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Abstract: Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare
and economic problems. Although genetics have been shown to play a key role in bone integrity,
little is yet known about the underlying genetic architecture of the traits. This study aimed to
identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus
and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP)
were identified using Random Forests classification. We then searched for genes known to be related
to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them
had human orthologues. Based on our findings, we can support the assumption that multiple genes
determine bone strength, with each of them having a rather small effect, as illustrated by our SNP
effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are
involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates
represent genes that may play a role in the bone integrity of chickens. Although further studies are
needed to determine causality, the genes reported here are promising in terms of alleviating bone
disorders in laying hens.

Keywords: bone mineral density; bone breaking strength; gene set enrichment analysis; osteoporosis;
Random Forests; single nucleotide polymorphism; skeletal integrity

1. Introduction

The very high incidence of skeletal disorders in laying hens, including brittle and
fractured bones, is undoubtedly one of the most serious problems facing the egg production
industry [1,2]. Bone demineralisation associated with eggshell calcification favours the loss
of structural bone tissue and ultimately predisposes the birds to osteoporosis in the course
of the laying period [3,4]. Besides dramatic effects on animal welfare [5-7], bone weakness
also has an economic impact [4,8]. According to a widespread assumption, the reduction
in bone stability is primarily the result of selection for high laying performance [9-11].
However, the role of genetic selection on egg production is now seen in a more differentiated
view, with recent studies pointing to factors other than egg number alone [12-14].

In the urgently needed improvement of the skeletal health of laying hens, genetics play
an important role alongside husbandry and feeding of the birds [3,15,16]. To date, a number
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of quantitative trait loci (QTL) have been mapped to skeletal traits in chickens [17-22].
Dunn et al. [23] discovered a QTL on chromosome 1 that was recently fine-mapped leading
to the identification of a promising region around the cystathionine beta synthase gene
associated with osteoporosis [24]. The discovery of candidate positions for bone integrity
is inevitably linked to technical advances in genotyping and bioinformatics. Today, testing
hundreds of thousands of single nucleotide polymorphisms (SNP) by means of genome-
wide association studies (GWAS) has become common practice [15,25,26].

Despite its widespread use, GWAS has some potential pitfalls. In addition to pop-
ulation stratification, these include the identification of gene loci with small effect sizes,
which rarely reach the statistical significance level due to their low strength of associ-
ation [27]. At this point, machine learning algorithms represent a promising advance.
Several studies have demonstrated their potential in identifying genes with small effect
sizes [28,29]. The Random Forests (RF) models in particular seem to have a great potential
for analysing a large number of loci simultaneously and identifying corresponding asso-
ciations [29-31]. Recently, this approach has been used to identify genes associated with
eggshell strength [27].

The aim of the current study was to identify genomic positions associated with
bone stability traits, i.e., breaking strength and mineral density of the tibiotarsus and the
humerus, in laying hens. The animal model used comprised four layer lines that differed
in their phylogenetic origin (brown-egg vs. white-egg layers) and their egg production
level (high vs. moderately performing lines) [32]. Jansen et al. [14] have recently reported
promising heritability estimates for bone traits in this set of populations, supporting the
assumption of an inherited component of hens’ susceptibility to osteoporosis. In the study
reported here, we took a deeper look into the underlying genetic architecture of these
hens. This includes the adoption of RF-based feature selection in order to find potentially
important SNPs. Subsequently, we performed a series of functional analyses including gene
set enrichment analysis. Furthermore, SNP effects were estimated to confirm candidate
genes known from the literature to be associated with bone metabolism.

2. Materials and Methods
2.1. Population and Experimental Setup

The population consisted of four purebred chicken layer lines (Gallus gallus domesticus),
which are phylogenetically distinct (brown- vs. white-egg lines). Within each of these
phylogenetic groups, the two lines differed in terms of egg-laying rate (high- vs. moderate-
performing lines) [32,33]. The set of populations was previously subjected to phenotypic
analysis and the estimation of genetic parameters [14]. The data set only comprised hens
whose total egg number was within the line specific threefold interquartile range and who
laid at least one egg from 67 to 69 weeks of age [14]. For the statistical analyses done in this
study, we combined the four chicken lines into one set as described below.

For the current research, we used the bone breaking strength (BBS) and bone mineral
density (BMD) measurements previously reported by Jansen et al. [14]. A summary of
these measurements, taken from reference [14], is presented in Table S1. Briefly, BBS and
BMD of the tibiotarsus and humerus were determined by the three-point bending test and
dual-energy X-ray absorptiometry, respectively, using dissected bones after the hens were
sacrificed at 69 weeks of age.

The experimental setup is shown in Figure 1. We applied the machine learning-based
approach of Random Forests to identify genomic positions potentially associated with the
given phenotypes. Subsequent functional analyses included gene set enrichment analysis
and retrospective SNP effects analysis.
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Figure 1. Schematic illustration of the study design. The data set included 524 laying hens phe-
notyped for bone stability traits. The corresponding genotypes included 490,745 SNP markers.
Association analysis was performed applying Random Forests (RF) classification. Genes harbouring
significant SNPs were extracted and screened for links to bone stability. Gene set analyses were
performed considering all genes obtained from the RF classification. Retrospectively, SNP effects
were estimated for a subset of candidate genes identified in gene sets obtained from the RF classifier.

2.2. Genotyping

Initially, deoxyribonucleic acid (DNA) samples from the hens and sires were extracted
from blood samples. The hens were genotyped for 51,837 SNPs with a custom-made
SNP array (Affymetrix Inc., Santa Clara, CA, USA). From the same chicken lines, in
total 80 sires were genotyped for 580,961 SNP markers using the Affymetrix® Axiom®
Genome-Wide Chicken Genotyping Array [34]. Quality control was applied to both data
sets using the SNP & Variation Suite (SVS) v8.9 [35]. We only considered SNPs from
autosomal chromosomes 1 to 28. The genotypes were filtered for a SNP call rate of >99%
and an animal call rate of >95%. Furthermore, missing genotypes were imputed in a
two-step procedure using BEAGLE 5.0 [36]. Missing markers within the sire data set were
imputed using the default settings. After this, the female genotypes were imputed from
37,606 SNPs left after quality control to 497,041 SNPs. Here, the sire genotypes served
as a reference population and the effective population size was set to ne = 5000. After
imputation, 524 hens and 497,041 SNPs remained, of which 490,745 SNPs were finally
annotated using the genome assembly GRCgba (galGal6) [37], with duplicated SNPs and
those with ambiguous chromosome annotation being removed.

2.3. Random Forests Classification

We applied the machine learning algorithm of Random Forests (RF) to identify SNPs
associated with bone characteristics, i.e., BBS and BMD of the tibiotarsus and humerus.
Briefly, the RF algorithm constructs a multitude of classifying decision trees assigning
importance values to each SNP, thus determining those SNPs that explain variation in the
response variable [29]. As shown by Ramzan et al. [27,38], we performed SNP selection
by applying the Boruta algorithm, which works as a wrapper around the classification
algorithm [39]. This algorithm is based on the idea that an unimportant attribute is not
more useful for classification than a random one. Hence, if an attribute shows lower
importance than a random attribute, it can be deemed irrelevant. The second idea is that
importance measures get more accurate with less irrelevant attributes, such that iteratively
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removing unimportant attributes increases the accuracy of the importance measure. The
procedure of the algorithm is as follows: The dataset is first expanded by adding shuffled
copies of the original values of each SNP, called shadow attributes. RF classification is then
applied iteratively, assigning a value to each SNP, which is considered as the importance of
the SNP. At each iteration, SNPs whose importance is less than the best of their shadow
attributes are removed.

We used the Python (v3.8.3) [40] implementation from Homola [41] that specifies
the proportion of the shadow attributes by which a SNP has to be better in order to be
selected as important. Embedded in the Boruta algorithm, the RF classification itself was
carried out with the ‘RandomForestRegressor’ from the Scikit-learn package [42] using
default settings. The parameter perc was set to 99, representing a threshold of 99%, as no
SNP has been confirmed as important at the 100% level. RF classification was performed
separately for each bone trait. The input file consisted of the SNP genotypes, coded as ‘0’
(AA), "1’ (AB), or 2’ (BB), and the phenotypic values of the respective bone trait. To account
for possible confounding effects due to population stratification, residuals representing
adjusted phenotypes were analysed instead of the raw values [29]. The following model
was used to estimate the residuals:

Yijkt = #+ Gi + LLj + S + €iju @

where ;j; is the observation for a bone trait, y is the general mean, G; is the fixed effect of
generation (i = 1, 2), LL; is the fixed effect of layer line (j = 1 to 4), S is the random effect
of sire (k =1 to 145), and ¢;;; is the residual error. The model was computed using JMP
v14.0 (SAS Institute Inc. Cary, NC, USA, 2018). Normal distribution of the residuals was
assumed (Figure S1).

The output of the RF classification was a list of confirmed SNPs, i.e., markers that are
more than coincidentally associated with a given bone trait.

2.4. Functional Analyses
2.4.1. Gene Extraction

All steps of the functional analyses were carried out using R v4.0.3 [43]. Extraction of
genes associated with SNPs identified by the RF classification from the Ensembl database
v102 [44] was performed using BioMart [45]. All protein-coding genes that are located
within 5 kb upstream and downstream of the respective SNPs were considered for the
gene lists. Information on the biological functions of these genes was obtained from both
the NCBI [46] and Ensembl databases, as well as from the literature. The gene lists were
then screened for genes known to be associated with bone stability traits. In this way,
we identified a number of genes that were henceforth regarded as candidate genes.

2.4.2. SNP Effects Analysis

The genotypic effect was analysed for those SNPs located in intragenic or in flanking
genomic regions of candidate genes, which have previously been shown to be significantly
associated with a bone trait (see Table 1). SNP effects for each locus were analysed as
described by Wiedemann et al. [47]. For this purpose, the actual SNP genotypes were
coded as ‘0’ (AA), ‘1" (AB), or 2’ (BB), with the B allele representing the minor allele. The
minor allele was considered the effect allele, whereas the major allele was termed ‘other
allele’. All models were computed with the R package Ime4 [48].

A linear regression model adjusted for fixed factors was applied to estimate the allele
substitution effects by single marker regression (SMR):

Yijkim = ¥+ Gi + LLj + b1SNP, + S; + €jjkim 2)

where jjy,, is the observation for a bone trait, y is the overall mean effect, G; is the fixed
effect of generation (i = 1, 2), LL; is the fixed effect of layer line (j = 1 to 4), by is the
regression coefficient of the SNP genotype (SNP), S; is the random effect of sire (/ =1 to
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145), and &jxp, is the residual error. Standardised allele substitution effects were calculated
according to model (2) after both the dependent variable and the SNP genotypes coded as
‘0’, 1", or 2" were standardised to have a mean of 0 and a standard deviation of 1.

To calculate the additive and dominance effects, a dominant-recessive model (DRM)
was applied considering the SNP genotype as a fixed class variable. The statistical model
was as follows:

Yijim = #+ Gi + LLj + SNP¢ + S; + ijjim ®3)

where i, is the observation for a bone trait, y is the overall mean effect, G; is the fixed
effect of generation (i = 1, 2), LL; is the fixed effect of layer line (j = 1 to 4), SN P is the fixed
effect of SNP genotype (k =1 to 3), S; is the random effect of sire (I =1 to 145), and &;jx;yy, is
the residual error. Least squares means (LSM) for the different genotypes were estimated
with the emmeans package [49]. Significant differences between LSM were tested using
a t-test and adjusted by the Bonferroni method. Additive and dominance effects were
estimated by contrasting the respective genotypes according to the following formulas.

q— HAA — 1BB @)
2
+
d=jiap— HAA . UBB (5)

where 4 is the additive effect, d is the dominance effect, 144 and upp are the phenotypic
mean values of the homozygous genotypes, and y 4p is the phenotypic mean value of the
heterozygous genotype.

2.4.3. Gene Set Analysis

With the gene sets including all genes extracted, we performed gene set analysis (GSA)
using g:Profiler2 [50]. This involved the Gene Ontology (GO) (Ensembl v102) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [51] (FTP release 2020-09-07) databases.
The GSA was carried out considering all known genes obtained from Ensembl for the
calculation of statistical significance and applying the default g: SCS algorithm [52] for
computing the multiple testing correction. Only GO- and pathway terms with significant
enrichment (p < 0.05) were considered for further analyses. Tree maps of the GO terms
were generated using rrvgo [53].
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Table 1. General information for 17 loci associated with the bone breaking strengths (BBS) or bone mineral densities (BMD) of the tibiotarsus (Tib) and humerus (Hum) selected for the

SNP effects analysis.

SNP Trait Location GGA! Position 2 Genotypes N Individuals Fi?lril(::tchiz s EA/OA3 EA Frequency Candidate Gene  Reference *
AX-75268181 Tib_BMD intragenic 1 139,001,157 CC/CT/TT 392/96/36 0.75/0.18/0.07 T/C 0.16 MCF2L 54
AX-76044166 Tib_BBS intragenic 2 15,440,861 AA/AG/GG 421/63/40 0.80/0.12/0.08 G/A 0.14 MPP7 55
AX-80813610 Tib_BMD downstream 2 23,056,581 CC/CG/GG 339/113/72 0.65/0.22/0.13 G/C 0.25 CALCR 56
AX-76099065 Tib_BMD intragenic 2 46,101,680 GG/GA/AA 392/77/55 0.75/0.15/0.10 A/G 0.18 SFRP4 57
AX-76601713 Tib_BBS intragenic 3 10,617,925 AA/AG/GG 265/102/157 0.51/0.19/0.30 G/A 0.40 ACTR2 15
AX-77276717 Tib_BBS intragenic 3 19,498,104 GG/GA/AA 322/145/57 0.61/0.28/0.11 A/G 0.25 TGFB2 58
AX-76491534 Tib_BBS intragenic 3 49,027,160 AA/AG/GG 432/62/30 0.82/0.12/0.06 G/A 0.12 CCDC170 59
AX-76772658 Tib_BBS/Hum_BBS intragenic 5 11,438,677 TT/TC/CC 219/199/109 0.41/0.38/0.21 C/T 0.40 SOX6 60
AX-77113061 Tib_BMD upstream 8 5,889,886 GG/AG/AA 202/156/166 0.38/0.30/0.32 A/G 0.47 TMCO1 61
AX-77091655 Hum_BBS/Hum_BMD upstream 8 24,931,025 CC/CA/AA 286/139/99 0.54/0.27/0.19 A/C 0.32 PODN 15
AX-75597497 Hum_BBS downstream 10 19,108,829 AA/AG/GG 376/124/24 0.72/0.24/0.04 G/A 0.16 SMAD6 62
AX-75677174 Tib_BMD intragenic 11 10,044,055 CC/CT/TT 377/107/40 0.72/020/0.08 T/C 0.18 GPATCH1 55
AX-75711229 Tib_BBS intragenic 12 3,804,145 GG/AG/AA 459/58/7 0.88/0.11/0.01 A/G 0.07 ASPN 63
AX-75913642 Tib_BBS upstream 18 8,793,585 GG/AG/AA 451/61/12 0.86/0.12/0.02 A/G 0.08 SOX9 64
AX-76351785 Hum_BBS intragenic 27 3,497 444 CC/CT/TT 316/138/70 0.61/0.26/0.13 T/C 0.26 WNT9IB 65
AX-76351898 Hum_BMD downstream 27 3,518,924 GG/GA/AA 483/31/10 0.92/0.06/0.02 A/G 0.05 WNT3 55
AX-76351899 Hum_BMD downstream 27 3,519,091 TT/TC/CC 483/31/10 0.92/0.06/0.02 C/T 0.05 WNT3 55

1 GGA, Gallus gallus chromosome; ? Physical position (bp) according to the GRCgba (galGal6) genome assembly; 3 EA, effect allele (minor allele); OA, other allele (major allele); * References from the literature
suggesting an association of the gene with bone stability traits.
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3. Results
3.1. Identified Single Nucleotide Polymorphisms

Lists of confirmed SNPs were obtained from the RF classifier for each of the phenotypic
traits. For the tibiotarsus, 358 (BBS) and 374 (BMD) SNPs were confirmed as important,
whereas for the humerus 188 (BBS) and 178 (BMD) markers were identified, respectively.
There were no confirmed SNPs on GGA (Gallus gallus chromosome) 16 for any of the four
traits studied (Figure S2). In the case of the tibiotarsus, the majority of SNPs were located
on GGA 1. In general, there were fewer markers for the humerus, with no markers found
on GGA 28. Comparing the two bone types, more than twice as many SNPs were identified
for the tibiotarsus.

3.2. Functional Analyses
3.2.1. Extracted Gene Sets

We identified 240 (BBS) and 220 (BMD) genes within an interval of 5 kb upstream and
downstream of SNPs that were found to be significant for the tibiotarsus. In contrast, gene
sets for the humerus included 115 (BBS) and 113 (BMD) genes.

A Venn diagram was drawn to find overlaps and differences between the genes
identified for the BBS and BMD of the two bone types (Figure 2). The corresponding
detailed gene list is given in Table S2. It was found that the overlaps of loci between
the individual traits were rather small. It ranged from 1.7% (six genes) between BBS of
tibiotarsus and humerus up to an overlap of 6.7% (31 genes) between BBS and BMD within
the tibiotarsus. No gene was found in all bone and trait combinations. Rather, they were
mainly unique genes.

Humerus Humerus
BBS BMD
Tibiotarsus Tibiotarsus
BBS 93 91 BMD

199 176

Figure 2. Venn diagram showing the overlap of genes for the bone breaking strengths (BBS) and
bone mineral densities (BMD) of the tibiotarsus and humerus.

Based on the information on their biological functions and from the literature review,
we reduced the gene lists to genes that are known to be related to bone stability. We found
16 genes with an already described association (Table 1). These genes are located on GGA
1 (MCF2L), GGA 2 (MPP7, CALCR, and SFRP4), GGA 3 (ACTR2, TGFB2, and CCDC170),
GGA 5 (50X6), GGA 8 (TMCO1, PODN), GGA 10 (SMAD®6), GGA 11 (GPATCH1), GGA 12
(ASPN), GGA 18 (50X9), and GGA 27 (WNT9B, WNT3).

3.2.2. SNP Effects Analysis

To reveal the biological significance of the candidate genes, we analysed their asso-
ciations with the corresponding phenotypic bone traits. To this end, we performed SNP
effects analyses of all markers detected by the RF classifier and then assigned to genes
(Table 1). Since the SNPs AX-77091655 (PODN) and AX-76772658 (SOX6) were associated
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with two traits each and, in addition, two further markers were assigned to the WNT3 gene,
SNP effects were estimated for 19 SNP and bone trait combinations.

Results from the SMR model are shown in Table 2. Analysis of variance revealed
significant effects of SNP genotypes on the respective bone traits. Only the SNPs AX-
77276717 (TGFB2) and AX-75711229 (ASPN) had no significant effect. Locus AX-76099065
(SFRP4) had the greatest effect on tibiotarsus BMD, with the substitution of allele G for
allele A leading to a reduction of 0.016 g/cm?. In contrast, increasing the number of the
copies of the effect alleles at loci AX-76351898 and AX-76351899, both assigned to the WNT3
gene, would yield an increase in humerus BMD of 0.016 g/cm?. Of all loci significantly
associated with BBS, the SNP AX-76491534 (CCDC170) showed the largest effect, whereby
substitution of one copy of allele A with allele G would result in a 15.63 N decrease of
tibiotarsus BBS. The counterpart is the SNP AX-76351785 (WNT9B) in which the T allele
would presumably cause an increase of 11.51 N of humerus BBS. This is also the largest
effect among all significant SNPs, with a change of 0.21 expressed in SD units.

Results obtained from the DRM are shown in Table 3. Comparison of the genotypic
values (LSM) revealed significant differences among the genotypes. This applies to all loci
studied, with exception of the SNPs AX-77276717 (IGFB2) and AX-80813610 (CALCR),
where only a tendency towards a higher value for the homozygote genotype of the effect
allele was observed. For the other loci, the effects indicated by the direction of the beta
coefficients (SMR) were also reflected in the genotypic values. A significantly higher LSM
was found for the homozygote genotype of the effect allele of the SNP AX-75711229 (ASPN).
However, this estimate might be biased as the corresponding genotype had a frequency of
only 0.01 (Table 1) and no significant allele substitution effect was detected for this locus
(Table 2).

Significant additive effects of the respective other allele (major allele) were accounted
for all loci with exception of the SNPs AX-77276717 (TGFB2) and AX-76772658 (SOX6)
(Table 3). The estimates ranged from —0.02 to 0.017 g/cm? for the BMD-related SNPs
and from —16.70 to 15.70 N for the markers associated with the BBS. Effects of com-
plete dominance were observed for the SNPs AX-76044166 (MPP7), AX-75711229 (ASPN),
AX-75597497 (SMADG6) and AX-76099065 (SFRP4), with one copy of the major allele mask-
ing the recessive allele, thus leading to full trait expression. In contrast, complete dominance
in favour of the effect allele was seen for the SNP AX-77113061 (TMCO1).

3.2.3. Gene Set Analysis

GSA was performed considering the total gene sets. We restricted the results presented
to the GO biological process (BP) category, as we sought to determine overarching biological
objectives to which the gene products of the extracted genes contribute. Furthermore,
the genes were grouped according to their KEGG pathways. Full lists of significantly
enriched GO terms, including those from the cellular component and molecular function
categories, are given in Table S3.
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Table 2. SNP effects analysis—Part 1: Analysis of variance table and allele substitution effect obtained from the single marker regression model.

. Generation Layer Line SNP Genotype Allele Substitution Effect 2
SNP Trait 1 Candidate -

Gene F-Statistics p-Value F-Statistics p-Value F-Statistics p-Value Beta (SE %) S]tsa;;g%r(dsl%c)ed t-Value p-Value
AX-76044166 Tib_BBS MPP7 80.92 <0.0001 46.34 <0.0001 4.05 0.0448 8.22 (4.09) 0.10 (0.05) 2.0 0.0448
AX-76601713 Tib_BBS ACTR2 86.02 <0.0001 106.86 <0.0001 13.33 0.0003 —10.19 (2.79) —0.18 (0.05) —3.65 0.0003
AX-77276717 Tib_BBS TGFB2 81.07 <0.0001 102.16 <0.0001 3.32 0.0696 4.67 (2.57) 0.06 (0.04) 1.82 0.0696
AX-76491534 Tib_BBS CCDC170 91.49 <0.0001 84.86 <0.0001 12.58 0.0004 —15.63 (4.41) —0.17 (0.05) —3.55 0.0004
AX-76772658 Tib_BBS SOX6 81.50 <0.0001 117.84 <0.0001 10.71 0.0012 7.63 (2.33) 0.12 (0.04) 3.27 0.0012
AX-75711229 Tib_BBS ASPN 79.24 <0.0001 84.23 <0.0001 2.08 0.1503 6.66 (4.62) 0.05 (0.04) 1.44 0.1503
AX-75913642 Tib_BBS SOX9 83.08 <0.0001 111.94 <0.0001 9.67 0.0019 —12.87 (4.14) —0.11 (0.04) —3.11 0.0019
AX-76772658 Hum_BBS SOX6 36.26 <0.0001 52.59 <0.0001 5.67 0.0177 —5.32 (2.23) —0.10 (0.04) —2.38 0.0177
AX-77091655 Hum_BBS PODN 39.91 <0.0001 41.64 <0.0001 8.35 0.0041 6.69 (2.31) 0.13 (0.04) 2.89 0.0041
AX-75597497 Hum_BBS SMADG6 36.38 <0.0001 53.40 <0.0001 4.62 0.0321 —7.13(3.32) —0.10 (0.05) —2.15 0.0321
AX-76351785 Hum_BBS WNT9B 37.27 <0.0001 67.22 <0.0001 21.57 <0.0001 11.51 (2.48) 0.21 (0.04) 4.64 <0.0001
AX-75268181  Tib_BMD MCF2L 430 0.0401 106.46 <0.0001 1353 0.0003 (_00(')(())}1? ~0.15 (0.05) —3.67 0.0003
AX-80813610 Tib_BMD CALCR 4.24 0.0415 56.10 <0.0001 4.86 0.0298 0.008 (0.004) 0.10 (0.05) 2.21 0.028
AX-76099065 Tib_BMD SFRP4 4.31 0.0400 65.23 <0.0001 8.55 0.0036 (7000(())%? —0.18 (0.06) —2.92 0.0036
AX-77113061 Tib_BMD TMCO1 4.45 0.0369 99.26 <0.0001 5.27 0.0221 0.008 (0.003) 0.11 (0.05) 2.30 0.0221
AX-75677174 Tib_BMD GPATCHI1 4.27 0.0406 61.13 <0.0001 10.84 0.0011 0.013 (0.004) 0.13(0.04) 3.29 0.0011
AX-77091655 Hum_BMD PODN 20.70 <0.0001 51.56 <0.0001 11.53 0.0008 0.007 (0.002) 0.14 (0.04) 3.39 0.0008
AX-76351898 Hum_BMD WNT3 19.82 <0.0001 77.58 <0.0001 13.81 0.0002 0.016 (0.004) 0.15 (0.04) 3.72 0.0002
AX-76351899 Hum_BMD WNT3 19.82 <0.0001 77.58 <0.0001 13.81 0.0002 0.016 (0.004) 0.15 (0.04) 3.72 0.0002

1 BBS, bone breaking strength; BMD, bone mineral density; Tib, tibiotarsus; Hum, humerus; 2 Allele substitution effect per copy of the effect allele (minor allele); 3 SE, standard error; # Standardised regression
coefficients expressed in SD unit.
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Table 3. SNP effects analysis—Part 2: Genotypic values (least squares means) and additive and dominance effects obtained from the dominant-recessive model.

; Candidate Genotypic Values Homozygous Additive Allele Effect Dominance Effect °

P .

SN Trait Gene AA 23 (SE?) AB 23 (SE) BB 23 (SE) Estimate (SE) t-Value p-Value Estimate (SE) t-Value p-Value
AX-76044166 Tib_BBS MPP7 155.33 (2.26) > 145.80 (5.85)®  172.76 (7.25)* —8.71 (4.05) —2.15 0.0320 —18.20 (5.45) —3.35 0.0009
AX-76601713 Tib_BBS ACTR2 162.77 (3.08)*  156.79 (3.81)®  143.10 (3.79) b 9.83 (2.82) 3.49 0.0005 3.86 (4.03) 0.96 0.3392
AX-77276717 Tib_BBS TGFB2 153.42 (2.25)2  157.05(3.06)®  163.72 (5.10)2 —5.15 (2.83) -1.82 0.0694 —1.52(3.73) —0.41 0.6843
AX-76491534 Tib_BBS CCDC170 159.13 (2.19)  144.04 (6.28) 2  127.83(8.09) ® 15.70 (4.42) 3.54 0.0004 0.56 (5.88) 0.096 0.9239
AX-76772658 Tib_BBS S0X6 149.06 (2.65)>  158.53(2.58)  163.29 (3.90) 2 —7.11 (2.43) -293 0.0035 2.36 (3.13) 0.75 0.4520
AX-75711229 Tib_BBS ASPN 155.14 (1.94) > 15478 (5.29)® 18853 (13.11)*  —16.70 (6.62) —2.52 0.0120 —17.10 (8.02) -2.13 0.0340
AX-75913642 Tib_BBS 50X9 157.50 (1.93)@  148.13 (4.83) 2  124.13 (10.37) P 16.70 (5.31) 3.14 0.0018 7.40 (6.44) 1.15 0.2506
AX-76772658 Hum_BBS S0X6 127.04 2.51)2 11624 (2.46)®  119.38 (3.71) @ 3.83 (2.31) 1.66 0.0984 —6.96 (3.02) —231 0.0215
AX-77091655 Hum_BBS PODN 118.01 2.31)® 12073 (3.04)>  132.21(3.73)2 —7.10 (2.31) —3.07 0.0023 —4.38 (3.44) —1.27 0.2043
AX-75597497 Hum_BBS SMAD6 12216 (2.08)@ 12348 (3.64)  98.16 (6.97) P 12.0 (3.71) 3.23 0.0013 13.30 (4.61) 2.88 0.0040
AX-76351785 Hum_BBS WNT9B 115.73 (2.19) ¢ 124.86 (3.05)®  139.61 (4.34) @ —11.90 (2.54) —4.70 <0.0001 —2.81(349) —0.80 0.4215
AX-75268181 Tib_BMD MCF2L 0.263 (0.003)®  0.253 (0.005)®  0.228 (0.008) 0.017 (0.004) 3.92 0.0001 0.008 (0.006) 1.35 0.1768
AX-80813610 Tib_BMD CALCR 0.256 (0.003)®  0.258 (0.005)  0.273(0.006)  —0.009 (0.004) —224 0.0257 —0.007 (0.005) —1.27 0.2051
AX-76099065 Tib_BMD SFRP4 0.261(0.003)®  0.265(0.008)*  0.235 (0.009) 0.013 (0.006) 232 0.0206 0.018 (0.006) 2.71 0.0071
AX-77113061 Tib_BMD TMCO1 0.246 (0.005)2 0267 (0.004)@  0.266 (0.004)2  —0.01 (0.004) —2.82 0.0050 0.011 (0.004) 2.51 0.0125
AX-75677174 Tib_BMD GPATCH1 0254 (0.003)® 0269 (0.005)@  0.278 (0.007)*  —0.012 (0.004) —3.05 0.0024 0.004 (0.005) 0.56 0.5739
AX-77091655 Hum_BMD PODN 0.164 (0.002)®  0.167(0.003)>  0.178(0.003)  —0.007 (0.002) —3.53 0.0005 —0.004 (0.003) —1.25 0.2117
AX-76351898 Hum_BMD WNT3 0.166 (0.002)®  0.176 (0.006)®  0.206 (0.010)  —0.02 (0.005) —3.84 0.0001 —0.009 (0.007) —1.29 0.1991
AX-76351899 Hum_BMD WNT3 0.166 (0.002)®  0.176 (0.006)®  0.206 (0.010)  —0.02 (0.005) —3.84 0.0001 —0.009 (0.007) —1.29 0.1991

1 BBS, bone breaking strength; BMD, bone mineral density; Tib, tibiotarsus; Hum, humerus; 2 AAorBB represents the homozygote of the other allele or effect allele, respectively. AB denotes the heterozygote (see
Table 1 for the actual genotypes); > Means with different letters within a column differ significantly at p < 0.05; * SE, standard error; ® Effect of the other allele (major allele).
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A large number of genes were involved in common processes. The analysis reported 81
(BBS) and 51 (BMD) significantly enriched BPs for the tibiotarsus and 33 (BBS) and 42 (BMD)
BPs for the humerus, respectively (Table S3). Of these, Figure 3 (tibiotarsus) and Figure 4
(humerus) show the top 15 significantly enriched GO BP terms with the highest —logjg
p-values and all significantly enriched KEGG pathways obtained from the RF classifier.
Although certain BPs overlapped between the bone and trait combinations, no relation
to the skeletal system was evident in the enriched BPs. Visualizing the results using
tree maps to investigate redundancy based on semantic similarity between different GO
terms also did not yield any biologically relevant findings (Figures S3 and S4). However,
the literature points to the involvement of Wnt- and MAPK signalling pathways in the
pathogenesis of osteoporosis [25]. GSA revealed the Wnt signaling pathway (KEGG:04310) to
be significantly enriched in both BMD gene sets (Figures 3B and 4B). In addition, significant
enrichment for the MAPK signaling pathway (KEGG:04010) was identified in the genes for
BMD of the tibiotarsus.
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Figure 3. Significantly enriched Gene Ontology terms of the category biological processes (GO:BP;
top 15 with the highest -logg p-values) and KEGG pathways for the bone breaking strength (A) and
bone mineral density (B) of the tibiotarsus. The dot size represents the absolute number of genes
enriched in the term. The proportion of enriched genes in all queried genes is represented on the
x-axis. The colour represents the —logjg transformed adjusted p-values.
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Figure 4. Significantly enriched Gene Ontology terms of the category biological processes (GO:BP;
top 15 with the highest -log;g p-values) and KEGG pathways for the bone breaking strength (A)
and bone mineral density (B) of the humerus. The dot size represents the absolute number of genes
enriched in the term. The proportion of enriched genes in all queried genes is represented on the
x-axis. The colour represents the —logjg transformed adjusted p-values.

4. Discussion

The objective of the present study was to identify genomic positions potentially
associated with skeletal integrity in a laying hen population. There is solid evidence
that osteoporosis is a polygenic disorder, i.e., determined by multiple functional genes
acting conjointly rather than a few major genes [15,25]. For this reason, we applied RF
classification, an approach known to be able to detect genes with modest effects [29,30]. To
our knowledge, this is the first study applying a machine-learning approach to bone data
in chickens. Using RF classification, we identified a high number of potentially informative
SNPs. Although a large number of genes were adjacent to these SNPs, only 16 candidate
genes related to skeletal disorders were identified; of these, many had human orthologues.
However, for the vast majority of genes, no involvement in bone metabolism has been
suspected so far, which is in line with previous reports [15,66]. From the 16 identified
candidates discussed below, we first focus on genes that have previously been linked to
BBS or BMD (n = 10), followed by genes for which an association with osteoarthritis is
suggested (n = 3). Finally, genes are discussed that are functionally related to the Wnt
signalling pathway (n = 3).

Ten of our candidate genes can be grouped as having previously been associated
with BBS or BMD traits in the literature. Of these, the membrane palmitoylated protein 7
gene (MPP7) was associated with vertebral BMD in humans [55]. Its strong functional
role in osteoblast biology was demonstrated by means of in vivo and in vitro studies [67].
Based on these reports, we consider MPP7 to be a good candidate for bone disorders
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in chickens. In our study, the calcitonin receptor gene (CALCR) was identified as a strong
candidate for BMD. Calcitonin plays a role in calcium homeostasis and is primarily an
inhibitor of bone resorption [68]. Our observations are in line with previous reports,
as CALCR polymorphisms were associated with site-specific BMD in humans [56,69],
and alpha-calcitonin gene-related peptide deficient mice were shown to have a lower
bone mass [70]. One of the candidates for BBS located on GGA 3 is the actin related protein 2
gene (ACTR2), which was recently identified by Raymond et al. [15] as being associated
with BBS in laying hens. ACTR2 is functionally linked to bone via its importance for
cilia formation, as cilia are known to play an integral role in skeletal development [15,71].
Although no significant effect of the variant corresponding to the transforming growth factor
beta 2 gene (TGFB2) was observed in our study, TGFB2 is considered a very promising
candidate for skeletal integrity in the chicken. As a cytokine, the protein encoded by TGFB2
has important functions in many biological processes related to bone remodelling [19,58].
Analyses in different chicken populations including broilers and layers suggest TGFB2 to
be associated with various bone characteristics [19,21,58]. In this context, the SMAD family
member 6 gene (SMAD6) has to be mentioned, which we identified as a candidate for BBS. Its
protein acts as a regulator of the TGF-beta family and inhibits bone morphogenetic protein
pathways, which are integral parts of osteoblast and chondrocyte differentiation [72,73]. A
study on mice revealed their essential role in bone formation, as SMAD3 knockout resulted
in osteopenia [62]. The coiled-coil domain containing 170 gene (CCDC170) is our third can-
didate for BBS located on GGA 3. The region around this locus has been linked to BMD
in humans [59,65]. However, since the function of the protein is yet unclear, it has been
speculated whether associations attributed to CCDC170 do not rather belong to the adjacent
estrogen receptor 1 gene [59]. In a follow-up study, CCDC170 polymorphisms were in turn
associated with osteoporosis-relevant phenotypes [74]. Only one of our candidates was
located on GGA 5. The corresponding variant is located in the intron of the SRY-box 6 gene
(SOX6), which encodes a transcription factor known to affect developmental processes
and skeletal formation in humans [60,65]. In addition, the gene was linked with BMD of
the femoral neck [75], and skeletal abnormalities have previously been observed in SOX6
knockout mice, suggesting an integral role in cartilage formation [76]. We identified the
transmembrane and coiled-coil domains 1 gene (TMCO1), located on GGA 8, as a candidate for
BMD. TMCOI1 plays an important role in bone formation-mediating calcium homeostasis
within the endoplasmic reticulum [61]. Disruption of the endoplasmic reticulum of an
osteoblast can lead to severe bone disorders [77]. Recently, Li et al. [61] demonstrated
that TMCO1 deficiency leads to reduced bone formation and osteoblast differentiation in
humans and mice. In addition to SOX6, the podocan gene (PODN) is another candidate that
was associated with two traits, namely BBS and BMD of the humerus. PODN encodes a
proteoglycan that was shown to bind type 1 collagen, suggesting a potential role in growth
regulation [78]. At this point, the great influence of collagen on mechanical properties of
bones should be mentioned, which is assumed to apply equally to humans [79] and chick-
ens [80]. That PODN could be a promising candidate for bone integrity in laying hens is
supported by findings of Raymond et al. [15]. Although the G-patch domain containing 1 gene
(GPATCH]1), identified as BMD candidate, is considered a candidate gene for osteoporosis
in humans [55], functional information is limited and its role in skeletal pathophysiology is
not yet clear.

For a group of three candidates, the literature suggests a functional relationship with
osteoarthritis, a pathological condition of cartilage degradation [81]. Osteoarthritis and
osteoporosis are closely related and characterised by subchondral bone loss and excessive
bone resorption [20,81,82]. It is assumed that both diseases are partly determined by
common genes [83]. One of the candidates found in our study is the MCF.2 cell line derived
transforming sequence like gene (MCF2L), shown to be expressed in cartilage tissue, and
linked to joint osteoarthritis in humans [54,84]. In addition, Mao et al. [85] recently pointed
out the relevance of MCF2L for osteoporosis, which underlines the link between both
disorders. The asporin gene (ASPN), also known as biglycan (BGN), is assumed to regulate
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chondrogenesis. While the results of Mishra et al. [63] point to a functional role of ASPN
in osteoarthritis, other studies reported only a marginal relationship or contradict such
an association [86,87]. Given these contradictory results and the fact that the association
with ASPN was not significant in our study, we consider ASPN a suggestive candidate that
requires further investigation. The SRY-box 9 gene (SOXD9) is our third candidate linked to
osteoarthritis [88]. SOX9 is considered a pivotal player in chondrogenesis, as its protein, the
transcription factor SOX-9, was shown to stimulate chondrocyte differentiation [64,89]. In
addition, SOX9 mediates the Wnt signalling pathway, abnormalities of which are correlated
with cartilage degradation [64].

The remaining candidates, i.e., the SFRP4, WNT3, and WNT9B genes, are functionally
linked to the Wnt signalling pathway, which plays a key role in various basic develop-
mental processes [90]. The secreted frizzled related protein 4 gene (SFRP4) encodes a protein
that primarily antagonizes Wnt polypeptides [90] and is one of the BMD candidates. A
mutation in SFRP4 was shown to cause pathological reduction of cortical bone tissue in
mice and humans [57]. The Wnt signalling pathway is crucial for bone metabolism and
to date, several Wnt genes are known to be associated with traits such as bone mass and
BMD [55,91]. This also includes the Wnt family member 3 gene (WNT3), which was identified
in this study [55,88]. The Wnt family member 9B gene (WNT9B), located adjacent to WNT3
on GGA 27, was identified as a candidate for BBS. Although its role in skeletal biology
is less explored than that of other Wnt genes, we consider WNT9B a susceptibility gene
for bone strength due to its association with femur BMD [65]. The high importance of
the Wnt signalling pathway for bone strength is supported by the significant enrichment
that was shown in the GSA for this functional pathway. Furthermore, the mitogen-activated
protein kinase (MAPK) signalling pathway was enriched, which is also very important for
skeletal development and, in particular, for chondrogenesis [92]. These observations are in
accordance with recent results from pathway analyses [25,93].

Taken together, we identified a number of genetic loci associated with the bone traits
studied. Based on these findings, we can confirm the assumption that bone stability is
determined by multiple genes, each of which has a rather small effect size. The genes
presented here represent suggestive susceptibility genes of bone integrity in chickens, some
of which are nonetheless very promising based on what is known so far. Follow-up studies
will be required to determine causalities and further uncover the biological significance
of these genes. Here, the use of an F2 mapping population for high-resolution mapping
of loci is recommended [94]. Considering the animal model, a follow-up study should
also investigate the influence of phylogenetic origin on bone phenotypic plasticity, which
was not done here, as we focused on finding loci that are significant for laying hens across
phylogenetically divergent layer lines.

5. Conclusions

In this study, RF classification was performed to identify loci related with bone in-
tegrity in laying hens. In the subsequent functional analyses, a set of 16 promising can-
didate genes was identified, although in some cases rather small SNP effect estimates
were observed. Some of the genes were shown to be involved in pivotal pathways that
regulate bone metabolism. Our results strongly support genetics as a crucial factor that
contributes significantly to the regulation of bone strength and thus offers great opportuni-
ties to improve bone health in laying hens. Further functional analyses on the candidate
genes identified at a suggestive level have to follow in order to confirm their biological
significance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ genes12050702/s1, Figure S1. Histograms of the residuals, Figure S2: Number of annotated
SNPs per chromosome, Figure S3: Tree maps of significantly enriched Gene Ontology terms for
genes associated with bone breaking strength, Figure S4: Tree maps of significantly enriched Gene
Ontology terms for genes associated with bone mineral density, Table S1: Summary of the phenotypic
measurements, Table S2: List of all extracted genes, Table S3: List of all enriched terms/pathways.
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