
Working Title: Chain Replication In Theory and in Practice

Chain Replication In Theory and in Practice
Working Title, rough draft

Scott Lystig Fritchie
Gemini Mobile Technologies, Inc

slfritchie@snookles.com

Abstract
When implementing a distributed storage system, using an algo-
rithm with a formal definition and proof is a wise idea. However,
translating any algorithm into running code can be difficult. Staff at
Google have documented the difficulties in implementing the Paxos
algorithm: making the implementation correct andreaching perfor-
mance goals.

In the spirit of justaposing the purity of theory and proof with
the practice of implementation and real-world deployment, this pa-
per explores the implementation of the chain replication protocol in
a distributed key-value database called Hibari. In theory, the chain
replication algorithm is simpler than the Paxos algorithm. In prac-
tice, there are plenty of practical implementation details that have
hampered both a correct and a sufficiently-fast implementation. I
hope that the lessons learned here will help others in the Erlang
community and distributed systems implementors in general to cre-
ate robust distributed systems while avoiding traps and pitfalls that
lurk at the boundaries of the real-world computing.

This draft is likely somewhere between a draft extended abstract
and rough draft full paper quality. Reviewers should assume the
latter and thus be merciless in their critique.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Lynch’s Distributed Algorithms [5] is one of several collections
of formal specifications and proofs for distributed algorithms. As
Lynch is the first to admit, translating any algorithm into running
code can be difficult. Lampson’s Paxos algorithm [4, 7] is now a
well-known distributed algorithm for maintaining shared consen-
sus, but as staff at Google have documented in [2], there are at least
two problems that any implementation must solve: maintaining
the algorithm’s correctness and reaching acceptable performance
goals.

Continuing in the spirit of justaposing the purity of theory and
proof with the practice of implementation and real-world deploy-

[Copyright notice will appear here once ’preprint’ option is removed.]

ment, this paper explores the implementation of the chain repli-
cation protocol for high throughput and strong consistency in a
distributed key-value database called Hibari. In theory, the chain
replication algorithm is simpler than the Paxos algorithm, but in
practice, there are plenty of practical implementation details that
have hampered both a correct and a sufficiently-fast implementa-
tion. We hope that the lessons learned here will help others in the
Erlang community and distributed systems implementors in gen-
eral to create robust distributed systems that [blah blah needs good
final].

2. Chain Replication Overview
Chain replication was first described by Van Renesse and Schneider
[11]. It describes a variation on master/slave replication where
all servers that are responsible for storing the replica of a key
are arranged in a strictly-ordered chain. The head of the chain
makes all decisions about updates to any particular key. The head’s
decision is propagated down the chain in strict order. The principle
of strong consistency (CITE??) is preserved if all read-only queries
are handled by the tail of the chain: by definition, all updates
have already been processed by replicas earlier in the chain (or
”upstream”) of the tail brick.

The number of replicas for a given key is directly determined
by the length of the replica chain that is responsible for that key.
To tolerate F replica server failures, a chain must be at least F+1
servers long.

Hibari, a distributed key-value store written in Erlang, imple-
ments the chain replication algorithm as described by Van Renesse
and Schneider with little change. Erlang’s message passing makes
it trivial to support the original algorithm’s asymmetric message
passing for updates: client updates are sent to the head of the chain,
but the head’s reply is sent to the client via the tail of the chain.
The paper’s description of local update logging and repair in case
of failure of a member brick are implemented as described.

3. Hibari Overview
Hibari is a distributed key-value database that also provides high
throughput: several thousand updates per second of 1KB values
per second per server on typical commodity 1-2U rack-mountable
server hardware. Client operation throughput increases linearly
as servers are added to the cluster. High availability is achieved
through using replication chains of more than one server, com-
bined with quick reaction times (e.g. under 10 seconds) when a
member server fails.

Hibari maintains the principle of strong consistency by using
the chain replication protocol as originally described: all updates
are sent to the head of a chain, all read-only queries are sent to the
tail of a chain, and all replies for all client operations are sent by
the tail.

short description of paper 1 2010/6/17

Hibari uses a consistent hashing technique to map a TableName,
Key tuple to the name of the chain that is responsible for storing
that key Key in table TableName. Two such mappings are used
to implement data migration (or key repartitioning). In normal
operation, the maps are the same. During data migration, the maps
are used to calculate the current and new/desired location of a key.
Data migration is a dynamic, online process and can be used to
expand or contract a cluster as well as change relative balancing
weights of chains.

4. Disk Writing Latency Is a Big Deal
The price of RAM-based and flash RAM-based storage is too ex-
pensive for many big data applications. At a price/gigabyte ratio
today (US dollars) of TODO for flash RAM storage, only tra-
ditional hard disks are cost-effective for an application such as
free/advertising-supported email services. The market now rou-
tinely provides storage quotas in the range of 1-10 gigabytes per
user, with ”unlimited” storage available at extremely low monthly
fees.

Traditional rotating disk media can provide total storage capac-
ity at a low-enough cost for most big data applications, but their
average random I/O operation latencies are quite high: at least 4.5
milliseconds for top-of-the-line SCSI disks and at least double that
amount for slower SATA disks. As a result, it’s in an application’s
best interest to minimize the number of random I/O operations that
it generates.

The write-ahead log has been used by database systems for
decades to aggregate disk write operations and flush them to stable
storage, minimizing random disk I/O operations by appending log
entries to a log file. A ”group commit” technique is frequently
used to use a single fsync(2) operation (or OS equivalent) to flush
many transactions’ worth of log entries to the write-ahead log
simultaneously.

Hibari uses both techniques, the write-ahead log and group
commit, to minimize random disk I/O required to store reliably all
updates received by a data server. The necessary latency penalty of
the fsync(2) system call is required to guarantee data persistence in
the event of a cluster-wide catastrophe, such as a data center power
failure.

An Erlang process that is based on an Erlang/OTP gen server
behavior can usually utilize one full CPU core when writing data
to a file in the write-ahead log. The fsync(2) operation, however,
can block a gen server process for up to tens of milliseconds per
call. Such blocking delay is unacceptable in almost any latency-
constrained application. To solve this problem, each gen server-
based Hibari data server sends all writes to a central write-ahead
log (WAL) process for write(2) and fsync(2) call management.
The WAL process sends messages back to the data server when
an fsync(2) operation has been completed.

The chain repliation protocol already requires each write op-
eration to have a serial number associated with it, and that each
update is propagated down the chain in serial number order. The
WAL process uses these serial numbers to signal each data server
the largest serial number that has been safely flushed to disk via
fsync(2). Each server is then free to send those updates to down-
stream bricks at its leisure. However, this update communication
between data server and WAL server processes has been fraught
with subtle, difficult-to-find race conditions where writes are writ-
ten out of order, fsync(2) operations are acknowledged with wrong
log serial numbers, and data servers sending updates downstream
out of order. The QuickCheck software testing tool [1] has been in-
valuable for helping create the conditions necessary to exploit the
very small windows of vulnerability of many of these bugs.

5. Disk Reading Latency Is a Big Deal
For the purposes of this paper, ”big data” means storing more
data than comfortably fits in RAM. In the context of a key-value
database, it means that the total size of all keys, values, and related
metadata is larger than can be stored in RAM of a single machine.
For a distributed key-value store, the total amount of data and
metadata is larger than can be stored in the RAM of all machines
in the clustered store.

Each Hibari data server maintains key and key metadata in
RAM but stores value blobs either in RAM or on disk. For ”big
data” purposes, Hibari must store value blobs on disk. As a conse-
quence, any value blob read operations may also generate disk I/O.
Caching strategies by the OS or application can only be as good
as the size of cache available (e.g. RAM) and the temporal locality
patterns of the client application(s).

If the available cache is too small, and/or if the client applica-
tion’s access pattern doesn’t provide sufficient temporal locality of
reference, then disk read I/O operations are inevitable. Hibari tries
to minimize the number of disk operations required for a value blob
read by always storing the write-ahead log file number, starting byte
offset, and value blob size in RAM. The log file path can be calcu-
lated from the file number, so the application need only use a single
open(2), lseek(2), read(2), and close(2) call each to read any value
blob.

Client-driven workload is not the only source of disk read I/O
demand. The two most significant ones are:

1. Chain repair. Chain repair can generate a huge amount of disk
read I/O: for each value blob that a brick under repair does not have,
the upstream brick must read from disk before sending downstream
to the repairee.

2. Data migration. Sometimes call data repartitioning, reshard-
ing, or rebalancing, the Hibari data migration process moves keys
(and associated values and metadata) from one chain to another.
All keys that must be moved during a data migration must have
their values read from disk by a brick in the source chain before
transmission to the destination chain.

As described above, a gen server process can be blocked by
disk I/O. Any file open(2) or read(2) system call can block a Hi-
bari gen server process for many milliseconds each. For extremely
overloaded systems, the cost can be easily over 100 milliseconds
each. The effect on latency-sensitive applications is enormous.

To avoid blocking gen server processes with read-only disk I/O,
Hibari borrows techniques used by the Squid HTTP proxy [8] and
Flash HTTP servers [6]. Before a gen server attempts to open or
read a file, it first spawns a ”primer” process which asynchously
opens the file and reads the desired data. This process acts like
adding water to a pump to ”prime” the pump: all necessary file
metadata and data is read into the OS page cache. The primer
process uses the standard file API, e.g. open(2) and read(2). When
finished, the primer process sends a message to the main gen server
process that the priming action is complete. Then the gen server
process can open and read the file (using the same system calls)
with very little probability of blocking.

This priming technique has the disadvantage of performing the
same work twice: once by the short-lived primer process and once
by the long-lived gen server process. However, even with value
blobs up to 16MB in size, the overhead isn’t big enough to worry
about. The major advantages are that the Erlang/OTP ’file’ module
already supports all operations that the primer process requires, and
the probability of blocking the gen server process is reduced to
practically zero. The reduction of average read latency significantly
outweighs the disadvantages.

For both chain repair and data migration workloads, the ”primer”
technique only hides a portion of the latency required to read large
numbers of value blobs from disk. Both workloads generate I/O

short description of paper 2 2010/6/17

based by the lexicographic sort order of the keys stored by the
brick, whereas the order the value blobs are stored on disk is re-
lated to the time at which their respective updates were received.

The resulting mismatch can create a significant amount of ran-
dom I/O workload, as far as the underlying disks are concerned. For
data migration workload, the latency is largely unavoidable in the
current implementation. For brick repair workload, the latency can
be quite low or extremely high. If the brick under repair was down
for only a short while, the total number of keys that require repair
is likely to be small, and their value blobs are likely to be in the OS
page cache. For a brick that is completely empty (e.g. a new ma-
chine with a new, empty file system), a manual function is provided
that transmits keys and value blobs in an order sorted by location
within the write-ahead log. This can help reduce the amount of ran-
dom read disk I/O required to read the value blobs. The savings
can be very significant when the total size of value blobs is in the
hundreds or thousands of megabytes.

For repair tasks that fall in the middle, the number of keys to
repair is large but the cost of starting repair completely from scratch
is too high. In this middle case, there is no choice other than wait
for the standard repair technique to finish and to accept the amount
of read disk I/O required to do so. And in any case, for a chain that
contains terabytes worth of data, the time required to finish chain
repair can be minutes (best case), hours, or even days (worst case).
System planners and operations staff must keep this in mind as they
plan their data redundancy strategy (i.e. how long should each chain
be).

6. Rate Control Is Effectively Mandatory
It’s almost certain that the storage server will be the primary perfor-
mance bottleneck in a distributed client application system. Modern
hard disks are simply orders of magnitude slower than other com-
ponents in the system: CPU, RAM, system buses, and even com-
mercial gigabit Ethernet interfaces and switches are less likely to
be the slowest system component. To avoid overloading disk sub-
systems even further, it is effectively mandatory that rate control
mechanisms be added to control just about anything that can gen-
erate disk I/O.

Hibari has explicit controls for both batch sizes (e.g. number of
keys per iteration of an algorithm loop) and bandwidth (e.g. total
number of bytes) for the following: number of ”primer” processes
for prefetching value blobs from disk, chain repair operations, data
migration operations, and log ”scavenging” operations (which re-
claim space from the theoretically infinite sized write-ahead long).

Hibari also has an implicit limit on the number of application
client operations that a single brick can support. The simple tech-
nique is borrowed from SEDA [12]: if the client request is too old,
then drop it silently. Each Hibari client request contains a wall
clock timestamp. If that timestamp is too far in the past, the Hi-
bari server will ignore the request, under the assumption that the
request waited in the server’s Erlang mailbox for so long that the
server must be overloaded. To send a reply to the client will create
even more work for the server to do, so the cheapest thing to do is
to do nothing.

Also, during data migration periods, it is possible for a client’s
request to be forwarded back and forth between a key’s ”old”
chain location and its ”new” chain location. This forwarding loop is
usually quickly broken once the key has been stably written to the
”new” chain. If a forwarding loop is detected, an exponential delay
is added at each forwarding hop to try to avoid overloading bricks
in either chain. Also, the loop will be broken if the total number of
hops exceeds a configurable number.

7. Cluster Management and Monitoring
The original chain replication paper describes a single master entity
that is responsible for managing the state of each server brick
within each chain. Such single entities are also single points of
failure within the system and, for high availability applications,
need to be avoided altogether or at least minimized.

Hibari’s implementation implements the single logical service
as a single Erlang/OTP application that is managed by the Erlang
kernel’s ”application controller”. The application controller coor-
dinates multiple Erlang nodes to run the management/monitoring
application, called the ”Admin Server”, in an active/standby man-
ner. This indeed creates a single point of failure: if the machine
running the Admin Server crashes, the Admin Server’s services are
lost.

In balance, however, failure of the Admin Server not usually
a significant problem. The Admin Server is required only when
bricks crash or restart within the cluster, or if an administrator
wishes to query cluster status, history, or reconfigure the cluster.
Hibari client nodes and applications may continue operation with-
out error, as long as other bricks do not fail simultaneously.

The single application instance has another convenient conse-
quence: it makes behavior during network partition events easier
to reason about. For clients and server bricks on the ”far” side of
a network partition (relative to the running Admin Server), those
clients and bricks will be severely affected by the partition and will
be unable to perform most operations(*). For clients and bricks on
the ”near” side of the partition, the Admin Server will be able to
reconfigure chains to maintain service to all clients on the near side
of the partition, so long as each chain has at least one live brick that
is also on the near side.

(*) Footnote: If all bricks in a chain are on the ”far” side of a
partition, then the Admin Server can communicate with none of
them, so the chain can operate in its current state ... as long as none
of its member bricks fail while the network partition exists.

The CRAQ paper [10] proposes a distributed chain monitor-
ing and management scheme. Hibari’s Admin Server pre-dates the
CRAQ paper and therefore couldn’t take advantage of its sugges-
tions. Other distributed techniques were considered at the time, but
all of them were discarded in favor of implementation simplicity
and reasoning about them in case of network partition. If the en-
tity/enties that are responsible for managing chain state make faulty
decisions, it is **surprisingly easy** to lose data in a very short pe-
riod of time.

The original chain replication paper makes two assertions that
are extremely problematic in the real world. The first is, ”Servers
are assumed to be fail-stop.” The second is, ”A server’s halted
state can be detected by the environment”. If either assumption is
violated, the system can quickly make bad decisions that will cause
data loss.

The biggest problem with detecting halted nodes is the problem
of network partition. With message passing alone, it’s impossible
to tell the difference between a network partition, a failed node, or
merely a really slow node. The built-in Erlang/OTP message pass-
ing and network distribution mechanisms cannot adequately handle
network partition events by themselves. Svensson and Fredlund [9]
expand on the Erlang messaging limitations described in the Er-
lang/OTP documentation [3].

To combat the worst problems caused by network partition, Hi-
bari includes an OTP application called ”partition detector”. The
sole task of this application is to monitor two physical networks,
the ’A’ and ’B’ networks, for possible partition. All Erlang net-
work distribution traffic is assumed to use network ’A’ only. UDP
broadcast packets are sent periodically on both networks. When
broadcasts by an Erlang node are detected on network ’B’ but have

short description of paper 3 2010/6/17

stopped on network ’A’, then the application assumes that a parti-
tion of network ’A’ is in progress.

The partition detector app does not interact with the Erlang/OTP
application controller; the application controller can still make
faulty decisions when a network partition happens. However, the
partition detector app can abort the initialization of an Admin
Server instance when it believes there is a partition in effect. This
will raise and alarm and leave the Admin Server processes in an
undefined state. This situation must be resolved by a human admin-
istrator.

Failure of the ”fail stop” assumption have also caused problems
for Hibari. Gemini Mobile Technologies is not responsible for day-
to-day operations and monitoring of its customer’s systems, so all
the data we have received has been during ”post mortem” analysis
of past failures of a customer’s lab or production system. In these
post mortem analyses, we have identified two significant problems.

1. A bug within the Erlang/OTP ’net kernel’ process that can
cause deadlock and thus cause communication failures between
Erlang nodes. One instance of this bug hit a customer’s sys-
tem on at least 10 different machines within a 30 minute in-
terval, including both nodes that managed the Admin Server’s
active/standby failover.

2. Interference in process scheduling and high inter-node message
passing latencies created by ’busy dist port’ events. All Erlang
message passing traffic between two Erlang nodes is transmit-
ted over a single TCP connection. If the sending node detects
congestion (e.g. a slow receiver, intermittent network failure),
then any Erlang process on that node that attempts to send a
message to the remote node will be blocked: the Erlang process
is removed from the scheduler and will remain unschedulable
until the distribution TCP port is no longer congested.

The trio of ’net kernel’ deadlock, wild variations of message
passing latency, and process de-scheduling create a ”fail stutter”
(CITE, Lynch??) environment instead of ”fail stop”. The result
is that Hibari’s largest deployment has suffered from availability
failures but not data loss.

One solution to this problem has been a small patch to the Er-
lang virtual machine to make the buffer size for network distribu-
tion ports configurable. The default size of the ’erts dist busy’ con-
stant is 128 kilobytes. Even with a value of 4 megabytes appears
to be too small for the amount of data that Hibari servers move in
bursty traffic patterns.

Another solution is to use information from Hibari’s partition
detector application to supplement the monitoring info that the Ad-
min Server uses once it has initialized itself and is running nor-
mally. If a ’nodedown’ message is received (as a system moni-
toring event, requested via the erlang:system monitor() BIF), the
partition dectector’s state is queried to check if a network partition
was a possible trigger for the message. The same is done if a query
of a remote brick’s general health status fails due to ’timeout’ or
’nodedown’ reasons.

As a whole, the single Admin Server process has had more
problems in production than we had anticipated. The solutions
outlined above have not been in production long enough to judge
their effectiveness. However, given the problems that we know
have happened in production networks, it is likely that a manager
distributed across many nodes would likely have been fooled by the
same conditions into making similarly bad decisions.

8. Erlang Messaging Is Not Always Reliable
The original chain replication paper says, “Assume reliable FIFO
links.” There is no such thing in the real world. So how do we avoid
this problem?

Erlang’s “send and pray” messaging semantics are well known
and documented. Why do people who should know better (includ-
ing this author) write code that assumes that Erlang’s messaging is
more reliable than it is?

The original chain replication paper suggests that the tail of
the chain acknowledge each update after its processing has been
successfully completed by the tail. This acknowledgement is for-
warded all the way back to the head, which must keep track of
such acknowledgements for chain repair purposes. The Hibari im-
plementation avoids the overhead per update (which can be as
high as several thousand updates per second per chain) by using
a once/second acknowledgement of the largest update serial num-
ber processed by the tail.

This section specifically deals with the nature of gen server:cast()
and its use within Hibari. Under the surface, the gen server:cast()
call is a very thin layer of wrapper around Erlang’s message send()
BIF (built-in function). The nature of an error in Hibari is not an as-
sumption about message ordering but of when a message between
two Erlang nodes may be dropped.

Svensson and Fredlund describe clearly in [9] under what con-
ditions the usually-reliable messaging between two Erlang nodes
can turn unreliable.

Fortunately, the Erlang process monitoring BIF, monitor(), will
deliver a {’DOWN’,. . .} message to the receiver when the connec-
tion between nodes may have dropped messages.

9. Micro-Transactions Are Valuable
While not mentioned in the original chain replication paper, the
CRAQ paper mentions the possibility of implementing a ”micro-
transaction” fairly easily. Because all updates are sent to the head of
a chain, and because the head can make any decision it wishes (in-
cluding non-deterministic decisions), that single decision-making
entity can also decide on the fate of multiple key operations that
are sent in a single client query: ”commit” by applying all of their
changes, or ”abort” to apply none of them.

Hibari has implemented a similar micro-transaction feature. A
client can send multiple primitive key query and update operations
in a single protocol operation to a Hibari data server. As long as
all keys for all primitive operations are for keys that the server
is responsible for, then any additional pre-conditions (e.g. fail if
the key already exists/does not exist, ”test and set” condition) can
also be checked and, if satisfactory, then all primitive operations
are applied by the head and propagated down the rest of the chain.

Each Hibari server must be aware of what range of keys it is
responsible for in order to implement request forwarding, i.e. when
a client sends a request to the wrong server. Micro-transactions
introduce a second reason why Hibari server’s must be fully aware
of the consistent hashing algorithm used to map keys to chains: if
a server detects that a micro-transaction is attempting to operate on
keys managed by two or more chains, the micro-transaction must
be aborted as quickly as possible.

Hibari’s micro-transaction feature has been heavily used by a
custom Webmail application, developed by Gemini Mobile Tech-
nologies. The application was developed under a very tight time
schedule. It is unlikely that it could have been delivered on time
if client-side logic were always required to handle inter-key data
consistency.

10. Automatic Data Partitioning and
Re-partitioning Is Mandatory

Some key-value stores in the open source world (CITE? Tokyo
Tyrant, memcached, redis, ...) do not include automatic support
for data partitioning (also called ”data sharding”): they assume
the client will implement that task. Unfortunately, coordinating the

short description of paper 4 2010/6/17

actions of multiple distributed clients in a 100 percent bug-free
manner is a very difficult task.

Other distributed storage systems place significant restrictions
on data re-partitioning. The MySQL Cluster RDBMS did not sup-
port re-partitioning until 2009, and then only to expand the size
of the cluster. But reduction in cluster size is also a valuable fea-
tures. Similarly, support for homogenous hardware is very desir-
able: it’s nearly impossible to buy the same hardware more than
three months after an system has been deployed in the field, much
less three years or more in the future.

Hibari provides support for data migration as well as heteroge-
nous hardware. Both are accomplished by its consistent hashing
implementation. Hibari’s consistent hash algorithm uses the fol-
lowing inputs to calculate a chain name output: table name, key
name, and chain weighting structure.

The key name (or a configurable key prefix) is hashed using the
MD5 algorithm and mapped onto the unit interval of 0.0 – 1.0. The
unit interval is divided into an arbitrary number of ranges, where
each range represents a chain name. (SEE unfinished diagram)
Each chain can appear 0 or more times in the range map, and the
relative size of each range is determined by the chain weighting
factor. If the chain weighting factor for chain C1 as the weighting
factor for chain C5, then the total sum of sizes of range intervals
found in the range map will be twice as large for chain C1 as for
C5.

To implement data migration, each server and client node main-
tains two complete consistent hashing maps for each Hibari data
table: one ”current” view and one ”new” view. During normal op-
erations, the two views are identical. However, during a data mi-
gration period, the two views will be different: the ”current” view
describes where keys are mapped in the current scheme, and the
”new” view describes where keys are mapped in the newly desired
scheme.

Hibari’s data migration is performed dynamically, while all
servers and clients are in full operation. Due to the realities of
message passing asynchrony, it’s possible that clients will send
queries to the wrong chains. Each brick will determine if a query
has been mis-forwarded and, if so, re-forward to the appropriate
server. Most forwarding loops are three-legged only or exist for
very small periods of time (typically much less than one second).
The forwarding delay and maximum hop mechanism described
earlier takes care of the rare, long-lived forwarding loop.

11. Data Placement Is Flexible
(Draft section, sorry) Multiple logical bricks for the same chain on
same box -¿ greater CPU/multi-core utilization is possible, but it
also makes for greater management overhead.

Brick ”placement”: sketches are discussed in CRAQ paper and
somewhat in orig paper. Part of ”niftiness” of chain replication
is that it’s very flexible and therefore allows placement however
you wish. E.g. Japan customer using group-of-three-boxes strategy.
”Each logical brick in a physical machine in different rack” would
be easy to implement, as would many other physical placement
policies (host placement, rack placement, data center placementj)

Ring placement strategy is efficient, but then adding/removing
machines can cause asymmetric migration workload. That’s why
Japan customer chose group-of-three-boxes strategy.

12. Ops Section
(Sketch section, sorry) How do you monitor the thing? We needed/need
more ops tools.

13. Smaller But Important Observations
(Draft/sketch section, sorry) Chain reordering doesn’t appear in
either (?) paper, but it’s valuable from an ops perspective.

Timestamping of each key for client use was also useful for
server repair (instead of using e.g. Merkle trees, which were found
to be expensive in pure Erlang in Dynomite’s implementation)

Per-op async option was not a good idea: self-inflicted inconsis-
tency within a chain

- It is too easy (and especially when subject to schedule pres-
sures) to shot yourself in Erlang. Don’t mix complex code with
side-effects. It is difficult to understand, to test, and to support.

(comment: In some ways, Haskell is the right way to go ... but I
prefer Erlang’s approach for modeling concurrency, fault tolerance,
etc.)

- Read-ahead optimizations of the operating system’s disk sub-
system can (often) be unhelpful (?).

- The application shouldn’t trust the network, shouldn’t trust the
hardware, and shouldn’t trust the software (OS, virtual machine,
...).

Local defects do impact remote processes and vice versa. A
process’s understanding of the remote outside world might not be
true in reality.

- Anything can and does happen in a production environment.
The ”impossible” is possible.

Single logical brick -¿ single chain design decision ... was
mostly useful? One weakness might be making migration easier?

Reliance on Erlang distribution -¿ max. size of single cluster -¿
short term easy of implementation but long term unhappiness

References
[1] Q. AB. Quickcheck property-based software testing tool. URL

http://www.quviq.com/.
[2] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an

engineering perspective. In In Proc. of PODC, pages 398–407. ACM
Press, 2007.

[3] Ericsson AB. Erlang/otp documentation. URL
http://www.erlang.org/doc/.

[4] L. Lamport and K. Marzullo. The part-time parliament. ACM Trans-
actions on Computer Systems, 16:133–169, 1998.

[5] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[6] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and

portable web server, 1999.
[7] R. D. Prisco and B. Lampson. Revisiting the paxos algorithm. In In

Marios Mavronicolas and Philippas Tsigas, editors, Proceedings of
the 11th International Workshop on Distributed Algorithms (WDAG
97), volume 1320 of Lecture Notes in Computer Science, pages 111–
125. Springer-Verlag, 1997.

[8] Squid. Squid http proxy. URL http://www.squid-cache.org/.
[9] H. Svensson and L. ke Fredlund. Programming distributed erlang

applications: Pitfalls and recipes. In ACM Erlang Workshop. ACM
Press, 2007.

[10] J. Terrace and M. J. Freedman. Object storage on craq: High-
throughput chain replication for read-mostly workloads. In USENIX
Annual Technical Conference. San Diego, CA, 2009.

[11] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In USENIX OSDI, 2004.

[12] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-
conditioned, scalable internet services, 2001.

short description of paper 5 2010/6/17

