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Abstract
It is widely accepted that one of the most satisfactory generalization of the concept of compactness to fuzzy topolog-
ical spaces is α−compactness, first introduced by Gantner et al. in 1978, followed by further investigations by many
others. Chakraborty et al. introduced fuzzy semicompact set and investigated and characterized fuzzy semicompact
spaces in terms of fuzzy nets and fuzzy pre f ilterbases in 2005. In this paper, we propose to introduce a new approach
to characterize the notion of α−semicompactness in terms of ordinary nets and f ilters. This paper deals also with
the concept of α−semilimit points of crisp subsets of a fuzzy topological space X and the concept of α−semiclosed
sets in X and these concepts are used to define and characterize α−semicompact crisp subsets of X .

Keywords: Fuzzy topological spaces, α−semicompactness, α−semicluster point of nets and filters, α−adherent point, α−semiadherent
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1 Introduction

The idea of fuzzy set was originated from the classical paper of L.A.Zadeh [18] in 1965. Subsequently many researchers
have worked on various basic concepts from general topology using fuzzy sets and developed the theory of fuzzy topology. In
recent years fuzzy topology has been found to be very useful in solving many practical problems. The notions of the sets and
functions in fuzzy topological spaces are used extensively in many engineering problems, computational topology for geometric
design, computer-aided geometric design, engineering design research and mathematical sciences. El-Naschie [8, 9] has shown
that the notion of fuzzy topology may be applicable to quantum physics in connection with string theory and e∞ theory and fuzzy
topology may be used to provide information about the elementary particles content of the standard model of high energy physics.
Shihong Du. et al. [5] are currently working to fuzzify the 9-intersection Egenhofer model [6, 7] for describing topological
relations in Geographic Information System(GIS) query. X.Tang [15] has used a slightly changed version of Chang’s [2] fuzzy
topological spaces to model spatial objects for GIS database and Structured Query Language(SQL) for GIS. In-depth analytical
study of fuzzy set theory is still required to provide more and more information about any mathematical system and its subsystems
to the modern scientific research in the arena of mathematical sciences and physical sciences. The concept of compactness is
one of the central and important concepts of paramount interest to topologist and it seems to be the most celebrated type among
all the covering properties. Its enormous use and potentiality for numerous applications induced mathematicians to generalize
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the concept in fuzzy setting. It was Chang [2] who first introduced the concept of compactness in fuzzy topological space. This
attempt has been followed by Goguen [12] who after pointing out a drawback in the definition of Chang, proved Alexander‘s
subbase theorem, but could establish Tychonoff theorem only for finite products. Thereafter, Wong [17], Weiss [16] and Lowen
[13] treated compactness for fuzzy topological spaces in different ways. But it is seen that all those approaches contain many
limitations. In 1978, Gantner, Steinlage and Warren [10] did a splendid work towards the process of fuzzifying the concept of
compactness and initiated a new definition of fuzzy compactness, termed as α−compactness, by which they could assign degrees
to compactness and with this definition they finally generalized Tychonoff theorem and even 1−point compactification. It seems
from the subsequent investigations that the theory of α−compactness by Gantner et al. [10] is the most satisfactory one. This
view has also been endorsed by Malghan and Benchalli [14] who also treated α−compactness vis-à-vis α−per f ect maps in
fuzzy topological spaces and studied a version of local α−compactness weaker than that of Gantner et al. [10]. Georgiou and
Papadopoulos [11] dealt with α−compactness using the notion of fuzzy upper limit. In a very recent paper Chakraborty et al. [3]
introduced fuzzy semicompact set and investigated and characterized fuzzy semicompact spaces in terms of fuzzy nets and fuzzy
pre f ilterbases. In section 3, we propose to define and characterize α−semicompactness in terms of ordinary nets and f ilters.
This seems to be quite new approach in as much as to our knowledge, in almost none of the theories concerning the investigations
of numerous fuzzy topological concepts, ordinary nets and f ilters have been involved so far. In section 4, we propose to introduce
α−semiclosed sets and α−semicompactness for crisp subsets of fuzzy topological spaces and will carry on the investigation of
α−semicompactness in a greater detail. At the same time, we shall strive to ultimately achieve certain expected results in analogy
to those known for semicompact sets vis-à-vis semiclosed sets in a topological space.

2 Preliminaries

Throughout this paper, by (X ,τ) or simply by X we mean a fuzzy topological space (henceforth abbreviated as fts.) in Chang’s
[2] sense and to denote A to be a fuzzy set in X , we shall sometimes write A ∈ IX , where I = [0,1]. For A,B ∈ IX , we write
A ≤ B if A(x) ≤ B(x), for each x ∈ X . For a fuzzy set A in X , Cl(A), Int(A) and 1−A will respectively denote the closure,
interior and complement of A. For a family ζ = {Aα : α ∈ Λ} ( here and henceforth also, Λ denotes an indexing set) of fuzzy sets
in X , the union

∨
α∈Λ

Aα and the intersection
∧

α∈Λ
Aα are fuzzy sets defined respectively by (

∨
α∈Λ

Aα )(x) = sup{Aα (x) : α ∈ Λ} and

(
∧

α∈Λ
Aα )(x) = in f{Aα (x) : α ∈ Λ}, for each x ∈ X[18].

3 α−Semicompact Fuzzy Topological Spaces

We recall from [10] the definition of α−shading of a fts.

Definition 3.1. Let X be a fts. A collection ζ ⊂ IX is called an α−shading of X, where 0 < α < 1, if for each x ∈ X there exists
some Ux ∈ ζ such that Ux(x)> α .
A subcollection ζ0 of an α−shading ζ of X, that is also an α−shading of X, is called an α−subshading of ζ .

Remark 3.1. It is clear from the above definition that a collection ζ of fuzzy sets in a fts. X is an α−shading iff sup{U(x) : U ∈
ζ}> α for each x ∈ X.

Definition 3.2. A fts. X is said to be α−semicompact if each α−shading of X by fuzzy semiopen sets of X has a finite α−subshading.
The following definition is also given in [10] for an L-fuzzy space, in slightly different forms. We prefer to incorporate here, a com-
plete proof of the said theorem in our setting.

Definition 3.3. [10] A family {Fi : i ∈ Λ} of fuzzy sets in a fts. X is said to have α−finite intersection property (to be abbreviated
as α−FIP) if for each finite subset Λ0 of Λ there is some x ∈ X such that in f{Fi(x) : i ∈ Λ0} ≥ 1−α .

Theorem 3.1. A fts. X is α−semicompact iff for every family ζ = {Fi : i ∈ Λ} of fuzzy semiclosed sets in X with α−FIP, there is
some x ∈ X such that in f{Fi(x) : i ∈ Λ} ≥ 1−α .
Proof. Let X be α−semicompact and let ζ = {Fi : i ∈ Λ} be a family of fuzzy semiclosed sets in X with α−FIP. If possible, let for
each x∈X, (

∧
i∈Λ

Fi)(x)< 1−α . i.e, {
∨

i∈Λ
(1−Fi)}(x)>α , for each x∈X. Hence Ω= {1−Fi : i ∈Λ} is an α−shading of X by fuzzy

semiopen sets. By α−semicompactness of X, there exists a finite subset Λ0 of Λ such that,{
∨

i∈Λ0

(1−Fi)}(x) > α , for each x ∈ X.

i.e,(
∧

i∈Λ0

Fi)(x)< 1−α , for each x ∈ X. This implies ζ does not have α−FIP, a contradiction. Hence in f{Fi(x) : i ∈ Λ} ≥ 1−α ,

for each x ∈ X.
Conversely, let ζ = {Fi : i ∈ Λ} be an α−shading of X by fuzzy semiopen sets. That is, (

∨
i∈Λ

Fi))(x)> α . Then Ω = {1−Fi : i ∈ Λ}
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is a family of fuzzy semiclosed sets such that {
∧

i∈Λ
(1−Fi)}(x)< 1−α , for each x ∈ X. Then in view of the hypothesis, Ω cannot

have α−FIP. Thus for a finite subset Λ0 of Λ and for each x ∈ X, we have {1− (
∨

i∈Λ0

Fi)(x)}= {
∧

i∈Λ0

(1−Fi)}(x)< 1−α , for each

x ∈ X. This implies (
∨

i∈Λ0

Fi)(x)> α , for each x ∈ X. Hence X is α−semicompact.

We now define the concept of a sort of cluster points of ordinary nets and filters in a fts. and ultimately use them to characterize
α−semicompactness of a fts.

Definition 3.4. A point x ∈ X is said to be an α−semicluster point of an ordinary net {Sn : n ∈ (D,≥)}, ((D,≥) being any directed
set) in a fts. X if for each fuzzy semiopen set U with U(x)> α and for each m ∈ D, there exists a k ∈ D such that k ≥ m in D and
U(Sk)> α .

Theorem 3.2. A fts. X is α−semicompact iff every ordinary net in X has an α−semicluster point in X.
Proof. Let X be α−semicompact. If possible, let there be a net {xn : n ∈ (D,≥)} in X having no α−semicluster point in X. Then
for each x ∈ X, there exists a fuzzy semiopen set Ux with Ux(x)> α and mx ∈ D such that Ux(xn)≤ α , for all n ≥ mx, (n ∈ D). Then
Ω = {Ux : x ∈ X} is a collection of fuzzy semiopen sets such that for any finite subcollection {Ux1 ,Ux2 ,Ux3 , ........,Uxk} of Ω, there

exists m ∈ D such that m ≥ mx1 ,mx2 ,mx3 , ........,mxk and (
k∨

i=1
Uxi)(xn) ≤ α , for n ≥ m (n ∈ D). This implies (

k∧
i=1

(1−Uxi))(xn) ≥

1−α . Then the collection Ω = {1−Ux : x ∈ X} of fuzzy semiclosed sets has α−FIP. Then by theorem (3.1), there exists y ∈ X
such that (

∧
x
(1−Ux))(y) ≥ 1−α , x ∈ X. i.e, (

∨
x

Ux)(y) ≤ α , x ∈ X. i.e, Ux(y) ≤ α , for all Ux ∈ Ω. In particular, Uy(y) ≤ α ,

contradicting the definition of Uy. Hence the given net in X has an α−semicluster point in X.
Conversely, let every net in X has an α−semicluster point in X. Let Ω = {Ui : i ∈ Λ} be an arbitrary collection of fuzzy semiclosed
sets in X with α−FIP. Let Λ∗ denotes the collection of all finite subsets of Λ. Then (Λ∗,≥) is a directed set, where µ,λ ∈ Λ∗,
µ ≥ λ if µ ⊇ λ . Let us put Fµ =

∧
i∈µ

Ui for each µ ∈ Λ∗. As Ω has α−FIP for each µ ∈ Λ∗, there is some xµ (say) in X such that

inf{Ui(xµ ) : i ∈ µ} ≥ 1−α . By virtue of theorem (3.1), X will be α−semicompact if inf{Ui(z) : i ∈ Λ} ≥ 1−α , for some z ∈ X.
If possible let inf{Ui(z) : i ∈ Λ} < 1−α , for each z ∈ X. Now {xµ : µ ∈ (Λ∗,≥)} is clearly a net in X and hence by hypothesis,
it has an α−semicluster point y ∈ X. Then inf{Ui(y) : i ∈ Λ} < 1−α and hence there exists i0 ∈ Λ such that Ui0(y) < 1−α .
That is, (1−Ui0)(y) > α . Since {i0} ∈ Λ∗, there exists µ0 ∈ Λ∗ with µ0 ≥ {i0} (i.e, i0 ∈ µ0) such that (1−Ui0)(xµ0) > α . Then
Ui0(xµ0) < 1−α . As i0 ∈ µ0, inf{Ui(xµ0)} ≤ {Ui0(xµ0)} < 1−α , a contradiction. Hence inf{Ui(z) : i ∈ Λ} ≥ 1−α , for some
z ∈ X. Then by virtue of theorem (3.1), X is α−semicompact.

Definition 3.5. A point x ∈ X, where X is a fts, is said to be an α−semicluster point of a filter base ζ on X if for each fuzzy
semiopen set U with U(x)> α and for each F ∈ ζ there exists xF ∈ F such that U(xF )> α .

Theorem 3.3. A fts X is α−semicompact iff every filterbase ζ on X has an α−semicluster point in X.
Proof. Let be X be α−semicompact. Let there exists, if possible, a filterbase ζ on X having no α−semicluster point in X. Then
for each x ∈ X, there exists a fuzzy semiopen set Ux with Ux(x)> α and there exists Fx ∈ ζ such that Ux(y)≤ α for each y ∈ Fx.
Thus Ω = {Ux : x ∈ X} is an α−shading of X by fuzzy semiopen sets of X. By α−semicompactness of X, there exists finitely
many points x1,x2,x3, ........,xn ∈ X such that Ω0 = {Ux1 ,Ux2 ,Ux3 , .......,Uxn} is again an α-shading of X. Now let F ∈ ζ such that
F ⊆ {Fx1 ∩Fx2 ∩Fx3 ∩ ..........∩Fxn} [ ζ is filterbase]. Then Uxi(y)≤ α for each y ∈ F and for i = 1,2,......,n. Thus Ω0 fails to be an
α−shading of X, a contradiction. Hence every filterbase on X has an α−semicluster point.
Conversely, let every filterbase ζ on X has an α−semicluster point in X. If possible let {yn : n ∈ (D,≥)} be a net in X having no
α−semicluster point in X. Then for each x ∈ X, there is a fuzzy semiopen set Ux with Ux(x) > α and there exists some mx ∈ D
such that Ux(yn) ≤ α for all n ≥ mx (n ∈ D). Thus B = {Fx : x ∈ X}, where Fx = {yn : n ≥ mx}, is a subbase for a filterbase ζ
on X, where ζ consists of all finite intersections of members of B. By hypothesis, ζ has an α−semicluster point z ∈ X. But there
is a fuzzy semiopen set Uz with Uz(z) > α and there exists mz ∈ D such that Uz(yn) ≤ α f or all n ≥ mz. That is, for all p ∈ Fz,
where Fz ∈ B ⊆ ζ , Uz(p) ≤ α . Hence z cannot be an α−semicluster point of the filterbase ζ , a contradiction. Hence the net
{yn : n ∈ (D,≥)} in X has an α−semicluster point. By theorem (3.2), α−semicompactness of X follows.

4 α−Semiclosed sets, α−Semicompact sets

In this section we introduced a class of special type of crisp subsets of X which are defined by the fuzzy sets in a fts (X ,τ).
The introduced concept is developed to some extent, which is used as a supporting tool for our ultimate aim of introducing and
studying α−semicompactness for crisp subsets along with α−semiclosedness.
We recall from [4] the following definitions in order to introduce our proposed definition of α−semiclosed sets.
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Definition 4.1. Let (X ,τ) be a fts and A ⊆ X. An element x ∈ X is said to be an α−adherent (α−limit) point of A (0 < α < 1) if
for each fuzzy open set U in X with U(x)> α , there exists y ∈ A (y ∈ A\{x}) such that U(y)> α .
The set of all α−limit points of A is denoted by Aα .

Definition 4.2. A subset C of X is said to be α−closed if it contains all its α−limit points.

Definition 4.3. α-closure of a set A ⊆ X, denoted by α-ClA, is defined as α −ClA = A∪Aα .

Remark 4.1. Obviously A ⊆ α −ClA and if Aα ⊆ A then α −ClA ⊆ A.
A set A ⊆ X is said to be α−closed iff α−ClA = A.
Now we define α−semiclosed set by defining α−semiadherent point and α−semilimit point of a crisp subset A of a fts. (X ,τ).

Definition 4.4. Let (X ,τ) be a fts and A ⊆ X. An element x ∈ X is said to be an α−semiadherent (α−semilimit) point of A
(0 < α < 1) if for each fuzzy semiopen set U in X with U(x)> α , there exists y ∈ A (y ∈ A\{x}) such that U(y)> α . The set of all
α−semilimit points of A will be denoted by Aα−slp.

Definition 4.5. A subset C of X is said to be α−semiclosed if it contains all its α−semilimit points.

Definition 4.6. α−semiclosure of a set A ⊆ X, denoted by α−SclA, is defined as α−SclA = A∪Aα−slp.

Remark 4.2. Obviously A ⊆ α−SclA and if Aα−slp ⊆ A then α−SclA ⊆ A.
A set A ⊆ X is said to be α−semiclosed iff α−SclA = A.

Lemma 4.1. (a) A ⊆ B ⇒ Aα−sl p ⊆ Bα−slp and hence α −SclA ⊆ α −SclB.

(b) α −Scl(A∪B)⊇ α −SclA∪α −SclB.
Proof. (a) Let A ⊆ X and let x ∈ Aα−slp. This implies x is an α−semilimit point of A. That is, for each fuzzy semiopen set U
in X with U(x) > α , there exists y ∈ A \ {x} such that U(y) > α . As A ⊆ B, it follows that y ∈ B \ {x}. Therefore, x is an
α−semilimit point of B. That is, x ∈ Bα−slp. Hence Aα−slp ⊆ Bα−slp. Also α − SclA = A∪Aα−slp ⊆ B∪Bα−slp = α − SclB.
Hence α −SclA ⊆ α −SclB.
(b) Proof is obvious

Definition 4.7. [1] Let (X ,τ) and (Y,τ1) be two fts. A function f : (X ,τ)−→ (Y,τ1) is said to be fuzzy semicontinuous if for every
fuzzy open set V in τ1, f−1(V ) is fuzzy semiopen set in X.

Theorem 4.1. Let (X ,τ) and (Y,τ1) be two fts. If a function f : (X ,τ) −→ (Y,τ1) is fuzzy semicontinuous then f−1(C) is a
α−semiclosed set in X for every α−closed set C in Y.
Proof. Let C be a α−closed set in Y. Let x ∈ X \ f−1(C). Then f (x) /∈ C [x /∈ f−1C]. As C is a α−closed set in Y, f (x)
is not a α−limit point of C. Then there exists V ∈ τ1, such that V ( f (x)) > α and V (y) ≤ α for all y ∈ C [ actually for all
y ∈ C \ { f (x)}) ]. Since f is fuzzy semicontinuous, f−1(V ) is fuzzy semiopen set in X. Let z ∈ f−1(C). Then f (z) ∈ C. Now
f−1(V )(x) =V ( f (x))> α and f−1(V )(z) =V ( f (z))≤ α for all z ∈ f−1(C). Thus x is not a α−semilimit point of f−1(C). Hence
f−1(C) is α−semiclosed set in X.

Definition 4.8. Let (X ,τ) and (Y,τ1) be two fts. A function f : (X ,τ)−→ (Y,τ1) is said to be fuzzy semiopen map if for each fuzzy
open set A in X , f (A) is fuzzy semiopen set in Y.

Theorem 4.2. If f : (X ,τ)−→ (Y,τ1) be a bijective fuzzy semiopen map, then the image of a α−closed set in X is a α−semiclosed
set in Y.
Proof. Let C ⊆ X be a α−closed set in X. Let y ∈ Y \ f (C). Then there exists a unique z ∈ X such that f(z) = y [ since f is
bijective]. As y /∈ f (C), z /∈ C. Now as C is α−closed set in X, there exists fuzzy open set V in τ such that V (z) > α and
V (p)≤ α for all p ∈C [actually for all p ∈C \{z} ]. As f is fuzzy semiopen map, we have f (V ) is fuzzy semiopen set in Y. Now
(V )(y) = V (z) > α . That is , f (V )(y) > α . Let t ∈ f (C). Then there exists t0 ∈C such that f (t0) = t. As f (V )(t) = V (t0) ≤ α
for all t0 ∈ C. Therefore, f (V )(t) ≤ α for all t ∈ f (C) [actually for all t ∈ f (C)\{y}]. So y is not a α−semilimit point of f (C).
Hence f (C) is α−semiclosed set in Y.
We now recall from [4] the definition of α−compact (crisp) set.

Definition 4.9. A crisp subset A of a fts. X is said to be α−compact if each α−shading of A by fuzzy open sets of X has finite
α−subshading.
We now propose to define α−semicompact subset of a fts.

Definition 4.10. A crisp subset A of a fts. X is said to be α−semicompact if each α−shading of A by fuzzy semiopen sets of X has
finite α-subshading.
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Theorem 4.3. A α−semiclosed subset A of a α−semicompact space X is α−semicompact.
Proof. Let (X ,τ) be a α−semicompact space and A be a α−semiclosed subset of X. If x ∈ X \A, then x is not a α−semilimit point
of A. So there exists a fuzzy semiopen set Ux in X such that Ux(x) > α but Ux(y) ≤ α for all y ∈ A [actually for all y ∈ A \ {x}].
Let Ω = {Ux : x ∈ X \A}. Let S be a α−shading of A by fuzzy semiopen sets of X. Let W = Ω∪S. Clearly W is a α−shading of
X by fuzzy semiopen sets of X. As X is α−semicompact, there exists a finite subset {W1,W2,W3, .......,Wn} of W which is again a
α−shading of X. Now the subset {W1,W2,W3, .......,Wn} of W may contain some Wi which are members of Ω. If we omit them we
get a finite α−subshading of S by fuzzy semiopen sets of X consisting of the remaining members of W. Hence A is α−semicompact.

Corollary 4.1. Every α−semiclosed subset A of a α−compact space X is α−semicompact.
Proof. As X is α−semicompact, it is α−compact. Hence by theorem (4.3), the corollary follows.

Definition 4.11. A function f : (X ,τ) −→ (Y,τ1) is said to be α−semicontinuous if f−1(A) is α−semiclosed set in X for every
α−closed set A in Y.

Remark 4.3. In view of theorem (4.1) every fuzzy semicontinuous function is α−semicontinuous function.

Theorem 4.4. Let f : (X ,τ) −→ (Y,τ1) be a α−semicontinuous function. If A ⊆ X is α−semicompact set in (X ,τ) then f (A) is
α−compact in (Y,τ1).
Proof. Let A be a α−semicompact set in (X ,τ). Let S be a α−shading of f (A) by fuzzy open sets in Y. For x ∈ A ⊆ X, f (x)∈ f (A)
and there exists U f (x) ∈ S such that U f (x)( f (x)) > α . Let z /∈ U−1

f (x)[0,α] then U f (x) ∈ S with U f (x)(z) > α and U f (x)(y) ≤ α
for all y ∈ U−1

f (x)[0,α ]. Thus z is not a α−limit point of U−1
f (x)[0,α] and hence U−1

f (x)[0,α] is α−closed in Y. As f : X −→ Y is

α−semicontinuous, f−1(U−1
f (x)[0,α]) is α−semiclosed in X. Clearly x /∈ f−1(U−1

f (x)[0,α]). Indeed if x ∈ f−1(U−1
f (x)[0,α]) then

f (x) ∈ U−1
f (x)[0,α] which implies U f (x)( f (x)) ≤ α which contradicts the fact that U f (x) ∈ S [S is α−shading of f (A)]. Let C =

U−1
f (x)[0,α], a α−closed set in Y. So f−1(C) is α−semiclosed set in X and as x /∈ f−1(C), x is not a α−semilimit point of f−1(C).

So there exists fuzzy semiopen set Vx in X such that Vx(x) > α and Vx(z) ≤ α for all z ∈ f−1(C). Now W = {Vx : x ∈ A}is a
α−shading of A by fuzzy semiopen sets in X. As A is α−semicompact, W has a finite subset {Vx1 ,Vx2 ,Vx3 , ........,Vxn} which is
also a α−shading of A. That is, for every p ∈ A, Vxi(p) > α for some i= 1,2,........,n. We claim that {U f (xi) : i = 1,2, ......,n} is a
finite α−subshading for f (A). Let s ∈ f (A), so f(t) = s for some t ∈ A. So Vxi(t) > α for some i= 1,2,......,n. As t /∈ f−1(C),
that is, as t /∈ f−1(U−1

f (xi)
[0,α]), we have f (t) /∈ U−1

f (xi)
[0,α ], which implies that U f (xi)( f (t)) /∈ [0,α]. That is, U f (xi)(s) /∈ [0,α ].

That is, U f (xi)(s)> α . Hence {U f (xi) : i = 1,2, .......,n} is a finite α−subshading for f (A) by fuzzy open sets in Y. Hence f (A) is
α−compact.

Corollary 4.2. If f : (X ,τ) −→ (Y,τ1) be a fuzzy semicontinuous function and if A ⊆ X is α−semicompact in X then f(A) is
α−compact.
Proof. Every fuzzy semicontinuous function is α−semicontinuous. So by theorem (4.4) the corollary follows.

Theorem 4.5. Let (X ,τ) be a fuzzy topological space. Then X is α−semicompact iff every collection R of α−semiclosed sets in X
satisfying the finite intersection property has non-null intersection.
Proof. Let (X ,τ) be α−semicompact. If possible, let there exists a collection R of α−semiclosed sets having finite intersection
property but

∩
C∈R

C = ϕ . Then
∪

C∈R
(X \C) = X. Let x ∈ X. Then x ∈ X \Cx for some Cx ∈ R. Since Cx is α−semiclosed and x /∈Cx,

we have some fuzzy semiopen sets Ux in X such that Ux(x)>α and Ux(z)≤α for all z∈Cx. Then S = {Ux : x∈X} is an α−shading
of X by fuzzy semiopen sets in X. As (X ,τ) is α−semicompact, we have a finite subcollection {Ux1 ,Ux2 ,Ux3 , ........,Uxn} of S such

that for every z ∈ X, we have Uxi(z) > α for some i (1 ≤ i ≤ n).Thus X =
n∪

i=1
U−1

xi
(α,1] and hence

n∩
i=1

{X \U−1
xi

(α,1]} = ϕ . Let

z ∈Cxi . Then Uxi(z)≤ α and hence z /∈U−1
xi

(α,1]. This implies z ∈ {X \U−1
xi

(α,1]}. So Cxi ⊆ {X \U−1
xi

(α,1]}.

Hence
n∩

i=1
Cxi = ϕ goes against the finite intersection propety of R.

Conversely, let S be an α−shading of X by fuzzy semiopen sets in X. Let Uα = {x∈X : U(x)≤α,U ∈ S}. If y /∈Uα then U(y)>α .
So we get a fuzzy semiopen set U such that U(y)> α and U(z)≤α for every z ∈Uα . So y is not a α−semilimit point of Uα . Hence
Uα is α−semiclosed set for each U ∈ S. Let R = {Uα : U ∈ S}. Then R is a collection of α−semiclosed sets. As S is a α−shading
of X by fuzzy semiopen sets of X, we have for each x ∈ X, there exists V ∈ S such that V (x) > α . Hence x /∈Vα for some V ∈ S.
So

∩
U∈S

Uα = ϕ . Now by hypothesis R does not satisfy the finite intersection property. So there exists a finite subcollection S0 of

S such that
∩

U∈S0

Uα = ϕ . So for every x ∈ X there exists U ∈ S0 such that x /∈Uα and hence U(x)> α . Thus X is α−semicompact.

International Scientific Publications and Consulting Services



Journal of Fuzzy Set Valued Analysis
http://www.ispacs.com/journals/jfsva/2013/jfsva-00133/ Page 6 of 6

5 Conclusion

The notions of the sets and functions in fuzzy topological spaces are highly developed and several characterizations have al-
ready been obtained. These are used extensively in many practical and engineering problems, computational topology for geometric
design, computer-aided geometric design, engineering design research, Geographic Information System (GIS) and mathematical
sciences. As the concept of compactness of a fuzzy topological space and its fuzzy subsets as well as its crisp subsets is one of the
central and important concepts, the notions and results given in this paper may lead to some interesting in-depth analytical study
and research from the view point of fuzzy mathematics.
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