A General-Purpose Counting Filter: Making Every Bit Count

Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY

Approximate Membership Query (AMQ)

- An AMQ is a lossy representation of a set.
- Operations: inserts and membership queries.
- Compact space:
 - Often taking < 1 byte per item.
 - Comes at the cost of occasional false positives.

Bloom filter

[Bloom, 1970]

• A Bloom filter is a bit-array + *k* hash functions. (Here *k*=2.)

Insertions in a Bloom filter

• A Bloom filter is a bit-array + *k* hash functions. (Here *k*=2.)

Insertions in a Bloom filter

• A Bloom filter is a bit-array + *k* hash functions. (Here *k*=2.)

Insertions in a Bloom filter

A Bloom filter is a bit-array + k hash functions. (Here k=2.)

Bloom filters are ubiquitous

Streaming applications

Networking

Counting filters: AMQs for multisets

- A counting filter is a lossy representation of a multiset.
- Operations: inserts, count, and delete.
- Generalizes AMQs
 - False positives \approx over-counts.

Why is counting important?

- Counting filters have numerous applications:
 - Computational biology, e.g., k-mer counting.
 - Network anomaly detection.
 - Natural language processing, e.g., n-gram counting.
- Counting enables AMQs to support deletes.

Many real data sets have skewed counts Frequency distribution: RNA-seq

Many real data sets have skewed counts Frequency distribution: RNA-seq

Counting filters should handle skewed data sets efficiently.

- Counters must be large enough to hold count of most frequent item.
- Counting Bloom filters are not space-efficient for skewed data sets.

Counting Bloom filters

[Fan et al., 2000]

RNA-seq dataset Total number of items: 19.6 Billion Number of distinct items: 1.1 Billion Maximum frequency: ~8 Million

Space usage of a CBF: ~38GB

- Counters must be large enough to hold count of most frequent item.
- Counting Bloom filters are not space-efficient for skewed data sets.

This paper: The counting quotient filter (CQF)

- A replacement for the (counting) Bloom filter.
- Space and computationally efficient.
- Uses variable-sized counters to handle skewed data sets efficiently.

CQF space \leq BF space + O($\sum_{x \in S} \log c(x)$) Asymptotically optimal

This paper: The counting quotient filter (CQF)

RNA-seq dataset Total number of items: 19.6 Billion Number of distinct items: 1.1 Billion Maximum frequency: ~8 Million

• S

^d Space usage of a CQF: ~2.5GB CQF space ≤ BF space + $O(\sum_{x \in S} \log c(x))$

Asymptotically optimal

r.

be

Other features of the CQF

- Smaller than many non-counting AMQs
 - Bloom, cuckoo [Fan et al., 2014], and quotient [Bender et al., 2012] filters.
- Good cache locality
- Deletions
- Dynamically resizable
- Mergeable

Contributions

- New quotient filter metadata scheme
 - Smaller and faster than original quotient filter
- Efficient variable-length counter encoding method
 - Zero overhead for counters
- Fast implementation of bit-vector select on words
 - Exploits new x86 bit-manipulation instructions

Quotienting: An alternative to Bloom filters

- Store fingerprint compactly in a hash table.
 - Take a fingerprint h(x) for each element x.

$$x \qquad h(x) \qquad h(x$$

- Only source of false positives:
 - Two distinct elements x and y, where h(x) = h(y).
 - If x is stored and y isn't, query(y) gives a false positive.

Resolving collisions in the CQF

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

Resolving collisions in the CQF

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

Resolving collisions in the CQF

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

The metadata bits enable us to identify the slots holding the contents of each bucket.

1

Abstract Representation

23456

7

Implementation: 2 Meta-bits per slot.

 $\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{\boldsymbol{I}}(\mathbf{x})$

Implementation: 2 Meta-bits per slot.

 $\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{1}(\mathbf{x})$

Implementation: 2 Meta-bits per slot.

 $\mathbf{h}(\mathbf{x}) \dashrightarrow h_{\boldsymbol{\theta}}(\mathbf{x}) \parallel h_{\boldsymbol{1}}(\mathbf{x})$

Abstract Representation 2^{q} 0 1 2 3 4 5 6 7 $\stackrel{*}{}_{h(a)}$ $\stackrel{*}{}_{h(b)}$

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{1}(\mathbf{x})$$

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{1}(\mathbf{x})$$

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow h_0(\mathbf{x}) \parallel h_1(\mathbf{x})$$

occupieds

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{1}(\mathbf{x})$$

occupieds

Metadata operations

Rank(occupieds, 3) = 2 Select(runends, 2) = 5

- Can accelerate metadata operations using x86 bit-manipulation instructions.
- Asymptotic improvement in query performance over the original QF.

Encoding counts

- Metadata scheme tells us the run of slots holding contents of a bucket.
- We can encode contents of buckets however we want.
- The original quotient filter used repetition (unary).

1		1				
<i>t</i> (<i>u</i>)	t(x)	<i>t</i> (<i>y</i>)				

Encoding counts

- We want to count in binary, not unary.
- Idea: use some of the space for tags to store counts.
- Issue: determine which are tags and which are counts without using even one "control" bit.

Encoding counts

Dataset: 2 copies of 0, 7 copies of 3, and 9 copies 8.

- An encoding scheme to count the multiplicity of items.
- Variable-sized counter.
- Using slots reserved for remainders to, instead, store count information.

Performance: In memory

- The CQF insert performance in RAM is similar to that of state-of-the-art **non-counting** AMQs.
- The CQF is significantly faster at low load factors and slightly slower on high load factors.

Performance: Skewed datasets

□ The CQF outperforms the CBF by a factor of 6x-10x on both inserts and lookups.

Conclusion

- The CQF is smaller and faster than other AMQs,
 - even ones that can't count.
- The CQF also supports deletes, resizing, cache locality, and other features applications need.
- The CQF demonstrates the extensible design of the quotient filter.

https://github.com/splatlab/cqf

Space analysis: Bloom Filter

- *m* = # of bits
- n = # of elements
- k = # of hash functions

- $k = m/(n \ln 2)$
- bits per element S = m/n
- false-positive rate = $2^{-m/(n \ln 2)} = 2^{-Sln^2}$

Space analysis: Cuckoo Filter

- f = # of fingerprint bits
- b = # of entries in each bucket
- α = load factor

- bits per element $S = \alpha/f$
- false-positive rate = $2b/2^f = 2b/2^{S\alpha}$

Space analysis: Quotient filter

The quotient filter always takes less space than the cuckoo filter and offers better falsepositive rate than the Bloom filter whenever $S \ge (c + ln\alpha)/(\alpha - ln2)$

- bits per element $S = (r+c)/\alpha$
- false-positive rate = $\alpha 2^{-r} = \alpha 2^{-\alpha S+c}$