Error-Block Codes and Poset Metrics

Marcelo Muniz S. Alves
Federal University of Paraná
Poset metric

(Brualdi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
Poset metric

(Brualdi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
- $V = \mathbb{F}_q^n$.

Marcelo Muniz S. Alves Federal University of Paraná
Poset metric

(Brueladi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
- $V = \mathbb{F}_q^n$.
- for $v \in V$, $\text{supp}(v) = \{i; v_i \neq 0\}$
Poset metric

(Brualdi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
- $V = \mathbb{F}_q^n$.
- for $v \in V$, supp$(v) = \{i; v_i \neq 0\}$
- $\langle \text{supp}(v) \rangle =$ ideal generated by supp(v)
Poset metric

(Brualdi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
- $V = \mathbb{F}_q^n$.
- for $v \in V$, $\text{supp}(v) = \{i; v_i \neq 0\}$
- $\langle \text{supp}(v) \rangle =$ ideal generated by $\text{supp}(v)$
- $J \subset P$ ideal in P:
 $x \in J$ and $y \leq x \implies x \in P$
(Bruvaldi, Graves, Lawrence, 1995)

- P a poset (in general, on $[n] = \{1, 2, \ldots, n\}$).
- $V = \mathbb{F}_q^n$.
- For $v \in V$, $\text{supp}(v) = \{i; v_i \neq 0\}$
- $\langle \text{supp}(v) \rangle =$ ideal generated by $\text{supp}(v)$
- $J \subset P$ ideal in P:
 - $x \in J$ and $y \leq x \implies x \in P$
- P-weight on \mathbb{F}_q^n:
 $$\omega_P(v) = |\langle \text{supp}(v) \rangle|$$
Poset metric

Some motivations:

- Niederreiter: generalization of the search for good linear codes via parity check matrices. This corresponds to the search for good linear codes when P is a union of chains.
Some motivations:

- Niederreiter: generalization of the search for good linear codes via parity check matrices. This corresponds to the search for good linear codes when P is a union of chains.

- Rosenbloom and Tsfasman - codes where some entries overrule others. The Rosenbloom-Tsfasman metric corresponds to P being a union of chains of the same size.
Some motivations:

- Niederreiter: generalization of the search for good linear codes via parity check matrices. This corresponds to the search for good linear codes when P is a union of chains.

- Rosenbloom and Tsfasman - codes where some entries overrule others. The Rosenbloom-Tsfasman metric corresponds to P being a union of chains of the same size.

- New problems: given a code C, which are the posets that make C “best” in some way? I.e., perfect or MDS.
Let $C \subset V$ be a linear code.

$\rho_P(C) = P$-packing radius of C.
Poset metric

Let $C \subset V$ be a linear code.

- $\rho_P(C) =$ P-packing radius of C.
- in general,
 $$\omega_H(v) \leq \omega_P(v)$$
Let $C \subseteq V$ be a linear code.

- $\rho_P(C) = P$-packing radius of C.
- in general, $\omega_H(v) \leq \omega_P(v)$
- hence $\rho_H(C) \leq \rho_P(C)$
\(\pi \)-metric

- \(\pi = (k_1, k_2, \ldots, k_n) \) a partition of \(N \in \mathbb{N} \)
\(\pi \)-metric

- \(\pi = (k_1, k_2, \ldots, k_n) \) a partition of \(N \in \mathbb{N} \)
- \(V_i = \mathbb{F}_{q}^{k_i} \)
\(\pi = (k_1, k_2, \ldots, k_n) \) a partition of \(N \in \mathbb{N} \)

\(V_i = \mathbb{F}_q^{k_i} \)

the \(\pi \)-metric on \(V = V_1 \oplus V_2 \oplus \cdots \oplus V_n \):

\[
\omega_\pi(v) = |\text{supp}_\pi(v)|
\]

where \(v = v_1 + \cdots + v_n, v_i \in V_i, \) and

\[
\text{supp}_\pi(v) = \{ i; v_i \neq 0 \} \]
in this case,

$$\omega_\pi(v) \leq \omega_H(v)$$
\(\pi \)-metric

- In this case,
 \[\omega_\pi(v) \leq \omega_H(v) \]
- Hence
 \[\rho_\pi(C) \leq \rho_H(C) \]

If \(C \) is a linear code in \(V \).
\(\pi\)-metric

- in this case,
 \[\omega_\pi(v) \leq \omega_H(v)\]
- hence
 \[\rho_\pi(C) \leq \rho_H(C)\]
 if \(C\) is a linear code in \(V\).
- in general
 \[\rho_\pi(C) \leq \rho_H(C) \leq \rho_P(C)\]
\((P, \pi)\)-metric

Balancing (and combining) the previous constructions...

- \(P = ([n], \leq)\) a poset
Balancing (and combining) the previous constructions...

- $P = ([n], \leq)$ a poset
- V_1, V_2, \ldots, V_n a family of finite-dimensional spaces over \mathbb{F}_q,

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$
Balancing (and combining) the previous constructions...

- $P = ([n], \leq)$ a poset
- V_1, V_2, \ldots, V_n a family of finite-dimensional spaces over \mathbb{F}_q,

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$

- $\text{supp}(v) = \{i; v_i \neq 0\}$, just as in the π-metric case
Balancing (and combining) the previous constructions...

- $P = ([n], \leq)$ a poset
- V_1, V_2, \ldots, V_n a family of finite-dimensional spaces over \mathbb{F}_q,

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$

- $\text{supp}(v) = \{i; v_i \neq 0\}$, just as in the π-metric case
- (P, π)-weight of $v \in V$:

$$\omega_{(P, \pi)}(v) = |\langle \text{supp}(v) \rangle|$$
Balancing (and combining) the previous constructions...

- $P = ([n], \leq)$ a poset
- V_1, V_2, \ldots, V_n a family of finite-dimensional spaces over \mathbb{F}_q,

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_n$$

- $\text{supp}(v) = \{i; v_i \neq 0\}$, just as in the π-metric case
- (P, π)-weight of $v \in V$:

$$\omega_{(P, \pi)}(v) = |\langle \text{supp}(v) \rangle|$$

- one has two “parameters” to deal with: the poset P and the dimensions $k_i = \dim V_i$.

(P, π)-metric

Marcelo Muniz S. Alves Federal University of Paraná
Perfect Linear codes over chains

$P = \{1 < 2 < \ldots < n\}$
Perfect Linear codes over chains

► \(P = \{1 < 2 < \ldots < n\} \)

► (Brualdi et al) \(C \) is \(r-P \)-perfect \(\iff \) there exists a linear function \(f : \mathbb{F}_q^{n-r} \rightarrow \mathbb{F}_q^r \) such that

\[
C = \{(f(c)|c); ~ c \in \mathbb{F}_q^{n-r}\}
\]
Perfect Linear codes over chains

- $P = \{1 < 2 < \ldots < n\}$

- (Brualdi et al) C is r-P-perfect \iff there exists a linear function $f : \mathbb{F}_q^{n-r} \to \mathbb{F}_q^r$ such that

 $$C = \{(f(c)|c); c \in \mathbb{F}_q^{n-r}\}$$

- (__, Panek, Firer) C is (P, π)-r-perfect \iff there exists a linear function $f : V_{r+1} \oplus \ldots \oplus V_n \to V_1 \oplus \ldots \oplus V_r$ such that

 $$C = \{(f(c)|c); c \in V_{r+1} \oplus \ldots \oplus V_n\}$$
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.
- (__, Panek, Firer) - classification of the posets P for which H_3 is one-π-perfect, in terms of the minimal elements of P. (using the design structure of the set of minimal (Hamming) codewords)
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.

- (__, Panek, Firer) - classification of the posets P for which H_3 is one-(P, π)-perfect, in terms of the minimal elements of P. (using the design structure of the set of minimal (Hamming) codewords)

\[
H_3 \text{ is 1-perfect in } V = V_1 \oplus \cdots \oplus V_s \iff
\]
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.

- (Panek, Firer) - classification of the posets P for which H_3 is one-(P, π)-perfect, in terms of the minimal elements of P. (using the design structure of the set of minimal (Hamming) codewords)

$$H_3 \text{ is 1-perfect in } V = V_1 \oplus \cdots \oplus V_s \iff$$

- P has only one minimal element i
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.
- (Panek, Firer) - classification of the posets P for which H_3 is one-(P, π)-perfect, in terms of the minimal elements of P. (using the design structure of the set of minimal (Hamming) codewords)

$$H_3 \text{ is } 1\text{-perfect in } V = V_1 \oplus \cdots \oplus V_s \iff$$

- P has only one minimal element i
- V_i is four-dimensional
The extended Hamming codes

- Hyun, Kim (2004) - classification of the posets P over which the extended Hamming code H_m is a double or triple-error-correcting P-perfect code.
- (Panek, Firer) - classification of the posets P for which H_3 is one-(P, π)-perfect, in terms of the minimal elements of P. (using the design structure of the set of minimal (Hamming) codewords)

\[H_3 \text{ is } 1\text{-perfect in } V = V_1 \oplus \cdots \oplus V_s \iff \]

- P has only one minimal element i
- V_i is four-dimensional
- V_i does not contain the support of a minimal codeword
The extended binary Golay code

- Jang, Kim, Oh, Rho (2007) - classification of posets P such that the extended Golay code G_{24} is a four or five-P-perfect code.
The extended binary Golay code

- Jang, Kim, Oh, Rho (2007) - classification of posets P such that the extended Golay code G_{24} is a four or five-P-perfect code.
- (__, Panek, Firer) - description of posets (not all) P such that G_{24} is one or two-(P, π)-perfect.
Two (sub)groups of automorphisms

- For each V_i, fix a basis $\beta_i = \{v_{i,1}, \ldots, v_{i,k_i}\}$
Two (sub)groups of automorphisms

- For each V_i, fix a basis $\beta_i = \{v_{i,1}, \ldots, v_{i,k_i}\}$
- (P, π) is a labeled poset (or a quasi ordered set) with $\pi : P \rightarrow \mathbb{N}$, $\pi(k) = \dim V_k$.
Two (sub)groups of automorphisms

- For each V_i, fix a basis $\beta_i = \{v_{i,1}, \ldots, v_{i,k_i}\}$
- (P, π) is a labeled poset (or a quasi ordered set) with $\pi: P \to \mathbb{N}$, $\pi(k) = \dim V_k$.
- Automorphism of (P, π): permutation $\sigma: P \to P$ such that $\pi(\sigma(k)) = \pi(k)$.
Two (sub)groups of automorphisms

- For each V_i, fix a basis $\beta_i = \{v_{i,1}, \ldots, v_{i,k_i}\}$
- (P, π) is a labeled poset (or a quasi ordered set) with $\pi: P \to \mathbb{N}$, $\pi(k) = \dim V_k$.
- Automorphism of (P, π): permutation $\sigma: P \to P$ such that $\pi(\sigma(k)) = \pi(k)$.
- Induced automorphism in V:
 \[T_\sigma(e_{i,j}) = e_{\sigma(i),j}. \]
Two (sub)groups of automorphisms

- For each V_i, fix a basis $\beta_i = \{v_{i,1}, \ldots, v_{i,k_i}\}$
- (P, π) is a labeled poset (or a quasi ordered set) with $\pi : P \to \mathbb{N}$, $\pi(k) = \dim V_k$.
- Automorphism of (P, π): permutation $\sigma : P \to P$ such that $\pi(\sigma(k)) = \pi(k)$.
- Induced automorphism in V:
 $$T_\sigma(e_{i,j}) = e_{\sigma(i),j}.$$
- $A = \text{group of the } T_\sigma \text{'s.}$
Two (sub)groups of automorphisms

- Another kind of automorphism: linear mapping $T : V \rightarrow V$ such that
Two (sub)groups of automorphisms

Another kind of automorphism: linear mapping $T : V \rightarrow V$ such that

1. $T(V_i) = V_i$ for all i;
Another kind of automorphism: linear mapping $T : V \rightarrow V$ such that

1. $T(V_i) = V_i$ for all i;
2. if $0 \neq v \in V_i$ then

$$T(v) = v' + u,$$

where $v \in V_i$ and $\text{supp}(u) \subset \langle i \rangle$;
Two (sub)groups of automorphisms

- Another kind of automorphism: linear mapping $T : V \to V$ such that
 1. $T(V_i) = V_i$ for all i;
 2. if $0 \neq v \in V_i$ then
 $$T(v) = v' + u,$$
 where $v \in V_i$ and $\text{supp}(u) \subset \langle i \rangle$;
- \mathcal{T} = group of these “triangular” maps.
Two (sub)groups of automorphisms

matrix form of an element of \mathcal{T}:

$$[T]_B = \begin{pmatrix}
[T]_{B_1}^1 & [T]_{B_2}^1 & [T]_{B_3}^1 & \cdots & [T]_{B_3}^1 \\
0 & [T]_{B_2}^2 & [T]_{B_3}^2 & \cdots & [T]_{B_3}^2 \\
0 & 0 & [T]_{B_3}^3 & \cdots & [T]_{B_3}^3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & [T]_{B_n}^n
\end{pmatrix}$$

where each block $[T]_{B_k}^k$ is invertible.
This is the group of units of the associated incidence algebra (over (P, π)).
Automorphisms

\[GL(P,\pi)(V) = \text{automorphisms of } (V, \omega_{P,\pi}). \]

If \(T \in GL(P,\pi)(V) \) then \(\exists! F \in \mathcal{T} \) and \(\sigma \in Aut(P,\pi) \) such that

\[T = F \circ T_\sigma \]
Automorphisms

- $GL_{(P, \pi)}(V) = \text{automorphisms of } (V, \omega_{P, \pi})$. If $T \in GL_{(P, \pi)}(V)$ then $\exists ! F \in \mathcal{T}$ and $\sigma \in Aut(P, \pi)$ such that

$$T = F \circ T_{\sigma}$$

- Moreover,

$$GL_{(P, \pi)}(V) \cong \mathcal{T} \rtimes \mathcal{A}$$
Some special cases

- When each V_i is unidimensional, we have a poset metric and we reobtain the group of automorphisms described by Panek, Firer, Hyun and Kim.
Some special cases

- When each V_i is unidimensional, we have a poset metric and we reobtain the group of automorphisms described by Panek, Firer, Hyun and Kim.
- When P is an antichain, we get a π-metric. In this case
Some special cases

- When each V_i is unidimensional, we have a poset metric and we reobtain the group of automorphisms described by Panek, Firer, Hyun and Kim.

- When P is an antichain, we get a π-metric. In this case
 - $T \cong GL(k_1, \mathbb{F}_q) \times GL(k_2, \mathbb{F}_q) \times \cdots \times GL(k_n, \mathbb{F}_q)$;
Some special cases

- When each V_i is unidimensional, we have a poset metric and we reobtain the group of automorphisms described by Panek, Firer, Hyun and Kim.

- When P is an antichain, we get a π-metric. In this case
 - $T \cong \text{Gl}(k_1, \mathbb{F}_q) \times \text{Gl}(k_2, \mathbb{F}_q) \times \cdots \times \text{Gl}(k_n, \mathbb{F}_q)$;
 - $U \cong S_{m_1} \times S_{m_2} \times \cdots \times S_{m_l} \subset S_n$.

Marcelo Muniz S. Alves
Federal University of Paraná
Error-Block Codes and Poset Metrics
some references

