~2.5GB}
Asymptotically optimal

Other features of the CQF
• Smaller than many non-counting AMQs

• Bloom, cuckoo [Fan et al., 2014], and quotient [Bender
et al., 2012] filters.

• Good cache locality
• Deletions
• Dynamically resizable
• Mergeable

Contributions

• New quotient filter metadata scheme

• Smaller and faster than original quotient filter

• Efficient variable-length counter encoding method

• Zero overhead for counters

• Fast implementation of bit-vector select on words

• Exploits new x86 bit-manipulation instructions

Quotienting: An alternative to Bloom filters

• Store fingerprint compactly in a hash table.
• Take a fingerprint h(x) for each element x.

• Only source of false positives:
• Two distinct elements x and y, where h(x) = h(y).
• If x is stored and y isn’t, query(y) gives a false positive.

 h(x)x

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q rb(u)

b(x) t(x)

t(u)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

q rb(u)

b(x) t(x)

t(u)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Tag
Bucket index

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
Linear probing.

q rb(u)

b(x) t(x)

t(u)
 t(v)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Tag
Bucket index

Storing compact fingerprints

q rb(u)

b(x) t(x)

t(u)
 t(v)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Does t(v) belongs to
bucket 4 or 5 ?

• The home bucket for
 t(u) and t(v) is 4.

Tag
Bucket index

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

• Metadata scheme supports efficient inserts/deletes.

1 1

t(u) t(v) t(w) t(x) t(y)

Resolving collisions in the CQF

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

• Metadata scheme supports efficient inserts/deletes.

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the CQF

insert v

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

• Metadata scheme supports efficient inserts/deletes.

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

Resolving collisions in the CQF

insert v

The metadata bits enable us to identify the slots
holding the contents of each bucket.

Counting quotient filter (CQF)
Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

0 1 2 3 4 5 6 7

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(a)

0 1 2 3 4 5 6 7

1
1

h1(a)

Counting quotient filter (CQF)

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(a)

h(b)

0 1 2 3 4 5 6 7

1
1

h1(a) h1(b)

Counting quotient filter (CQF)

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(d)h(a)

h(b)

0 1 2 3 4 5 6 7

1 1
1 1

h1(a) h1(b) h1(d)

Counting quotient filter (CQF)

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(d)h(a)

h(b) h(e)

0 1 2 3 4 5 6 7

1 1
1 1

h1(a) h1(b) h1(d) h1(e)

Counting quotient filter (CQF)

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(d)h(a)

h(b)

h(c)

0 1 2 3 4 5 6 7

1 1
1 1

h1(a) h1(b) h1(c) h1(d) h1(e)

Counting quotient filter (CQF)

h(e)

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds
runends

2q
Abstract Representation

h(d)h(a)

h(b)

h(c)

0 1 2 3 4 5 6 7

1 1 1
1 1 1

h1(a) h1(b) h1(c) h1(d) h1(e) h1(f)

Counting quotient filter (CQF)

h(e)

h(f)

Metadata operations

• Can accelerate metadata operations using x86 bit-manipulation
instructions.

• Asymptotic improvement in query performance over the original QF.

runends

occupieds

Rank(occupieds, 3) = 2 Select(runends, 2) = 5

run

0 1 2 3 4 5 6 7

1 1
1 1

Encoding counts

• Metadata scheme tells us the run of slots holding

contents of a bucket.

• We can encode contents of buckets however we want.

• The original quotient filter used repetition (unary).

1 1

t(u) t(u) t(u) t(u) t(x) t(y)

Encoding counts

• We want to count in binary, not unary.

• Idea: use some of the space for tags to store counts.

• Issue: determine which are tags and which are counts

without using even one “control” bit.

1 1

t(u) 4 t(x) 1 t(y) 1

Encoding counts

4 copies of t(u)
}

2q

Dataset: 2 copies of 0, 7 copies of 3, and 9 copies 8.

• An encoding scheme to count the multiplicity of items.
• Variable-sized counter.
• Using slots reserved for remainders to, instead, store count

information.

1 1

1 1

0 0 3 0 6 3 8 7 8

Encoding counts

Performance: In memory

• The CQF insert performance in RAM is similar to that of state-of-
the-art non-counting AMQs.

• The CQF is significantly faster at low load factors and slightly
slower on high load factors.

Inserts lookups

Performance: Skewed datasets

❑ The CQF outperforms the CBF by a factor of 6x-10x on both inserts
and lookups.

Inserts lookups

Conclusion
• The CQF is smaller and faster than other AMQs,

• even ones that can’t count.

• The CQF also supports deletes, resizing, cache
locality, and other features applications need.

• The CQF demonstrates the extensible design of
the quotient filter.

https://github.com/splatlab/cqf

https://github.com/splatlab/cqf

Space analysis: Bloom Filter
• m = # of bits

• n = # of elements

• k = # of hash functions

• k = m/(n ln2)

• bits per element S = m/n

• false-positive rate = 2-m/(n ln2) = 2-Sln2

Space analysis: Cuckoo Filter
• f = # of fingerprint bits

• b = # of entries in each bucket

• α = load factor

• bits per element S = α/f

• false-positive rate = 2b/2f = 2b/2Sα

Space analysis: Quotient filter
• q = # of quotient bits

• r = # of remainder bits

• c = # of metadata bits per slot

• α = load factor

• # of slots = 2q

• bits per element S = (r+c)/α

• false-positive rate = α2-r = α2-αS+c

The quotient filter always takes less space
than the cuckoo filter and offers better false-
positive rate than the Bloom filter whenever

S ≥ (c + lnα)/(α-ln2)

