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Introduction
Probability

Central Limit Theorem

7u2/2 du

d(x) = \/ﬂ/

For probability applications, we need ®(c0) = 1.

This is not proved by finding a formula for ®(x) (by finding
an explicit antiderivative of e_“2/2) and taking the limit as

X — OQ.



Introduction
Number Theory

@ Prime Number Theorem

7(x) = #{n < x| nis prime }

. 1
L/(x)—/2 mdt

@ m(x) ~ Li(x) as x — oo

@ This is not proved by finding an explicit antiderivative of ﬁ

o If u=In(t), then [ty dt = [ % du.



Elementary Functions and fields

Elementary formulas

o The indefinite integrals [ e~ du and [ €’ du do not have
elementary formulas.

@ How does one prove such claims?
@ First have to give a precise definition of “elementary formula”.

o After all | e v du = s e~ dx 4+ C for any constants a and
C by FTC.
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History

@ Newton was perfectly happy to solve an integral by a power
series.

@ Leibniz preferred integration in " finite terms” and allowed
transcendental functions like logarithms.



Elementary Functions and fields

Elementary function

e An elementary function (roughly) should be a function of
one variable built out of polynomials, exponentials,
logarithms, trigonometric functions, and inverse trigonometric
functions, by using the operations of addition, multiplication,
division, root extraction, and composition.

sin~}(x3 - 1)

e Example:
V/In x + cos(x/x2 + 1)




Elementary Functions and fields

A simplification

@ We will use C-valued functions of the real variable x, i.e., our
constants will be complex numbers.

@ All trigonometric functions and inverse-trigonometric
functions can be written in terms of complex exponentials and

logarithms.
ix _ a—ix ix —ix
@ sin(x) = ° 2ie , cos(x) = € +2€
1 1 X — .
e tan™ (x) (In( ) — im)




Elementary Functions and fields

Meromorphic functions

@ A meromorphic function is a function defined on an open
interval I of the real numbers whose values are complex
numbers or oo with the property that sufficiently close to any
Xp in | the function is given by a convergent Laurent series in
X — Xp.

@ Rational functions are meromorphic on R.

@ Given a meromorphic function f, both ef and Inf are
meromorphic (one may have to restrict the domain of f).



Elementary Functions and fields

Fields of meromorphic functions

o Let C(x) denote the field of rational functions. Notice that
this field is closed under differentiation.

@ Any elementary function (under our rough definition) should
be in some “extension” of C(x).



Elementary Functions and fields

Fields of meromorphic functions

e If fi,...,f, are meromorphic functions, let C(f1,...,f,)
denote the set of all meromorphic functions h of the form
y_ Pl )
q(f17 SER) fn)

for some n-variable polynomials p, g # 0 and g(f1,..., ) is
not identically zero.

@ This definition captures the operations of addition,
multiplication, and division.

@ It is not hard to show that the set C(fi,...,f,) is a field and
that this field is closed under differentiation.

o Example: K = C(x,sin x, cos x) = C(x, e*).



Elementary Functions and fields

Elementary fields

o A field K is an elementary field if K = C(x, f1,...,f,) and
each f; is
e an exponential or logarithm of an element of
Ki_1 =C(x,f,...,fi—1)
e or f; is algebraic over K;_1, that is f; is a solution to an
equation git' +--- + g1t + go = 0 where go,g1,...,8 € Ki—1

@ An elementary field is built from the the field of rational
functions in finitely many steps by adjoining an exponential, a
logarithm, or a solution to a polynomial.

@ Composition is captured by adjoining exponentials or
logarithms. Root extraction is captured by the adjunction of
algebraic solutions.

o Elementary fields are closed under differentiation.



Elementary Functions and fields

Elementary functions

@ A meromorphic function f is an elementary function if it lies
in some elementary field.

e Example: f(x) = f/lnx + cos(;7;) is an elementary

function

C(x) C C(x,Inx) C C(x,Inx, &' @) € C(x, Inx, 2, f)



Elementary Functions and fields

Elementary integration

@ A meromorphic function f can be integrated in elementary
terms if f = g’ for some elementary function g.

@ Recall an elementary field is closed under differentiation so if

f can be integrated in elementary terms, then necessarily f is
also elementary.



Elementary Functions and fields

Differential Galois theory

@ We can rephrase our problem: Given an elementary function
f, when does the differential equation % — f =0 have an

elementary solution?

@ The answer is in the affirmative precisely when we can find a
tower of fields with special properties.

o Consider the analogy with ordinary Galois theory.



Liouville’s Theorem

Liouville's Thereom

@ Theorem (Liouville, 1835): Let f be an elementary function
and let K be any elementary field containing f. If f can be
integrated in elementary terms then there exist nonzero
c1,...,¢cp € C, nonzero g1,...,8, € K, and an element

h € K such that ,
g.

f=Y ¢L+H.
> o

o If f =5 q? + H', then g =" ¢jIn(gj) + h is an elementary
)
antiderivative of f.

@ The theorem is proved by induction on the length of a tower
of fields constructing K(g) where g is an antiderivative of f.



Liouville’s Theorem
An important corollary

e Corollary: Let f and g be in C(x) with f # 0 and g
nonconstant. If f(x)e8() can be integrated in elementary
terms then there is a function R(x) in C(x) such that

R'(x) + &' (x)R(x) = f(x).

o If R(x) € C(x) satisfies R'(x) + g’(x)R(x) = f(x), then
R(x)e&(x) is an antiderivative of f(x)e&().

@ We can apply this corollary to show that e and e*/x have
no elementary antiderivatives.



An example

Proof for e’

o Taking f =1 and g = —x? in the Corollary, we must show the
differential equation

R'(x) —2xR(x) =1 (%)
has no solution for R(x) € C(x).
@ ODE's shows the general solution of (x) is

R(x) = eX2(f e dx + ¢) for any ¢ € C ... but this doesn't
help!



An example

Proof for e’

@ Suppose that R(x) € C(x) is a solution to (x).

@ R cannot be a constant or a polynomial in x (by degree
considerations).

o Write R(x) = 2% for some nonzero relatively prime
q(x)

polynomials p(x), g(x) with g(x) nonconstant.

o Let zp € C be a root of g(x) of multiplicity 4 > 1. Then
p(20) # 0 and p(x)/q(x) = h(x)/(x — 20)" with h(x) € C(x)
having numerator and denominator that are non-vanishing at
29.



An example
_ 2
Proof for e

@ The quotient rule yields

POy ) K

p(x — zo)t  (x — z)H

@ As z — 7z in C the absolute value of (p(x))/q(x)) |x=z blows
up like A/|z — zo|* ! with A = |h(z0)/u| # 0.

e | —2z-(p(z)/q(z))| has growth bounded by a constant
multiple of 1/|z — z|* as z — z.

@ Therefore

A
|z — zo|PH1

POy o (PX) N
|((CI(X)) 2 (q(X)))|X:Z|

as Zz — Zj.

@ This contradicts the identity R'(x) — 2xR(x) = 1.
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