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The poor prognosis of malignant gliomas is largely attributed to their highly invasive nature. The molecular
mechanism underlying the invasiveness of glioma cells, however, remains to be elucidated. The present study
found that astrocyte elevated gene-1 (AEG-1) was upregulated in human glioma cell lines and glioma tissues
compared with normal astrocytes and brain tissues. AEG-1 was found to be upregulated in 265 of 296 (89.5%)
glioma sections, and the AEG-1 expression level significantly correlated with clinicopathologic stages of glio-
mas. Ectopic expression or short hairpin RNA silencing of AEG-1 significantly enhanced or inhibited, respec-
tively, the invasive ability of glioma cells. At the molecular level, we showed that upregulated AEG-1 in glioma
cells interacted with matrix metalloproteinase-9 (MMP-9) promoter and transactivated MMP-9 expression,
whereas knockdown of AEG-1 expression reduced the level of MMP-9. Two regions in MMP-9 promoter were
found to be involved in the interaction with AEG-1. Suppression of endogenous MMP-9 abrogated the effects
of AEG-1 on invasiveness. Consistent with these observations, immunostaining analysis revealed a significant
correlation between the expressions of AEG-1 and MMP-9 in a cohort of clinical glioma samples. Moreover, in-
tracranial xenografts of glioma cells engineered to express AEG-1 were highly invasive compared with the pa-
rental cells and expressed high level of MMP-9. Collectively, these findings provide evidence that AEG-1
contributes to glioma progression by enhancing MMP-9 transcription and, hence, tumor cell invasiveness, and
underscore the importance of AEG-1 in glioma development and progression. Cancer Res; 70(9); 3750–9. ©2010 AACR.
Introduction

Gliomas represent the most common and aggressive
type of tumors in the central nervous system (CNS). In
spite of the enormous improvements made in neurosur-
gery, chemotherapy, and radiotherapy, the prognosis of ma-
lignant gliomas has remained poor over the last decades in
the United States and Europe (1). The cumulative 1-year
survival rate is <30%, and the median survival time of
the grade 4 glioma, glioblastoma multiforme (GBM), is only
15 months (2, 3). Such suboptimal efficacy in the manage-
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ment of glioma is largely attributable to the highly invasive
nature of glioma cells capable of diffusely infiltrating and
widely migrating in the surrounding brain tissue, leading
to restricted and incomplete surgical resection and, thus,
high recurrence rates (1, 4). Biologically, the invasion pro-
cess of glioma cells into the neighboring areas involves cell
adhesion and proteolytic degradation of the extracellular
matrix (ECM; ref. 5). Previously, mounting evidence has
shown that matrix metalloproteinase (MMP) family mem-
bers, including MMP-2 and MMP-9, are tightly involved
in augmenting the invasive capability of gliomas and cor-
related with the degree of histologic malignancy as well as
the prognosis of gliomas (6–10). Hence, a better under-
standing of the molecular mechanism mediating the regu-
lation of MMP expression in gliomas is key to development
of efficacious therapeutic strategy that abolishes the infil-
tration and invasion of glioma cells.
Astrocyte elevated gene-1 (AEG-1) was initially identified

as a novel protein induced by HIV-1 or tumor necrosis
factor-α in primary human fetal astrocytes (11–14). Numer-
ous recent studies have shown that AEG-1 is upregulated
in various human cancer types, including melanoma, breast
cancer, GBM, esophageal squamous cell carcinoma, neuro-
blastoma, and prostate cancer (14–24). Meanwhile, AEG-1
has been reported to play important roles in multiple bio-
logical processes during cancer development and progression,
including malignant transformation, apoptosis regulation,
angiogenesis, invasion, and metastasis of tumor cells via
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activation of various oncogenic signaling pathways (25–29).
The expression of AEG-1 could be induced by Ha-ras through
the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt
signaling pathway due to binding of c-Myc to key E-box ele-
ments in the AEG-1 promoter region (26). Furthermore, AEG-
1 synergizes with Ha-ras to increase the colony-forming ability
of nontumorigenic immortalized melanocytes and augment in-
vasion of transformed cells, thereby acting as a positive auto-
feedback activator (28). Ectopic expression of AEG-1 could
inhibit serum starvation–induced apoptosis by provoking con-
stitutive activation of PI3K/Akt signaling, which further in-
duces expression of MDM2, rescinding the function of p53
and repressing the expression of Bad and p21. In contrast,
silencing AEG-1 expression could stimulate apoptosis due
to enhanced FOXO3a activity mediated by reduction of Akt
activity (15, 28). We have previously found that AEG-1 pro-
motes proliferation in breast cancer via suppressing FOXO1
(29). In addition, the molecular mechanism by which AEG-1
contributes to oncogenesis is also associatedwith the activation
of NF-κB pathway (15, 24, 27). It has been reported that upregu-
lation of AEG-1 could induce the cytoplasm/nucleus translo-
cation of NF-κB and enhance its DNA-binding activity (27),
and inhibition of NF-κB attenuates AEG-1–induced enhance-
ment of colony formation in soft agar and increases invasion
of HeLa cells in Matrigel (24). Moreover, AEG-1 has also been
found to be crucial for the progression of hepatocellular
carcinoma, possibly mediated by Wnt/β-catenin signaling
through extracellular signal-regulated kinase p42/44 activa-
tion and upregulation of lymphoid-enhancing factor 1/T-cell
factor 1 (21). Recently, Hu et al. (22) have shown that ALDH3A1
and MET contribute to chemoresistance of breast cancer in-
duced by AEG-1. Taken together, all available evidence sug-
gests that AEG-1 might function as a potential oncogene
contributing to the development and progression of human
cancers. Nevertheless, whether AEG-1 plays a role in tumor
invasion still remains to be investigated.
In the current study, we report that AEG-1 could promote

the invasiveness of glioma and transcriptionally upregulate
MMP-9 expression through directly binding to the MMP-9
promoter. We also show that the expression of AEG-1 is as-
sociated with histologic staging and expression of MMP-9 in
gliomas.

Materials and Methods

Cell lines. Primary normal human astrocytes (NHA) were
purchased from Sciencell Research Laboratories and cultured
under the condition as the manufacturer suggested. Glioma
cell lines, including LN443, LN444, LN464, U118G, T98G,
U251MG, U87MG, D247MG, LN340, A172, LN319, LN382T,
and SNB19, were kindly provided by Dr. Shi-Yuan Cheng
(University of Pittsburgh, Pittsburgh, PA) and grown in DMEM
supplemented with 10% fetal bovine serum (HyClone). All
above-mentioned cells have been characterized as GFAP+ cells
with immunofluorescence using antibody against GFAP.
Patient information and tissue specimens. A total of

296 paraffin-embedded glioma specimens were collected
for this study, which had been histopathologically and clini-
www.aacrjournals.org
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cally diagnosed at the Sun Yat-sen University–Affiliated First
Hospital from 2000 to 2005. For the use of these clinical
materials for research purposes, prior patient's consents
and approval from the Institutional Research Ethics Com-
mittee were obtained. Clinical information of the samples
is described in detail in Supplementary Table S1. Normal
brain tissues were obtained by donation from individuals
who died in traffic accident and confirmed to be free of
any prior pathologically detectable conditions.
Chromatin immunoprecipitation. Chromatin immuno-

precipitation (ChIP) was done using the Chromatin Immuno-
precipitation kit (Upstate) according to the manufacturer's
instruction. Briefly, 2 × 106 indicated cells in a 100-mm cul-
ture dish were treated with 1% formaldehyde to cross-link
proteins to DNA. The cell lysates were sonicated to shear
DNA to sizes of 300 to 1,000 bp. Equal aliquots of chromatin
supernatants, into which 1 μg of anti–AEG-1 antibody
(Invitrogen) or anti-IgG as negative control was added,
were incubated overnight at 4°C with rocking. After reverse
cross-link of protein/DNA complexes to free DNA, PCR was
done using specific primers of MMP-9 promoter as follows:
primer 1, GCCATGTCTGCTGTTTTCTAGAGG (forward)
and CACACTCCAGGCTCTGTCCTCTTT (reverse; product,
207 bp); primer 2, AAAGAGGACAGAGCCTGGAGTGTG (for-
ward) and GGGAACTGTATGAAAGGGAGGGAG (reverse;
product, 225 bp); primer 3, CTCAGGGAGTCTTCCATCA-
CTTTC (forward) and AGCATGAGAAAGGGCTTACACCAC
(reverse; product, 250 bp); primer 4, TGGTGTAAGCCCTTT-
CTCATGCTG (forward) and CAGCTGCTGTTGTGGGGGC-
TTTAA (reverse; product, 161 bp).
Luciferase assay. Cells (3.5 × 104) were seeded in tripli-

cates in 48-well plates and allowed to settle for 24 hours.
Luciferase reporter plasmids (100 ng) containing different
fragments of MMP-9 promoter, or the control luciferase
plasmid, plus 1 ng of pRL-TK Renilla plasmid (Promega) were
transfected into glioma cells using the Lipofectamine 2000
reagent (Invitrogen) according to the manufacturer's recom-
mendation. Luciferase and Renilla signals were measured
48 hours after transfection using the Dual-Luciferase Reporter
Assay kit (Promega) according to a protocol provided by the
manufacturer. Three independent experiments were done and
the data are presented as the mean ± SD.
Intracranial brain tumor xenografts, immunohisto-

chemistry, and H&E staining. U87MG (5 × 105) or U87MG-
AEG-1–expressing cells (5 × 105) were stereotactically
implanted into individual nude mouse brains with five mice
per group. The glioma-bearing mice were scarified after
3 weeks of implantation and the whole brains were removed,
and 4-μm sections were cut and subjected to immunohis-
tochemistry and H&E staining. After deparaffinization, im-
munohistochemistry was conducted using an anti–AEG-1
antibody (Invitrogen) and an anti–MMP-9 antibody (Cell
Signaling). For H&E staining, deparaffinized tumor sections
were stained with Mayer's hematoxylin solution. The images
were captured using the AxioVision Rel.4.6 computerized
image analysis system (Carl Zeiss).
Statistical analysis. All statistical analyses were carried

out using the SPSS 10.0 statistical software package. The
Cancer Res; 70(9) May 1, 2010 3751
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χ2 test was used to analyze the relationship between AEG-1
expression and the clinicopathologic characteristics. Bivari-
ate correlations between study variables were calculated by
Spearman's rank correlation coefficients. P < 0.05 in all cases
was considered statistically significant.

Results

Upregulation of AEG-1 in glioma cell lines and primary
glioma. Western blotting and real-time reverse transcription-
PCR (RT-PCR) analyses revealed that the expression of AEG-1,
at both protein and mRNA levels, was markedly higher in all
13 glioma cell lines in comparison with that in NHA (Fig. 1A;
Supplementary Fig. S1A). Furthermore, comparative analysis
on paired glioma tumor and adjacent nontumor tissues
(ANT), with each pair obtained from the same patient,
showed that the mRNA and protein levels of AEG-1 were also
higher in all eight glioma samples compared with each
corresponding ANT tissue (Fig. 1B; Supplementary Fig. S1B),
clearly showing notable upregulation of AEG-1 in both glioma
cell lines and clinical primary glioma tissues.
Increased expression of AEG-1 correlates with progres-

sion of gliomas. To further investigate whether AEG-1 pro-
tein is overexpressed in clinical samples of glioma, we
examined 296 paraffin-embedded, archived glioma tissues,
Cancer Res; 70(9) May 1, 2010
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including 39 cases of grade 1 (13.2%), 121 cases of grade 2
(40.9%), 88 cases of grade 3 (29.7%), and 48 cases of grade 4
gliomas (16.2%) by immunohistochemistry. As presented in
Fig. 1C and Supplementary Table S1, positive AEG-1 staining
was shown in 265 of 296 (89.5%) cases, among which 143
(48.3%) were identified as low-level AEG-1 expression and
153 cases (51.7%) as high-level AEG-1 expression. Quantita-
tive analysis indicated that the average mean optical densi-
ties of AEG-1 staining intensity in histologic grade 1 to 4
primary tumors were statistically significantly higher than
those in normal brain tissues (P < 0.001; Fig. 1C; Supplemen-
tary Fig. S1C). Further analysis showed that AEG-1 expres-
sion strongly correlated with the age of patients (P < 0.001)
and the clinicopathologic grades (P < 0.001; Supplementary
Table S2), which was confirmed by a Spearman correlation
analysis (Supplementary Table S3). Taken together, our
results suggested that the expression of AEG-1 significantly
correlated with clinicopathologic grades of gliomas.
Modulation of the invasive ability of glioma cells by

AEG-1 in vitro. To investigate the biological significance
of upregulated AEG-1 in the development and progression
of gliomas, the gain or loss of function of AEG-1 in glioma
cell models with ectopic expression of AEG-1 cDNA
(Fig. 2A, left) or RNA interference (RNAi)–mediated AEG-1
knockdown (Fig. 2A, right), respectively, was tested. The
Figure 1. AEG-1 expression in glioma cell lines and primary gliomas. A, expression of AEG-1 protein in NHA and cultured glioma cell lines (LN443,
LN444, LN464, U118G, T98G, U251MG, U87MG, D247MG, LN340, LN319, A172, LN382T, and SNB19). B, comparative quantification of AEG-1 protein
in paired primary glioma tissues (T) and ANTs, with each pair obtained from the same patient. Protein expression levels were normalized with α-tubulin.
C, AEG-1 protein is upregulated in glioma sections (WHO grade 1–4) compared with normal brain tissue as examined by immunohistochemical staining.
Cancer Research
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AEG-1–overexpressing U87MG and U251MG glioma cells
exhibited markedly increased ability of invasion compared
with the vector control–transduced cells, as examined by
Transwell matrix penetration assay (Fig. 2B). In contrast,
silencing endogenous AEG-1 expression dramatically reduced
the invasive ability of glioma cells (Fig. 2C). Furthermore,
three-dimensional spheroid invasion assay, which has been
considered to be better mimicry of in vivo tumor invasion,
revealed that both AEG-1–transduced glioma cell lines, after
being cultured in Matrigel for 10 days, displayed morpholo-
gies typical of highly aggressive invasiveness, presenting more
outward projections from nearly all individual cells, as
opposed to the vector-transduced control cells (Fig. 2D, left).
Conversely, the AEG-1 RNAi–transduced glioma cells pre-
sented immotile and spheroid morphologies (Fig. 2D, right).
These data strongly suggest a role of AEG-1 in the modulation
of the invasiveness of glioma cells.
AEG-1 promotes invasive ability of glioma cells through

activation of MMP-9 expression. Because the invasion
ability of glioma cells is biologically and clinically linked
to expression and activation of MMP-9 (6–10), we were
prompted to examine whether the invasive phenotype en-
hanced by AEG-1 was associated with a change in MMP-9
expression. Real-time RT-PCR analysis was done to deter-
mine the expression levels of MMP-9 in glioma cells expres-
sing ectopic AEG-1 and RNAi knocked down for AEG-1
expression, and as shown in Fig. 3A, in both U87MG and
U251MG glioma cells, ectopically overexpressing AEG-1 (left)
increased the expression of MMP-9 mRNA, and inversely,
knockdown AEG-1 drastically repressed MMP-9 mRNA
www.aacrjournals.org
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expression (right). Consistent with the real-time RT-PCR
data, ELISA assay and gelatin zymography assay of
MMP-9 showed that the AEG-1–transduced glioma cells dis-
played higher MMP-9 production and proteolytic activity
than the vector control cells. By contrast, the AEG-1
RNAi–transduced glioma cells exhibited lowered MMP-9
activities compared with the vector control–infected cells
(Fig. 3B and C).
To further show a functional link between AEG-1 and

MMP-9 expression, we sought to test whether in clinical
glioma tissues the upregulated expression of AEG-1 was
associated with increase in the MMP-9 level. The correlation
between the expression levels of AEG-1 and MMP-9 was ex-
amined in 296 paraffin-embedded glioma clinical specimens.
As shown in Fig. 3D, glioma samples with high-level AEG-1
expression exhibited strong MMP-9 staining signals, whereas
MMP-9 expression in specimens with low AEG-1 levels was
low or absent. Spearman correlation analysis showed a
strong correlation between AEG-1 and MMP-9 expression
in the tested tissue samples (r = 0.748; P < 0.001; Supple-
mentary Table S4), suggesting that upregulation of AEG-1
was clinically relevant to increased expressions of MMP-9
in human gliomas.
To determine whether MMP-9 is a key mediator for the

increased invasiveness of glioma cells induced by AEG-1,
we examined the effect of silencing MMP-9 on the AEG-1–
mediated invasiveness. Functional assays (i.e., Transwell
matrix penetration assay and three-dimensional invasion
assay) revealed that knockdown of MMP-9 in the AEG-1–
overexpressing U87MG and U251MG glioma cells reversed
Figure 2. AEG-1 modulates the invasive ability of glioma cells in vitro. A, ectopic expression of AEG-1 (left) and knockdown of AEG-1 (right) in glioma
cell lines U87MG and U251MG were analyzed by immunoblotting using an anti–AEG-1 antibody. Protein expression levels were normalized with α-tubulin.
B and C, representative pictures (left) and quantification (right) of penetrated cells were analyzed using the Transwell matrix penetration assay. The
quantification of penetrated cells was represented as the mean of three different experiments. D, representative micrographs of indicated cultured cells after
10-d culture in three-dimensional spheroid invasion assays. *, P < 0.05.
Cancer Res; 70(9) May 1, 2010 3753
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the invasive ability of both glioma cell lines (Fig. 4), indicat-
ing that MMP-9, at least partially, plays important roles in
the invasiveness of glioma cells induced by AEG-1.
AEG-1 regulates MMP-9 promoter activity in glioma cells.

To understand the mechanism via which AEG-1 upregulates
Cancer Res; 70(9) May 1, 2010
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MMP-9 expression, luciferase-based test was done to deter-
mine whether AEG-1 regulates MMP-9 promoter activity. We
cotransfected the MMP-9 promoter-luciferase construct
pGL3 into U87MG and U251MG together with pcDNA3.1-
AEG-1 or the control vector, or AEG-1–small interfering
Figure 3. AEG-1 promotes invasive ability of glioma cells through activation of MMP-9 expression. A, quantification of changes of MMP-9 mRNA levels
in AEG-1–transduced and AEG-1 RNAi–transduced cells. mRNA expression levels are presented as increasing fold compared with the vector control
cells and were normalized with GAPDH. B, MMP-9 protein levels in the supernatants of indicated cells were assessed using ELISA. C, gelatinase activity
of MMP-9 in indicated cells was assessed using gelatin zymography assays. D, immunohistochemical staining of AEG-1 and MMP-9 in glioma specimens.
*, P < 0.05.
Figure 4. Knockdown of MMP-9 inhibited the invasive properties of glioma cells induced by AEG-1. A, knockdown of MMP-9 mRNA in indicated cells
confirmed by real-time RT-PCR. mRNA expression levels were normalized with GAPDH. B, knockdown of MMP-9 inhibited the invasive properties of
glioma cells induced by AEG-1. Representative micrographs of indicated cultured cells after 10-d culture in three-dimensional spheroid invasion assay.
C, representative pictures of penetrated cells (left) and quantification of indicated cells (right) analyzed using the Transwell matrix penetration assay.
Quantification of penetrated cells was represented as the mean of three different experiments. *, P < 0.05.
Cancer Research
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RNA (siRNA) or scramble control. As shown in Fig. 5A (left),
cotransfection with pcDNA3.1-AEG-1 activated the luciferase
activity driven by the MMP-9 promoter in a dose-dependent
manner in both glioma cell lines. Conversely, a consistent
and dose-dependent reduction of luciferase activity of
MMP-9 promoter on AEG-1 siRNA transfection was shown
in both U87MG and U251MG glioma cell lines (Fig. 5A, right).
Furthermore, when the luciferase activities driven by serial
www.aacrjournals.org
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fragments cloned from the MMP-9 promoter region, includ-
ing those covering nucleotides −96 to +19 (P1), −300 to +19
(P2), −485 to +19 (P3), −735 to +19 (P4), or −735 to −485 (P5;
nucleotide numbering illustrated in Fig. 5B), were tested,
the result showed that the luciferase activity could be sig-
nificantly increased by ectopic overexpression of AEG-1 or
decreased by AEG-1 knockdown (Fig. 5B; Supplementary
Fig. S2) compared with the vector control cells, whereas
Figure 5. AEG-1 transcriptionally regulates the expression of MMP-9 through association with MMP-9 promoter. A, transactivation of the MMP-9 promoter
by AEG-1 (left) and repression of the MMP-9 promoter by AEG-1 siRNA (right) in U87MG and U251MG glioma cells, as shown in luciferase activity assays.
B, left, schematic illustration of cloned fragments of the human MMP-9 promoter. The promoter region was cloned as seven fragments (P1 to P7). Right,
transactivating activity of AEG-1 on serial MMP-9 promoter fragments as indicated in U87MG cells. The luciferase activities of the promoter constructs
were measured after normalization to Renilla luciferase activity. Columns, mean of three independent experiments; bars, SD. C, regions of MMP-9 promoter
physically associated with AEG-1 were analyzed using ChIP assay. Left, schematic illustration of PCR-amplified fragments of MMP-9 promoter; right,
ChIP assays were done with U87MG cells using AEG-1 antibody to screen AEG-1–bound MMP-9 promoter regions for PCR amplification in U87MG,
U87-NF-κB siRNA, and U87-AP-1/c-Jun siRNA cells. IgG was used as a negative control. *, P < 0.05.
Cancer Res; 70(9) May 1, 2010 3755
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the luciferase activity in cells transfected with MMP-9 pro-
moter fragments representative of nucleotides −485 to −300
(P6) and −300 to −96 (P7) displayed no difference in their re-
sponse to AEG-1 overexpression, knockdown, or their controls
(Fig. 5B; Supplementary Fig. S2). These results indicate that
AEG-1 expression was involved in MMP-9 promoter activity
and that the transaction might be through two regions in the
MMP-9 promoter [i.e., the P1 region (nucleotides −96 to +19)
and the P5 region (nucleotides −735 to −485)].
Consistent with the results obtained from the luciferase

activity assay, ChIP assay using U87MG cells revealed that
AEG-1 was able to bind region 1 (nucleotides −690 to −483)
and region 4 (nucleotides −164 to −3) as defined by the ChIP
PCR primers within the MMP-9 promoter area (Fig. 5C), sug-
gesting a physical interaction between AEG-1 and MMP-9
promoter. Because AEG-1 protein itself does not contain
any DNA-binding domain, we hypothesized that the associa-
tion of AEG-1 with MMP-9 promoter elements might be co-
operating with other transcription factor(s). The MMP-9
promoter region was examined for transcriptional bind-
ing site using prediction tools, which identified a potential
NF-κB–binding site and an activator protein (AP)-1–binding
element (ABE) between nucleotide positions −690 and
−483 bp, as well as an ABE between nucleotides −164 and
−3 bp, of the MMP-9 promoter, as indicated in Fig. 5C (left).
Cancer Res; 70(9) May 1, 2010
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To determine whether AEG-1 binds to MMP-9 promoter re-
quired for NF-κB or AP-1, ChIP assay was done. Our results
showed that the binding efficiency of AEG-1 with MMP-9
promoter region 1 could be reduced by silencing NF-κB
p65 and that the binding efficiencies of AEG-1 with MMP-9
promoter regions 1 and 4 could be reduced by silencing
AP-1/c-Jun using RNAi (Fig. 5C, right), which indicated that
binding of AEG-1 to MMP-9 promoter elements might involve
cooperation with NF-κB p65 and/or AP-1. Moreover, real-
time PCR assay revealed that the expression of MMP-9 mRNA
significantly decreased when the AEG-1–overexpressing
glioma cells were treated with either NF-κB inhibitor or
AP-1 inhibitor (Supplementary Fig. S3), suggesting that
the AEG-1–mediated MMP-9 upregulation might be through
both NF-κB and AP-1 pathways.
Upregulation of AEG-1 causes aggressive tumor invasion

and induces MMP-9 expression in vivo. Finally, to deter-
mine whether overexpression of AEG-1 could stimulate glio-
ma progression in vivo, U87MG/vector control cells or
U87MG/AEG-1 cells were stereotactically implanted into
the brains of mice, and the growing morphologies of im-
planted glioma tumors were examined. U87MG or U87MG-
AEG-1–expressing cells were stereotactically implanted into
individual nude mouse brains (n = 5). As shown in Fig. 6,
U87MG/vector control cells formed noninvasive, oval-shaped
h. 
, 2017. © 2010 Am
Figure 6. Overexpression of AEG-1 by U87MG
cells induces glioma invasion in brains. Left,
gliomas established by control U87MG/vector
cells (n = 5 per group); right, invasive gliomas
formed by U87MG/AEG-1 cells (n = 5 per group).
Arrows, invasive tumor cells. The sections of
U87MG/vector or U87MG/AEG-1 gliomas were
stained with hematoxylin or immunostained with
an anti–AEG-1 antibody and an anti–MMP-9
antibody. Original magnification, ×100.
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intracranial tumors in the brains of all nude mice, with sharp
edges that expanded as spheroids (Fig. 6, left). In contrast,
five mice that received U87MG/AEG-1 cells developed highly
invasive gliomas, which invaded into the normal brain
structures, displaying interspersed fibroblast-like structures
(Fig. 6, right). It is noteworthy that the invasive phenotype
displayed by U87MG/AEG-1 gliomas coincided with upre-
gulation of MMP-9 (Fig. 6, right). Taken together, these re-
sults suggest that overexpressing AEG-1 caused aggressive
tumor invasion and induced MMP-9 expression in the brain.

Discussion

Key findings of the current study provide new insights into
the potential role of deregulated AEG-1 in promoting the ag-
gressiveness of gliomas by showing that AEG-1, markedly
overexpressed in both glioma cell lines and primary glioma
tissues, contributes to the invasive phenotype of glioma cells
through transcriptional upregulation of MMP-9 via inter-
acting with its promoter. Immunohistochemical staining
analysis revealed a significant correlation between the ex-
pressions of AEG-1 and MMP-9 in a cohort of clinical glioma
samples.
Glioma, arising from glial cells, remains one of the most

aggressive primary CNS tumors (1, 4, 30). The outstanding
feature of invasive growth of gliomas has imposed impedi-
ments to thorough surgical removal of the tumor and thus
might represent a key factor to which the poor prognosis
of the disease is attributed. Previous findings, including
those made by ourselves (15–28), indicating that AEG-1 con-
tributes to promotion of cancer progression and activation of
relevant signaling pathways promoted us to ask whether
AEG-1 plays a role in the aggressiveness of gliomas and has
a prognostic implication for glioma patients. To this end,
experiments were done to examine the biological effect
of AEG-1 on the invasive phenotype of glioma cells, in
which both Transwell matrix penetration assay and three-
dimensional spheroid invasion assay showed that upregula-
tion of AEG-1 indeed enhanced the ability of glioma cells to
invade, whereas depletion of endogenous AEG-1 drastically
inhibited the invasiveness. Together with this result is an
immunohistochemical analysis on 296 paraffin-embedded
archival glioma specimens, which showed that, in addition
to overall positive staining of AEG-1 in glioma cells, the
AEG-1 expression significantly correlated with the WHO his-
tologic grading (P < 0.001), strongly suggesting that AEG-1
might be involved in the progression of gliomas.
The biological process of glioma cells that invade and fil-

trate into the surrounding brain tissues involves proteolytic
digestion of the connections between cells and ECM. The
regulators of cell adhesion and invasion, such as MMP-2
and MMP-9, have been shown to closely correlate with
the pathogenesis and clinical outcome of gliomas (6–10).
MMP-9 facilitates the initiation and progression of multiple
biological events required for glioma progression, such as
invasion, migration, and dissemination of glioma cells, due
to its capacity of digesting and degrading components of
ECM (31, 32). Selective suppression of MMP-9 impairs the
www.aacrjournals.org
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migration of glioma cells, and MMP-9–deficient mice show
reduced metastasis of various cancers, such as melanoma
(7, 33). It is of note that the activity of MMP-9 is modulated
at three levels, namely, gene expression, proenzyme acti-
vation, and inhibition of the hydrolytic ability by specific
inhibitors (34–36). MMP-9 expression has been found to be
activated or enhanced by oncogenic proteins and elevated
in many cancer types, including breast cancer, prostate
cancer, melanoma, bladder cancer, pancreatic cancer, and
gliomas, and to correlate with the prognosis of cancer pa-
tients (37–42). In addition to its effect on the invasive ability
of tumor cells, MMP-9 also plays roles in tumor angiogenesis
and is involved in a variety of signaling cascades leading
to cancer progression (43, 44). Thus, accumulating evidence
highlights MMP-9 as one of the major mediators for the
functions of oncogenes and thereby a potential target for
cancer therapy. Nonetheless, whether the enhanced MMP-9
expression in gliomas is mechanistically associated with
upregulated AEG-1 had remained unknown. Along with
this context, our current study provides the first demonstra-
tion that upregulation of AEG-1 can increase expression of
MMP-9 in glioma cells at the transcription level and that
depletion of endogenous AEG-1 represses MMP-9 expression.
In support of this notion, a significant correlation between
the expressions of AEG-1 and MMP-9 in clinical samples
has also been identified by our present study.
At the molecular level, expression of MMP-9 expression is

subject to transcriptional activation, and MMP-9 promoter
contains multiple consensus binding sites for several tran-
scriptional factors, including AP-1, AP-2, polyoma enhancer
A–binding protein 3/Ets, NF-κB, and Sp-1 (45, 46). We have
found that AEG-1 could bind to at least two regions in the
MMP-9 promoter area (i.e., nucleotides −690 to −483 bp
and nucleotides −164 to −3 bp), as revealed by the luciferase
activity and ChIP assays. Because AEG-1 protein itself does
not contain any DNA-binding domain, we hypothesize that
AEG-1 might cooperate with other transcription factor(s)
so that it can activate the transcription of the downstream
gene. Interestingly, further sequence analysis showed that
there is a potential NF-κB–binding site and an ABE between
nucleotide positions −690 and −483 bp, as well as an ABE be-
tween nucleotides −164 and −3 bp, of the MMP-9 promoter.
Moreover, knockdown of either NF-κB p65 or AP-1/c-Jun by
RNAi decreased the binding efficiency of AEG-1 on MMP-9
promoter, and inhibition of the NF-κB activity or AP-1 acti-
vity by their specific inhibitors led to the reduction of MMP-9
mRNA or MMP-9 promoter-driven luciferase activity in AEG-
1–overexpressing glioma cells, indicating that the AEG-1–
mediated MMP-9 upregulation might be through both of
NF-κB and AP-1 pathways. In agreement with our hypothe-
sis, previous findings have suggested that NF-κB could be
linked by AEG-1 to the cyclic AMP–responsive element
binding protein–binding protein and other transcriptional
activators by forming basal transcription machinery, where
AEG-1 acts as a bridging factor, resulting in transcriptional
activation of downstream genes of NF-κB (26). Whether
AEG-1 does enhance the transcriptional activity of AP-1
family members, or interacts with other transcription
Cancer Res; 70(9) May 1, 2010 3757
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factors, to activate MMP-9 promoter is of interest for further
study.
In summary, we have shown that AEG-1, a potential onco-

gene, is evidently overexpressed in gliomas. Moreover, our
finding that AEG-1 transcriptionally upregulates the expres-
sion of MMP-9 illustrates a new mode of action in the mo-
lecular mechanism underlying the invasiveness of gliomas.
Further delineation of the mechanism that mediates the reg-
ulation of MMP-9 by AEG-1, particularly the direct binding
partner(s) of AEG-1 along with this function, is needed.
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