Demystifying Magic

High-Level Low-Level Programming

Daniel Frampton
Australian National University

Steve Blackburn Perry Cheng Robin Garner
Australian National University IBM Research Australian National University
David Grove Eliot Moss Sergey Salishev

IBM Research U. Massachusetts, Amherst St Petersburg State U., Russia

Abstraction

‘ EITHER ONE IS GOOD;
TELL ME AGI T LUIASN'T PLANNING

LfJSHAT THE I} ON LISTENING.

|
¥

Frampton et al Demystifying Magic

The Problem

« Systems programmers:

— strive for reliability, security,
maintainability

— depend on performance and transparent
access to low-level primitives

 Abstraction:

— Enables the former
— Typically obstructs the latter

The Goal

Abstraction without quilt.

Revolution

Why

I find it necessary to
partition my concerns, and deal with them
separately.

I don’t worry about all
resources all the time

While I am programming
an/%/ one of these I would like to take the
others for granted.

Why Not

A person designing and implementing an
operating system

The operation of these
devices is his problem. It is unclear to us why
he would ever want to obscure the exact
nature of this hardware

Yes! High level languages should be used to write systems software

James Horning, ACM Annual Conference/Annual Meeting
Proceedings of the 1975 Annual Conference

YES! HIGH LEVEL LANGUAGES SHOULD BE USED TO WRITE SYSTEMS SOFTWARE

c t nget ot 2::2§:§h Crou the effects of language level on the costs in most
omputer Systems £ P categories. However, if we knew the magnitude of
it (4 Toronto4 these effects, I believe the panel would agree that,
Toronto, CANADA M5S 1A for any particular application (including systems
WHAT IS A "HIGH LEVEL LANGUAGE?" software), we should choose the language level that

It has frequently been remarked that it 1s easier to minimizes total costs.

recognize "high level' languages than to define the

concept. For the purposes of this debate, however, WHAT IS IRRELEVANT TO THE CURRENT DEBATE?

I think that we agree that a language is high level Debates of this sort are often cluttered up by all
a o . o P 2 2 o A8 o o o oaa o oo o L8 o0t £ 2 o AY B ey ey PN SN T Y P 4 s P S SRS E IPTTTe Mavsasr o 25 N

On the appropriate language for system programming
ACM SIGPLAN Notices, Volume 7, Number 7, 1972

SIGPLAN Notices 28 1972, Vol. 7, No, 7

Oid THE APPROPRIATEE LANGUAGE FOR SYSTEM PROGRAMMING

J.G. Fle?cher, C.S. Badger, G.L. Boer, G.G. Marshall, Computation Depart-
ment, University of California, Lawrence Liverrore Laboratory

Key words and phrases: system implementation language

C.R. Categories: 4,20, 4,31

Before stating the thesis of this communication, we must first make a

Why (1975)

Only a very small fraction of an operating system is
concerned in any interesting way with the structure
of the CPU, which is what low level languages keep
me close to. Thus, I find that high level languages
actually make it easier to focus on any particular
machine details that are relevant to some part of my
system, and to suppress the rest.

Frampton et al Demystifying Magic

Why (1975)

- optimizing compilers are getting better (Wulf,
1975), and an improvement in the compiler is re-
flected in all existing programs;

- for time optimization, perhaps only 5% of the code
is crucial (Brooks, 1975);

- often the gains to be made by a global reorganiza-
tion (e.g., change of data structure) exceed any~-
thing that can be done by "bit twiddling," yet
these are precisely the hardest changes to make in
low level programs;

- "best hand coding" is not typical of large systems,
anyhow.

Frampton et al Demystifying Magic 10

Why Not (1972)

of a higher-level language. Use of assembly language permits the programmer
to use every feature of the hardware and to see clearly which algorithms use
those features efficiently and which do not. It is of course conceded by
even the most crusading advocates of higher-level Tanguages that assembly

language cannot be excelled for efficiency, both in storage requirements and
in execution time.

Frampton et al Demystifying Magic 11

Why The 70s Shift to C?

Better language design

Better language implementation
More complex software

More complex hardware

More hardware (portability)

There has been considerable discussion on the merits of high-
level versus assembly language for the task of system programming
[1,2,3]. In the case of computers like the CDC-T600 or the IBM 360/91,
a new issue appears in favor of high-level language. This occurs as
a result of the overlapped instruction execution on these machines.

Revolution II ?

A New Revolution?

« Change continues
— heterogeneous multi-core?
— more complex software

« Higher-level languages
— type safe
— memory safe
— strong abstractions over hardware

SecurityTracker > View Topics > Cause > Boundary error

4|r & EE |+ @ hup://securitytracker.com/archives/cause/27.html Q |~ (Q~ Google
[I1 ASKAP IJK OnlineS.../ Computers ISPASS ViewVC Brad Washburn OLAMS Geronimo Console Login Elisa Banias...t Home Page Apple Yahoo! Google Maps YouTube Wikipedia »
3 gitkernel.org - linux/k... |Q [Frugalware-git] kernel... |Q #504696 - ndiswrapper... |Q git 49945b423c2f7e33... l@ Topics > Cause > Bo... JQ Topics > Cause > No... |

h

Dec 5 2008
Dec 5 2008
Dec 5 2008

MNAan~ & 2NNQ

Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008
Dec 5 2008

Nov 14 2008
Nov 13 2008
Nov 13 2008
Nov 13 2008
Nov 13 2008
Nov 12 2008

News 10 91N

- M Keep Track of the Latest Vulnerabilities
@c‘lt% with SecurityTracker!

pics | Search | ContactUs | Help |

View Topics > Cause > Boundary error

Showing Results - Page: 1 of 82
Previous Page | Next Page | First Page (1) | Last Page {82)

Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflows in Processing Font/Image Files Lets Remote Users Execute Arbitrary Code
(Red Hat Issues Fix) Sun Java Runtime Environment Manifest Bug Lets Remote Users Read/Write Files and Execute Local Applications

Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflow in unpack200 Utility Lets Remote Users Execute Arbitrary Code
Trillinn O #far Muarlaa in Dranaccina AV VAL Tans Mau | abt Damata | loare Evanida Avhitran: Mada

(Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflows in Proc
(Red Hat Issues Fix) Sun Java Runtime Environment Manifest Bug Lets Remo
(Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflow in unpac
Trillian Buffer Overflow in Processing AIM XML Tags May Let Remote Users

Trillian Buffer Overflow in Creating Tooltips Lets Remote Users Execute Arbitr
Trillian Bug in Processing IMG SRC ID Tag Lets Remote Users Execute Arbitr.
(Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflows in Proc
(Red Hat Issues Fix) Sun Java Runtime Environment Manifest Bug Lets Remo
(Red Hat Issues Fix) Sun Java Runtime Environment Buffer Overflow in unpac
Sun Java Runtime Environment Buffer Overflows in Processing Font/Image Fi’
Sun Java Runtime Environment Manifest Bug Lets Remote Users Read/Write

Sun Java Runtlme Enwronment Buffer Overflow in unpack200 Utility Lets Reml

AOMAN L cde Dovaobo |loowes ..

(Apole Issues Fix for Safan on Wlnduws) Mac OS X ColorSync Buffer Overfluw in Processing ICC Profiles Lets Remote Users Execute Arbitrary

Code

Safari Heap Overflow in CoreGraphics Lets Remote Users Execute Arbitrary Code

(Red Hat Issues Fix for SeaMonkey) Mozilla Firefox http-index-format MIME Parsing Buffer Overflow Lets Remote Users Execute Arbitrary Code
(Mozilla Issues Fix for SeaMonkey) Mozilla Firefox http-index-format MIME Parsing Buffer Overflow Lets Remote Users Execute Arbitrary Code
(Red Hat Issues Fix) Mozilla Firefox http-index-format MIME Parsing Buffer Overflow Lets Remote Users Execute Arbitrary Code

Mozilla Firefox http-index-format MIME Parsing Buffer Overflow Lets Remote Users Execute Arbitrary Code

(Red Hat Issues Fix) Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code. Scan Ports. and Conduct HTTP Request Splitting and

Cross-Site Scripting Attacks
IAnnla leciiae Civ far il ifa and Anartiiral | (hWTIEE D ffar | Indarfleaas im Manadins | NMA Rata | ate Damata | lecare Evarniita Aritrans Cada

Spot The Bug...

logmessage("DEBUG: fd: %d select(): fd %d is ready for read\n", sockfd,
sockfd);

/* read as much data as we can */

rres = w_read(sockfd,buf[sockfd]);
SWi (rres)

logmessage("DEBUG: fd: %d select(): fd %d is ready for read\n", sockfd,
sockfd);

/* read as much data as we can */

rres = w_read(sockfd,buf[sockfd],MAXLINE);
switch (rres)

{

case -1:

Solutions?

1. Fortify low-level languages (C/C++)
— Memory safety (e.g., cons. GC, talloc)
— Idioms (e.g., restrictive use of types)
— Tools (e.qg., Valgrind’s memcheck)

2. Use a Systems PL
— BLISS, Modula-3, Cyclone

3. Use two languages
— FFI's such as JNI & PInvoke

4. Extend a high-level language
— Jikes RVM extends Java

Extending: Long History

Modula-3
— SPIN

Java
— JikesRVM, OVM, Moxie, DRLVM (C/C++ VM)

C#
— Bartok, Singularity

usually in the context of runtime research

— access to the language/runtime
— complex systems programming task

Our (Small) Battle for
the Revolution

Our "Battleground”

« Jikes RVM
— Java-in-Java Virtual Machine
— Combined proven and unproven methods

« Higher-level abstractions
— Type safety
— Memory safety

« But what about the cost...
— Abstraction without guilt?

Our Approach

Key Principle: Containment

— Minimize exposure to low-level coding
Extensibility

— Requirements change quickly

— Languages change slowly

Encapsulation

— Contained low-level semantics
Fine-grained lowering of semantics
— Minimize impedance

— Separation of concerns

Our Framework

« Extend semantics
— Intrinsic methods

« Controlling semantics
— Scoped semantic changes

« Extend types
— box/unbox, ref/value, arch. sizes, etc

A Concrete Example

void prefetchObjects(0O0P *buffer, int size) {

A Concrete Example

for(int i=0; i < size; i++) {
OOP current = buffer[i];

A Concrete Example

asm volatile("prefetchnta (%0)" ::
"r" (current));

Java Version

void prefetchObjects(
?1? buffer) {

for(int i=0;i<buffer.length;i++)

{

212 current = buffer[i];

“"Magic” in JikesRVM

 Raw access to memory?
« Use int and "magic” (peek & poke)

int ref;
int value = VM Magic.loadIntAtOffset(ref, offset);

“"Magic” in JikesRVM

 Raw access to memory?
« Use int and "magic” (peek & poke)
« Use ADDRESS macro (as int or long)

ADDRESS ref;
int value = VM Magic.loadIntAtOffset(ref, offset);

“"Magic” in JikesRVM

 Raw access to memory?

« Use int and "magic” (peek & poke)

« Use ADDRESS macro (as int or long)

« Use magical Address type (~= void¥*)
—Typed; magic on “instance”

Address ref;
int value = ref.loadInt(offset);

“"Magic” in JikesRVM

Raw access to memory?

Jse int and "magic” (peek & poke)
Jse ADDRESS macro (as int or long)
Jse magical Address type (~= void*)

Jse ObjectReference magic type
— More strongly typed
— Abstracts over mechanism (handle/pointer)

Java Version

void prefetchObjects(
ObjectReference[] buffer) {

for(int i=e;i<buffer.length;i++) {

ObjectReference current
= buffer[i];

21?

Intrinsics

» Contract between user and compiler
— Implement semantics beyond language
— Requires co-operation of compiler writer

« Canonical intrinsics
class ObjectReference {

@Intrinsic{Prefetch} > Prefetch
void prefetch() {} // empty LoadInt

}
« Express intrinsic abstractly
— e.g., Intermediate language

Java Version

current.prefetch();

Other performance overheads?

Java Version

@NoBoundsCheck

Semantic Regimes

« Scoped semantic change
— Additive
* UncheckedCast (allow certain intrinsics)

— Subtractive

* NoNew (allocation via new() not permitted)
— Other

« SpillAllRegisters

* NoGCYield

* NoBoundsChecks

ObjectReference Overhead?

« Classes are heap allocated and passed-by-reference

@Unboxed
class ObjectReference {

@Intrinsic{Prefetch}
void prefetch() { ... }

¥

« No dynamic information (vtable, etc)
— essentially a C struct

Type System Extension

@Unboxed types

— Remove per-instance typing (struct)
Explicit value/reference types

— Typed pointers (drivers, external data)
Control field layout

— Externally defined interfaces?

— Alternative to marshalling, etc.?
What about new primitives?

— @RawStorage

— Native width backing data
— Only accessed with intrinsics

Both Versions

@NoBoundsCheck
void prefetchObjects(void prefetchObjects(
ObjectReference[] buffer) { OOP *buffer,
int size) {
for (int i=e;i<buffer.length;i++) { for(int i=0;i < size;i++){
ObjectReference current OOP o = buffer[i];
= buffer[i];
current.prefetch(); asm volatile(
"prefetchnta (%0)"
Ilr‘ll (O));
} }

ObjectReference Abstraction

« Insulates from implementation
 Handles?

class ObjectReference {
int handle;

Address getPayload() { ... }
}

ObjectReference Abstraction

« Insulates from implementation
 Handles?

void prefetch() {
getPayload().prefetch();

¥

Power of Abstraction

* Allows alternate implementations
— Instrumentation

— Virtualization
Production Virtual Machine

ObjectReference

Abstraction
(zero overhead)

Garbage
Collector

Physical
Memory

Frampton et al Demystifying Magic 41

Power of Abstraction

* Allows alternate implementations
— Instrumentation

— Virtualization
GC Debugging Harness

Virtualized Annotated

ObjectReference Simulated
Abstraction Memory

Roadmap

10 years of experience
— mostly in runtime development
— broader applications?

Simple unboxed types
— Address, ObjectReference, Word, etc.

Semantic regimes

— NoBoundsChecks, etc

Excellent performance

Still working on:

— value/ref types, general unboxing

— richer semantic regimes
— more powerful intrinsic mechanism

Summary

Higher-languages for low-level coding

We propose a framework

— Extensible semantics (don’t bake in)
— Containment of semantic change

— Extend types

Much implemented

Interested in feedback, thoughts
— sudo instead of root?

Questions?

Abstraction without quilt.

Type System Extension

 Raw storage
— User-defined backing data

«@RawStorage(lengthInWords=true, length=1)
class Address {

byte loadByte();

void storeByte(L> lue);
)
iR, — —
—TY[foo* DPIN' foo ()
foo : :
' i

 Field layout \—t

Considerations

Low-level coding is the exception
— not the rule

Huge range of low-level details
— not an all-or-nothing requirement
Lift the level of abstraction

Maintain flexibility
— Languages change slowly
— Requirements change quickly

Pragmatic

Defining Terms

« High-level language
— type safe
— memory safe
— strong abstractions over hardware

« Low-level programming

— requires transparent, efficient access to
underlying hardware and/or OS,
unimpeded by abstractions.

