Strong Equality of MAJORITY Domination Parameters

J. Joseline Manora¹ and B. John²

¹PG & Research Department of Mathematics, T.B.M.L College, Porayar, Nagai Dt., Tamilnadu, India.
²Department of Science and Humanities, E.G.S.PillayEngineering College, Nagappattinam.

Abstract: We study the concept of strong equality of majority domination parameters. Let \(P_1 \) and \(P_2 \) be properties of vertex subsets of a graph, and assume that every subset of \(V(G) \) with property \(P_1 \) also has property \(P_2 \). Let \(\psi_1(G) \) and \(\psi_2(G) \), respectively, denote the minimum cardinalities of sets with properties \(P_1 \) and \(P_2 \), respectively. Then \(\psi_1(G) \leq \psi_2(G) \). If \(\psi_1(G) = \psi_2(G) \) and every \(\psi_1(G) \)-set is also a \(\psi_2(G) \)-set, then we say \(\psi_1(G) \) strongly equals \(\psi_2(G) \), written \(\psi_1(G) \equiv \psi_2(G) \). We provide a constructive characterization of the trees \(T \) such that \(\gamma_M(T) \equiv i_M(T) \), where \(\gamma_M(T) \) and \(i_M(T) \) are majority domination and independent majority domination numbers, respectively.

Keywords: Domination number, Majority domination number, Independent majority domination number, Strong equality. 2010 Mathematics Subject Classification: 05C69

I. Introduction:

By a graph \(G \), we mean a finite, simple and undirected. Let \(G \) be a graph with \(p \) vertices and \(q \) edges. For a vertex \(v \in V(G) \), the open neighborhood of \(v \), \(N_G(v) \) is the set of vertices adjacent to \(v \) and the closed neighborhood \(N_G[v] = N_G(v) \cup \{v\} \). Other graph theoretic terminology not defined here can be found in [6].

In [6], a set \(S \subseteq V \) of vertices in a graph \(G=(V,E) \) is a dominating set if every vertex \(v \in V \) is either an element of \(S \) or is adjacent to an element of \(S \). A dominating set \(S \) is called a minimal dominating set if no proper subset of \(S \) is a dominating set. The minimum cardinality of a minimal dominating set is called the domination number \(\gamma(G) \) and the maximum cardinality of a minimal dominating set is called the upper domination number \(\Gamma(G) \) in a graph \(G \). A set \(S \subseteq V \) of vertices in a graph \(G \) is called an independent set if no two vertices in \(S \) are adjacent. An independent set \(S \) is called a maximal independent set if any vertex set properly containing \(S \) is not independent. The minimum cardinality of a maximal independent set is called the lower independence number and independent domination number and the maximum cardinality of a maximal independent set is called the independence number in a graph \(G \) and it is denoted by \(\beta(G) \) and \(\beta_v(G) \) respectively.

Definition 1.1[3]:

A subset \(S \subseteq V(G) \) of vertices in a graph \(G \) is called majority dominating set if at least half of the vertices of \(V(G) \) are either in \(S \) or adjacent to the vertices of \(S \). i.e., \(|N[S]| \geq \left\lfloor \frac{p}{2} \right\rfloor \). A majority dominating set \(S \) is minimal if no proper subset of \(S \) is a majority dominating set of \(G \). The majority domination number \(\gamma_M(G) \) of a graph \(G \) is the minimum cardinality of a minimal majority dominating set in \(G \). The upper majority domination number \(\Gamma_M(G) \) is the maximum cardinality of a minimal majority dominating set of a graph \(G \). This parameter has been studied by Swaminathan V and JoselineManora J.
Strong Equality of Majority Domination Parameters

Definition 1.2[2]:

A set S of vertices of a graph G is said to be a majority independent set if it induces a totally disconnected subgraph with $|N[S]| \geq \left\lceil \frac{p}{2} \right\rceil$ and $|P[v, S]| \geq |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. If any vertex set S' properly containing S is not majority independent then S is called maximal majority independent set. The maximum cardinality of a maximal majority independent set of G is called majority independence number of G and it is denoted by $\beta_M(G)$. A M-set is a maximum cardinality of a maximal majority independent set of G. This parameter is introduced by Swaminathan. V and JoselineManora. J.

Definition 1.3[1]:

A majority dominating set D of a graph $G=(V,E)$ is called an independent majority dominating (IMD) set if the induced subgraph $\langle D \rangle$ has no edges. The minimum cardinality of a maximal majority independent set is called lower majority independent set of G, denoted by $i_M(G)$. If the degree of a vertex v satisfies $d(v) \geq \left\lceil \frac{p}{2} \right\rceil - 1$, then the vertex $v \in V(G)$ is called a majority dominating vertex of G.

II. Strong equality of Majority domination Parameters.

Definition 2.1[5]:

Let P_1 and P_2 be properties of vertex subsets of a graph, and assume that every subset of $V(G)$ with property P_2 also has property P_1. Let $\psi_1(G)$ and $\psi_2(G)$, respectively, denote the minimum cardinalities of sets with properties P_1 and P_2, respectively. Then $\psi_1(G) \leq \psi_2(G)$ and every $\psi_1(G)$-set is also a $\psi_2(G)$-set, then we say $\psi_1(G)$ strongly equals $\psi_2(G)$, written $\psi_1(G) \equiv \psi_2(G)$.

Definition 2.2:

Let G be any graph with p vertices. Let $\gamma_M(G)$ and $i_M(G)$ be the majority domination number and independent majority domination number of a graph G. Then $\gamma_M(G)$ and $i_M(G)$ are strongly equal for G if $\gamma_M(G) = i_M(G)$ and every $\gamma_M(G)$-set is an $i_M(G)$-set. It is denoted by $\gamma_M(G) \equiv i_M(G)$.

Example 2.3:

Take $j = 2$, $p = 22$, $j = 44$. $D = \{u _{1,1}, u _{2,1}, u _{1,2}, u _{2,1}, u _{1,3}, u _{3,1}, u _{3,2}, u _{2,1}\}$. $\gamma_M(G_j) = |D| = 6$. Since all vertices in D are independent, $i_M(G_j) = |D| = 6$. $\gamma_M(G_j) = i_M(G_j) = 3j$, $j = 2$. Where as $\gamma(G) = i(G) = 8j = 16$, $j = 2$.

www.iosrjournals.org 90 | Page
Observations 2.4:

1. \(\gamma_M(G_j) < \frac{\gamma(G_j)}{2} \Rightarrow 3 < \frac{8j}{2} = 4j \), where \(G_j \) is in Fig (i).

2. When \(j = 1 \), \(\gamma_M(G_j) = 3 = i_M(G_j) \).

 When \(j = 2 \), \(\gamma_M(G_j) = 6 = i_M(G_j) \).

 When \(j = 3 \), \(\gamma_M(G_j) = 9 = i_M(G_j) \).

 In general, for \(G_j \), \(\gamma_M(G_j) \equiv i_M(G_j) = 3j, \quad j = 1, 2, ... \)

We can extend this graph by applying values to \(j = 2, 3, 4, ..., \) Then we obtain \(\gamma_M(G_j) = 3j = i_M(G_j) \).

Also, every \(\gamma_M \)-set is an \(i_M \)-set of \(G_j \). Hence \(\gamma_M(G_j) \equiv i_M(G_j) \).

Example 2.5:

The graph \(G \) is obtained from disjoint copies of \(p_5 \) by joining a central vertex of one \(p_5 \) to the central vertices of the remaining graphs \(p_5 \).
When \(k = 5 \), \(p = 25 \). \(D_1 = \{w_2, w_3, w_4, w_5\} \). \(D_1 \) dominates \(\left\lfloor \frac{p}{2} \right\rfloor = 13 \) vertices. \(\therefore \gamma_M(G) = |D_1| = 4 \).

\[\gamma_M(G) = 4 \]

\(\therefore \) This \(\gamma_M \)-set \(D_1 \) is not an \(i_M \)-set of \(G \). \(D_2 = \{w_2, w_3, v_3, v_5\} \Rightarrow i_M(G) = |D_2| = 4 \). But \(D_2 \) is a \(\gamma_M \)-set which is also an \(i_M \)-set. Here, \(D_1 \) and \(D_2 \) are minimal majority dominating set for \(G \). \(\gamma_M(G) = i_M(G) = 4 \). Hence every \(\gamma_M \)-set is not an \(i_M \)-set for \(G \). In general, for any value of \(k \), if \(\gamma_M(G) \) is not \(\equiv i_M(G) \), if \(G = T_{5k}, k = 5 \). Ingeneral, for any value of \(k \), if \(\gamma_M(G) \) is not \(\equiv i_M(G) \), if \(G = T_{5k}, k = 5 \).

Observations 2.6:

1. If \(\gamma_M(G) = 1 \) then \(\gamma_M(G) \equiv i_M(G) \).
2. If \(G \) has a full degree vertex then \(\gamma_M(G) \equiv i_M(G) \).
3. For Corona graphs \(G \), \(\gamma_M(G) \equiv i_M(G) \), if \(G = \left(C_p \circ K_1 \right) \) and \(G = \left(P_p \circ K_1 \right) \).
4. \(\gamma_M(G) \equiv i_M(G) \) if \(G = \text{Caterpillar, with exactly one pendant.} \)
5. \(\gamma_M(G) \equiv i_M(G) \) if \(G = mK_2 \).
6. If \(G \) is Grotzsch graph, then \(\gamma_M(G) \equiv i_M(G) \).
7. For Tutte graph \(G \) with \(p = 46 \), \(q = 69 \). \(\gamma_M(G) = i_M(G) = 6 \).

8. For a Grinberg graph \(G \) with \(p = 46 \), \(q = 69 \), then \(\gamma_M(G) = i_M(G) \).
9. For a Petersen graph \(P \), \(\gamma_M(P) \) is not strongly equal to \(i_M(P) \).
10. For all Hajos graph \(H \) with \(p \) vertices,
 \[
 p = \frac{n(n+1)}{2}, n = 3, 4 \Rightarrow p = 6, 10 \text{, then } \gamma_M(H) \equiv i_M(H) \text{.}

 \text{But if } n = 5 \text{ and } p = 15 \text{, then } \gamma_M(H) \text{ is not strongly equal to } i_M(H) \text{.}

Proposition 2.7:

For the path \(P_p \) and cycle \(C_p \),

1. \(\gamma_M(P_{6k}) \equiv i_M(P_{6k}) \equiv \gamma_M(C_{6k}) \equiv i_M(C_{6k}) = k, k = 1, 2, 3, \ldots \)
2. \(\gamma_M(P_{6k+3}) \equiv i_M(P_{6k+3}) \equiv \gamma_M(C_{6k+3}) \equiv i_M(C_{6k+3}) = k + 1, k = 0, 1, 2, \ldots \)
3. \(\gamma_M(P_{6k+4}) \equiv i_M(P_{6k+4}) \equiv \gamma_M(C_{6k+4}) \equiv i_M(C_{6k+4}) = k + 1, k = 0, 1, 2, \ldots \)
4. \(\gamma_M(P_{6k+5}) = i_M(P_{6k+5}) = \gamma_M(C_{6k+5}) = i_M(C_{6k+5}) = k + 1, k = 0, 1, 2, \ldots \), but

5. \(\gamma_M(P_{6k+1}) \) is not dominated by \(i_M(P_{6k+1}) \).

6. \(\gamma_M(P_{6k+2}) \) is not dominated by \(i_M(P_{6k+2}) \).

Proposition 2.8[4]:

For any graph \(G \), \(\gamma_M(G) = 1 \) if and only if \(G \) has a majority dominating vertex.

Proposition 2.9:

\(\gamma_M(G) = i_M(G) = 1 \) if and only if \(G \) has a majority dominating vertex.

III. Trees \(T \) with \(\gamma_M(T) = i_M(T) \)

Our aim in this section is to give a constructive characterization for the trees \(T \) having \(\gamma_M(T) = i_M(T) \). For this purpose, we first prove two lemmas.

Lemma 3.1:

Let \(w \) be a vertex of a tree \(T_w \) such that every leaf of \(T_w \), except possibly for \(w \) itself, is at distance two from \(w \). Let \(S_w \) be the set of support vertices of \(T_w \). Let \(y \) be a pendant vertex of a non-trivial tree \(T_y \). Let \(T \) be obtained from \(T_w \cup T_y \) by adding the edge \(wy \). Then \(\gamma_M(T) = \gamma_M(T_y) + 1 \).

Proof: Let \(T = T_w \cup T_y \) and \(y \) be a pendant vertex of \(T \). Then \(\gamma_M(T_y) \) be a majority domination number of \(T_y \). Since \(w \) is a majority dominating vertex of \(T_w \), \(\gamma_M(T_y) \)-set can be extended to a majority dominating set of \(T \) by adding the vertex \(w \in T_w \). Hence \(\gamma_M(T) = \gamma_M(T_y) + 1 \).

Claim: \(\gamma_M(T) \geq \gamma_M(T_y) + 1 \). Let \(D \) be a \(\gamma_M \)-set of \(T \). Then \(D_y = D \cap V(T_y) \) and \(D_w = D \cap V(T_w) \).

Since \(T_w \) has a majority dominating vertex \(w \). \(|D_w| = \{w\} \).

Since \(D \) is a \(\gamma_M \)-set of \(T \), \(D_y \) is a majority dominating set of \(T_y \). Then \(\gamma_M(T_y) \leq |D_y| \leq |D - D_w| \Rightarrow \gamma_M(T_y) \leq |D| - 1 \Rightarrow \gamma_M(T) - 1 \Rightarrow \gamma_M(T) + 1 \leq \gamma_M(T) \).

Hence, \(\gamma_M(T) = \gamma_M(T_y) + 1 \). □

Lemma 3.2:

Let \(T_w, T_y \), and \(T \) be defined as in the statement of Lemma (3.1). Then \(\gamma_M(T) = i_M(T) \) if and only if \(\gamma_M(T_y) = i_M(T_y) \).

Proof: Suppose \(\gamma_M(T) = i_M(T) \)(1). Then \(\gamma_M(T_y) \)-set and \(D_y \cup \{w\} \) is a majority dominating set of \(T \) of cardinality \(\gamma_M(T_y) + 1 \). Then by lemma (3.1), \(\gamma_M(T) = \gamma_M(T_y) + 1 \).

Therefore \(D_y \cup \{w\} \) is a \(\gamma_M(T) \)-set and by (1), it is a \(i_M(T) \)-set. In particular, \(D_y \) is an independent majority dominating set of \(T_y \) and so, \(|D_y| = \gamma_M(T_y) \leq i_M(T_y) \leq |D_y| \). Hence \(|D_y| = i_M(T_y) \) and \(D_y \) is a \(i_M(T_y) \)-set. Thus, every \(\gamma_M(T_y) \)-set is an \(i_M(T_y) \)-set. \(\gamma_M(T_y) = i_M(T_y) \).

Conversely, Let \(\gamma_M(T_y) = i_M(T_y) \)(2). To prove \(\gamma_M(T) = i_M(T) \). Let \(D \) be a \(\gamma_M(T) \)-set and \(D_y = D \cap V(T_y) \) and \(D_w = D \cap V(T_w) \).

Suppose \(w \notin D \), then

\[|D_w| = |S_w| \] and \(|D_y| = |D - D_w| = |D| - |S_w| \). Then \(|D_y| = \gamma_M(T) - |S_w| \Rightarrow \gamma_M(T) = \gamma_M(T_y) + |S_w| \), which is a contradiction to lemma (3.1), \(\gamma_M(T) = \gamma_M(T_y) + 1 \). Hence \(w \in D \). Then \(D_w = \{w\} \in T_w \), since \(w \) is a majority dominating vertex of \(T_w \). Since \(T \) has an edge \(wy \), \(w \) is the only vertex that dominates \(y \).

www.iosrjournals.org 93 | Page
Since \(y \) is already dominated by \(w \in D_w \), \(D_y \) does not contain \(y \) in \(T_y \). But \(D_y \) is itself a majority dominating set of \(T_y \) of \(|D - D_w| \), i.e., \(|D_y| = |D - D_w| = |D| - 1 = \gamma_M(T) - 1 \). By lemma (3.1), \(|D_y| = \gamma_M(T_y) \), by (2), \(|D_y| \equiv i_{M}(T_y) \Rightarrow D_y \) is an independent majority dominating set of \(T_y \). Furthermore, \(D_w = \{w\} \) is also an independent majority dominating set of \(T_w \). Hence \(D \) is an \(i_M(T) \)-set. Thus every \(\gamma_M(T) \)-set is an \(i_M(T) \)-set. \(\therefore \gamma_M(T) \equiv i_M(T) \).

Next, a construction for characterization of the trees \(T \) for which \(\gamma_M(T) \equiv i_M(T) \) is provided by using the following operation.

Operation - A: Let \(w \) be a vertex of a tree \(T_w \) such that every leaf of \(T_w \) except possibly for \(w \) itself, is at distance two from \(w \). Let \(S_w \) be the set of support vertices of \(T_w \). Let \(y \) be a pendant vertex of a non-trivial tree \(T_y \). Let \(T \) be obtained from \(T_w \cup T_y \) by adding the edge \(wT \). Define the family as \(\mathcal{A}_1 = \{T/T = K_1 \text{ or } T \text{ is obtained from a non-trivial star by a finite sequence of operation } A\} \).

Theorem 3.3:

For any tree \(T \), \(\gamma_M(T) \equiv i_M(T) \) if and only if \(T \in \mathcal{A}_1 \).

Proof: Let \(T \in \mathcal{A}_1 \), if \(T = K_1 \) or if \(T \) is a non-trivial star, then \(\gamma_M(T) = i_M(T) = 1 \) and \(\gamma_M(T) \equiv i_M(T) \). On the other hand, if \(T \) is constructed from a non-trivial star by a finite sequence of at least one operation \(A \), then repeated applications of lemma (3.2), we get \(\gamma_M(T) \equiv i_M(T) \), since a star has majority domination number strongly equal to its independent majority domination number. Conversely, let \(\gamma_M(T) \equiv i_M(T) \). To prove \(T \in \mathcal{A}_1 \). By induction on the order \(p \) of a tree \(T \) for which \(\gamma_M(T) \equiv i_M(T) \). If \(T = K_1 \) or \(K_2 \), then \(T \in \mathcal{A}_1 \). If \(\text{diam } T = 2 \) then \(T \) is a non-trivial star and so \(T \in \mathcal{A}_1 \). When \(\text{diam } T = 3, 4, 5, 6 \) which satisfy \(\gamma_M(T) \equiv i_M(T) \) since \(\gamma_M(T) = 1 = i_M(T) \). Then \(T \in \mathcal{A}_1 \). Now, assume that \(\text{diam } T \geq 7 \) which satisfy \(\gamma_M(T) \equiv i_M(T) \). We now root the tree at a leaf \(r \) of maximum eccentricity \(\text{diam } T \). Let \(w \) be the vertex at distance \(\text{diam } T - 2 \) from \(r \) on a longest path starting at \(r \).

Let \(T_w \) be the subtree of \(T \) rooted at \(w \). Then the vertex cannot be adjacent to a leaf. If not, it will contradict our assumption that \(\gamma_M(T) \equiv i_M(T) \). Hence every leaf of \(T_w \), except possibly for \(w \) itself, is at distance two from \(w \). Let \(y \) denote the parent of \(w \) on \(T \) and let \(T_y \) denote the component of \(T - wT \) containing \(y \).

Since \(\text{diam } T \geq 7 \), \(T_y \) is a non-trivial tree. By lemma (3.2), if \(\gamma_M(T) \equiv i_M(T) \) then \(\gamma_M((T_y) \equiv i_M(T_y) \).

Now, since \(T_y \) is a tree of order less than \(p \) satisfying \(\gamma_M(T_y) \equiv i_M(T_y) \), we can apply the induction hypothesis, to \(T_y \) to show that \(T_y \in \mathcal{A}_1 \). Since \(T \) is obtained from \(T_y \) by a operation \(A \), we have \(T \in \mathcal{A}_1 \). Hence the theorem. \(\square \)

Theorem 3.4: Let \(D_1 \) be the set of all \(\gamma_M \)-sets of \(G \). Then

(i). \(\gamma_M(G) \equiv i_M(G) \) if and only if induced subgraph \(\{D\} \) has only isolates, for every \(\gamma_M \)-set \(D \in D_1 \).

(ii). \(\gamma_M(G) \) is not \(\equiv i_M(G) \) if and only if the induced subgraph \(\{D\} \) is not totally disconnected for any \(\gamma_M \)-set \(D \in D_1 \).

Proof: Let \(D_j \) be the set of all \(\gamma_M \)-set \(D \) of a graph \(G \).

(i). Suppose \(\gamma_M(G) \equiv i_M(G) \). Then \(\gamma_M(G) \leq i_M(G) \) and every \(\gamma_M \)-set \(D \) of a graph \(G \) is an independent majority dominating set of \(G \). The induced subgraph \(\{D\} \) has only isolates for every \(\gamma_M \)-set.
$D \in D_i$. Conversely, for every γ_M-set D, the induced subgraph $\langle D \rangle$ has only isolates. Then D is an independent set of $G \implies$ every γ_M-set D is an i_M-set of G. \(\therefore i_M(G) \leq \gamma_M(G) \). For any graph G, $\gamma_M(G) \leq i_M(G)$. Hence $\gamma_M(G) \equiv i_M(G)$.

(ii). Suppose $\gamma_M(G)$ is not $\equiv i_M(G)$. Then for any graph G, $\gamma_M(G) \leq i_M(G)$ but not every γ_M-set D is an i_M-set of G. Then the γ_M-set D is not independent for any one $D \in D_i$. Hence, the induced subgraph $\langle D \rangle$ is not totally disconnected for any $D \in D_i$. Conversely, if $\langle D \rangle$ is not totally disconnected for at least one $D \in D_i$ then D is not an independent γ_M-set. It does not satisfy the fact that every γ_M-set is an i_M-set of G. \(\therefore i_M(G) \leq \gamma_M(G) \) is not true. Thus, $\gamma_M(G)$ is not $\equiv i_M(G)$.

IV. Strong Equality of $\gamma(G)$ and $\gamma_M(G)$ and of $i(G)$ and $i_M(G)$.

Observations 4.1:

1. For any graph G, $\gamma(M) \leq \gamma(G)$.
2. If $\gamma(G) = 1$ then $\gamma_M(G) = 1$.
3. If G has a full degree vertex then every γ_M-set is a γ-set.

Proposition 4.2:

For any graph G, $\gamma(G) \equiv \gamma_M(G)$ if and only if G has a full degree vertex.

Proof: Let $\gamma(G) \equiv \gamma_M(G)$. Suppose G has no full degree vertex. Then $\gamma(G) \geq 2$. G may have a majority dominating vertex v with $d(v) \geq \left\lceil \frac{p}{2} \right\rceil - 1$. Then $\gamma_M(G) = 1$ but $r > 1$. Therefore every γ_M-set is not a γ-set $\implies \gamma(G)$ is not strongly equal to $\gamma_M(G)$, a contradiction. Hence G has a full degree vertex. Conversely, if G has a full degree vertex, then $r = 1$. Then $\gamma_M(G) = 1$. Since $\gamma(G) = \gamma_M(G) = 1$, every γ_M-set is also a γ-set. Hence $\gamma(G) \equiv \gamma_M(G)$.

Proposition 4.3:

For any graph G, $i(G) \equiv i_M(G)$ if and only if G has a full degree vertex.

References: