A MAXIMUM PRINCIPLE FOR INFINITE HORIZON DELAY EQUATIONS

N.AGRAM¹, S.HAADAM², B.OKSENDAL³, F.PROSKE⁴

¹Laboratory of Applied Mathematics, University Med Khider, Po.Box 145, Biskra (07000) Algeria. agramnacira@yahoo.fr
²Center of Mathematics for Applications (CMA), University of Oslo, Box 1053 Blindern, N-0316 Oslo, Norway. sven.haadem@cma.uio.no
³Center of Mathematics for Applications (CMA), University of Oslo, Box 1053 Blindern, N-0316 Oslo, Norway. oksendal@math.uio.no
⁴Department of Mathematics, University of Oslo, Box 1053 Blindern, N-0316 Oslo, Norway. proske@math.uio.no

Extended Abstract

We consider the stochastic optimal control problem on infinite horizon for partial information with delay where a controlled system is described by a stochastic delay differential equation driven by a Brownian motion and an independent compensated Poisson random measure of the form:

\[
\begin{align*}
&dX(t) = b(t, X(t), Y(t), A(t), u(t)) dt + \sigma(t, X(t), Y(t), A(t), u(t)) dB(t) \\
&\quad + \int_{\mathbb{R}} \theta(t, X(t), Y(t), A(t), u(t), z) \tilde{N}(dt, dz); t \in [0, \infty) \\
&X(t) = X_0(t); \quad t \in [-\delta, 0] \\
&Y(t) = X(t - \delta) \\
&A(t) = \int_{t-\delta}^{t} e^{-\rho(t-r)} X(r) dr
\end{align*}
\]

The problem is to optimize the criteria \(J(u) \) such that

\[
J(u) = E \left[\int_{0}^{\infty} f(t, X(t), Y(t), A(t), u(t)) \, dt \right]
\]

over an admissible control domain which is convex. Moreover, the admissible control processes are adapted to a subfiltration of the filtration generated by the underlying Poisson random measure and a Brownian motion.

¹The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no [228087].
We establish first and second sufficient stochastic maximum principles as well as necessary conditions for that problem. Then, we illustrate our results by an application to the optimal consumption rate from an economic quantity. Finally, we prove an existence and uniqueness of the advanced backward stochastic differential equations on infinite horizon with jumps.

References

