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Most human papillomavirus infections are readily cleared by the host immune response. However, in some indi-
viduals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillo-
mavirus infection is the major risk factor for cervical cancer development. These viruses have developed
mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in
tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved
in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include
antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several
cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we
address both the main innate immune response mechanisms involved in HPV infection clearance and the viral
strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the
possibility of exploiting this knowledge to develop effective therapeutic strategies.
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’ INTRODUCTION

Human papillomaviruses (HPVs) are an important group
of viruses infecting the cutaneous and mucosal epithelia. HPVs
cause diseases associated with high rates of morbidity and
mortality, including benign lesions and cancer (1). Accord-
ing to the potential to cause cancer, HPV can be divided into
two types: high-risk and low-risk. Low-risk types, which
are mainly represented by HPV6 and HPV11, are associated
with benign anogenital warts; although low-risk types are not
usually associated with cancer, they may cause diseases asso-
ciated with high morbidity. High-risk HPV (Hr-HPV) types,
which are mainly represented by HPV16, HPV18, HPV31,
HPV33, HPV35, HPV45 and other minor types, are related to
cancer and precursor lesions, and Hr-HPV DNA sequences
can be found in virtually all cervical tumors (2).
Cervical cancer is one of the most common cancers affect-

ing women worldwide. According to the International Agency
for Research on Cancer (IARC), the estimated number of new
cases and deaths in 2012 were 527,600 and 265,700, respec-
tively. The scenario is worse in less-developed countries,
where cervical cancer represented the second most common
cancer in women and was estimated to cause 230,200 of the

total number of cervical cancer deaths in 2012, largely due to
less-effective screening programs (3).
In addition, HPV may be associated with other anogenital

tumors, although in a lower proportion. Indeed, HPV appears
to be associated with 60-90% of all vaginal and anal cancers (4,5),
and the virus can be found in 50% and 30-50% of vaginal and
penile carcinoma cases, respectively (4,6). In addition, HPV is
recognized as an etiologic cause of head and neck squamous
cell carcinomas (HNSCCs); HNSCCs are mainly associated
with HPV16, which is responsible for 40-80% of orophar-
yngeal cancers in the United States, a percentage that varies
according to alcohol and tobacco use, poor oral hygiene and
genetics (7,8). In general, the prognosis of HPV-positive vulvar
and penile carcinomas as well as HPV-positive oral squamous
cell carcinomas seems to be better than that of HPV-negative
tumors (6,9).
Although most HPV infections are eliminated naturally,

the persistence of Hr-HPV infection is the major risk factor
for the development of high-grade cervical lesions and cervi-
cal cancer (10). To persist, HPV developed mechanisms to
evade the host immune system; together with the oncogenic
potential of HPV, persistence is the first step in the process
leading to cancer (11).
The purpose of this review is to address the main innate

immune response mechanisms involved in HPV infection
clearance, HPV persistence and HPV-mediated cancer develop-
ment, as well as to describe therapeutic possibilities.

HPV Elimination and Persistence
Several immunological factors, especially those related to

innate immunity pathways, which are the first line of defense
against infections, are involved in HPV recognition and elimi-
nation. The efficient triggering of the immune response is aDOI: 10.6061/clinics/2018/e549s
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turning point between viral clearance and persistence (12,13).
As is generally observed in tumors, an inappropriate release
of proinflammatory mediators and a chronic inflammatory
response may contribute to cancer development (Figure 1).
In addition to innate immune cells, keratinocytes, which

are both nonprofessional immune cells and targets of HPV
infection, express pattern recognition receptors (PRRs). These
receptors are able to identify microbial pathogens or damage
signals, which are known as pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns
(DAMPs), respectively. PRRs include Toll-like receptors (TLRs),
nucleotide binding oligomerization domain-like receptors
(NLRs), retinoic acid-inducible gene I-like receptors (RLRs) and
cytosolic DNA sensors (14,15).
Nucleic acids, which can accumulate during viral replica-

tion, are some of the microbial molecules recognized by
PRRs (15). Previous studies showed that the high expression
of TLR3, TLR7, TLR8 and TLR9, which recognize viral nucleic
acids, is associated with HPV elimination and can be used as
a predictor of clearance in HPV16-infected women. TLRs,

in combination with an HPV16 E6-specific effector response,
are significantly associated with viral elimination (12,13). How-
ever, it has been shown that some types of Hr-HPV are cap-
able of compromising the innate immune response, thus not
only decreasing the expression of some TLRs but also impair-
ing important pathways involving transcription factors such
as nuclear factor kappa B (NF-kB) and interferon regulatory
factor 3 (IRF3), which will be discussed below, and contribut-
ing to viral immune evasion and persistence (16-18).

Polymorphisms in innate immunity genes related to HPV
infection, especially infection sensors and interleukins (ILs),
have been reported in the literature. Although TLR9 has been
recognized as a DNA sensor, TLR9 polymorphisms do not
appear to be associated with viral clearance or persistence.
However, polymorphisms in other innate immunity genes,
such as interleukin 1 beta (IL-1b), interleukin 18 (IL-18),
NLR1 and NLR3, were shown to be associated with HPV
infection and persistence (19,20).

Another sensor of foreign DNA, interferon gamma induc-
ible protein 16 (IFI16), has been shown to be capable of controlling

Figure 1 - Several stimuli, including HPV infection, can trigger the release of inflammatory mediators. The balance between these
mediators may favor tumor suppression or tumor promotion. PAMPs: pathogen-associated molecular patterns; DAMPs: damage-
associated molecular patterns.
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HPV18 replication and transcription through chromatin struc-
ture changes, thus reducing viral load and contributing to viral
elimination (21).
Another antiviral mechanism involves the apolipoprotein B

mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
protein family; members of this family are responsible for
editing viral genomes, which can inhibit HPV infection. Inter-
estingly, prolonged APOBEC activation during HPV infec-
tion can enhance genome mutagenesis, thus contributing to
HPV-related cancer progression (22).
The efficiency of HPV in infection and persistence is asso-

ciated with several mechanisms developed for immune
response evasion. Mechanisms such as the modulation of
cytokines and chemokines, downregulation of interferon (IFN)
pathways, impairment of antigen presentation and reduction in
the expression of adhesion molecules are directed mainly by
the E6 and E7 oncoproteins (23). For example, Hr-HPV is able
to inhibit cytokine production by blocking NF-kB activation
upon innate immune system stimulation. Viral oncoproteins
can increase the expression of interferon-related developmental
regulator 1 (IFRD1), a protein responsible for recruiting histone
deacetylase 1 (HDAC1) and HDAC3, thus leading to the
deacetylation of NF-kB and inhibiting its ability to respond
to immunological signals (17).
Additionally, to evade host innate immunity, Hr-HPV can

inhibit PRR signaling through the induction of ubiquitin
C-terminal hydrolase L1 (UCHL1) expression; UCHL1 blocks
the activation of NF-kB and IRF3, both of which are trans-
cription factors that induce the production of proinflamma-
tory cytokines and chemokines (18). Additionally, Hr-HPV
can downregulate the expression of inflammasome compo-
nents and other downstream intermediaries of PRRs, such
as genes in the IL-1b network, thus compromising not only
innate immunity but also the activation of the adaptive
response, which is also mediated by IL-1b (24). In addition,
the direct effect of HPV16 E6 on IL-1b through its interaction
with and recruitment of the E6AP ubiquitin-protein ligase,
thus leading to cytokine degradation by the proteasome
system, has been shown (25).
Other HPV proteins can play a role in immune escape; for

example, HPV16 E2 can modulate the expression of 92 genes
involved in the innate immune response, including the stim-
ulator of interferon genes (STING), interferon kappa (IFN-k)
and interferon-stimulated genes (ISGs) (26).
The impairment of the IFN-mediated response is another

resource used by HPV to evade the immune system. Viral
oncoproteins reduce the secretion of IFN by keratinocytes,
impair the phosphorylation of IFN pathway intermediates
and compromise signaling through interferon regulatory
factors (IRFs). For example, IRF1 expression is reduced
in cervical tissues and cancer cell lines, and the reduced
phosphorylation of IRF3 is associated with Hr-HPV infec-
tion. Thus, IFN is an important component of the innate
immune response against Hr-HPV (18,27,28).
Finally, the potential for HPV to interfere with the migra-

tion and adhesion of innate immune cells and with the defi-
nition of cell phenotype must be emphasized. For example,
the function of antigen-presenting cells (APCs), macrophages
and natural killer (NK) cells can be compromised by HPV
infection (29-32).
The abundance of dendritic cells (DCs), which are profes-

sional APCs that induce T cell-mediated immune responses,
was found to be reduced in cervical intraepithelial neoplasias
(CINs) (29). In addition, the expression of programmed

death-ligand 1 (PD-L1), which interacts with programmed
cell death protein 1 (PD-1) in order to promote T cell anergy,
is higher in DCs from Hr-HPV-positive patients than in DCs
from Hr-HPV-negative patients (33,34).
Thus, an inefficient innate immune response can contri-

bute to HPV persistence, which is a well-known cause of cell
transformation and tumor progression initiated by HPV
infection.

Tumor Progression: Cervical Cancer
In cervical cancer, the expression of Hr-HPV oncoproteins

is essential for cell transformation, and the integration of
HPV DNA into the host genome contributes to this process
(35,36). These oncoproteins, especially E6 and E7, induce
continuous cell proliferation and prevent apoptosis, thus
favoring the accumulation of mutations in the host genome
due to the inhibition of pRb and p53 function (36). How-
ever, viral oncoproteins not only affect cell cycle regulatory
mechanisms but also negatively impact the innate immune
response (37). Together, viral persistence and the accumula-
tion of cellular alterations allow the development of high-
grade lesions and the progression of tumors.
The immune system plays a central role in determining the

outcome of HPV infection, and immune system components
are important in both viral clearance and tumorigenesis (38,39);
this observation is true in HPV-related cancers as well as
other cancers. For example, macrophages are present in the
microenvironment of solid tumors, and although they can
perform antitumor functions, they may also play an impor-
tant role in cancer progression. Tumor-associated macrophages
(TAMs) may promote cell proliferation and angiogenesis
and may restrict immune defenses (40). These different roles
can be explained by the identification of two macrophage
phenotypes: the M1 proinflammatory macrophage phenotype
and the M2 immunomodulatory macrophage phenotype. To
help in tissue repair, M2 macrophages present a profile that
elicits an increased production of vascular endothelial growth
factor (VEGF) and matrix metalloproteinase 9 (MMP9). How-
ever, when activated by tumors, M2 macrophages can induce
basement membrane disruption, tumor growth, and metas-
tasis (41-43).
M2 macrophages are linked to protumor responses in

many ways. The antitumor properties of M1 macrophages
are primarily a result of the interleukin 12 (IL-12)-dominant
cytokine milieu they produce (44). When macrophages assume
an M2-like phenotype, they cannot produce IL-12, which is
required for the activation of the antitumor response mediated
by NK cells, T helper type 1 (Th1) cells and cytotoxic T
lymphocytes (CTLs). Instead, M2 macrophages produce
interleukin 10 (IL-10), which induces T helper type 2 (Th2)
cell polarization, thus stimulating M2 macrophage polariza-
tion in a positive feedback loop mediated through interleukin
4 (IL-4) production (44,45). Furthermore, the immunoregula-
tory cytokine transforming growth factor beta (TGF-b) is
linked to a Th2 response, and the precursor form of TGF-b
can be processed by TAMs in order to release the active
molecule (46,47).
Another important mechanism contributing to tumor

expansion is the recruitment of regulatory T cells (Tregs) by
M2-derived C-C motif chemokine ligand 22 (CCL22). In the
tumor microenvironment, Treg activity is maintained by high
local levels of IL-10 but is also induced by M2 macrophages,
as mentioned previously. In addition, IL-10 promotes the
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differentiation of naive T cells to Tregs (45,48-50). Further-
more, TAMs expressing PD-L1 can directly induce T cell apo-
ptosis by the binding of PD-L1 to its receptor (51).
Finally, the loss of antigen-presenting capabilities in macro-

phages is related to the downregulation of class II major histo-
compatibility complex (class II MHC) expression on M2 cells
(52,53). In fact, when cervical lesions progress, the number of
macrophages increases, and M2 macrophages are the main
macrophage population in HPV-associated tumors (30,31).
NK cells are an important part of the innate immune response

against viral attack and can lyse cancer cells even without the
presentation of tumor antigens (54). NK cell activation occurs
through an interaction between triggering receptors, such as
NKp30, NKp44, NKp46 and natural killer group 2D (NKG2D),
and tumor cell ligands, which is finely balanced between inhi-
bitory receptors and coreceptors (55). In cervical cancer, the loss
of class 1 MHC expression compromises the ability of tumor
cells to present viral antigens to CTLs but may make tumor
cells susceptible to NK cells. In addition, CD155, which is an
activating NK cell receptor, was recently reported to be upregu-
lated in squamous cervical carcinoma (56). However, another
study showed that in high-grade squamous intraepithelial lesions
(HSILs) and cervical cancer associated with HPV16 infection,
the expression of the NK-activating receptors NKp30, NKp45
and NKG2D (only in cervical cancer) is considerably decreased,
which affects the cytolytic functionality of cells and may con-
tribute to tumor progression (32).
Whereas acute inflammation can promote antitumor immu-

nity in the cervix, chronic inflammation can be associated
with a protumor effect, partly through the provision of
growth factors for use by the tumor. In addition, the produc-
tion of inflammatory nitric oxide, cyclooxygenase (COX), IL-1b
and tumor necrosis factor (TNF) enhances HPV-mediated
tumorigenesis (40,57-60). Thus, the resistance of Hr-HPV-
infected cells to the cytostatic or cytotoxic effect of some
cytokines produced in a chronic inflammatory environment
could be a key step in HPV-associated tumor development.
In cervical cancer, the expression of cyclooxygenase 2 (COX-2),

which is an enzyme involved in the production of proinflam-
matory prostaglandins, is upregulated (61), and the induction
of COX-2 by HPV16 E5 through NF-kB and activator protein-1
(AP-1) has been demonstrated (62). In addition, NF-kB levels
may be elevated in cervical cancer epithelial cells, and this
increase is associated with poor prognosis (63). Indeed, another
study has shown that the HPV16 E6 and E7 oncoproteins
induce an increase in NF-kB activity (64).
Previous studies showed that despite the antiproliferative

effect of TNF on primary and HPV16-immortalized keratino-
cytes, HPV18-immortalized keratinocytes may be resistant to

this effect (65,66). Furthermore, genes associated with inflam-
matory responses, cell differentiation, cell death, prolifera-
tion, extracellular matrix remodeling and DNA repair were
identified to be differentially expressed in HPV-immortalized
keratinocytes with differential responses to the cytostatic
effect of TNF (67). Taken together, these data support the
idea that the acquisition of TNF resistance by HPV-infected
cells may represent an important step towards malignancy.

The complete understanding of the immunological aspects
of HPV infection and the cervical cancer microenvironment,
including host immune components, HPV evasion and defense
tactics and protumor factors, constitutes an important step in
the development of new preventive and therapeutic options.

Prophylaxis and Treatment: Vaccines
Considering the important role of the innate immune

response in inflammatory processes, many studies have been
carried out using receptor agonists to improve the immune
response to prophylactic and therapeutic vaccines against
HPV-related diseases (Table 1).

Indeed, there are three approved HPV vaccines, namely,
Gardasil, Gardasil-9 and Cervarix; the first two use aluminum
as the only adjuvant, and Cervarix also uses an LPS derivative
that stimulates the innate immune system, thus activating TLR4
and helping to promote the death of HPV-infected cells through
the activation of DCs and NK cells (68). Although Cervarix
induces higher levels of neutralizing antibodies, no evidence
supports Cervarix being more effective than Gardasil (69-71).

In previous studies, lipopeptides acting through TLR2 were
used to stimulate the CTL response against HPV-associated
tumors. Although the CTL response was useful in a prophy-
lactic model, it could not inhibit tumor growth efficiently in
a therapeutic context. The authors suggest that the depletion
of immunosuppressive factors could improve the therapeutic
effects of the vaccine (72). In another therapeutic vaccine model,
a TLR3 agonist in a complex with an E7 peptide demonstrated
a highly potent antitumor effect and induced a strong specific
CTL response (73).

Interestingly, a DNA vector containing a virus-like particle
sequence fused to a nononcogenic mutated E7 protein demon-
strated an effect on established tumors in mice only when the
vaccine was combined with TLR7 and TLR9 agonists (74).
In addition, adding TLR3 and TLR7 agonists to a DNAvaccine
containing the HPV16 E7 sequence promoted significant tumor
regression in mice (75). Furthermore, the topical application of
imiquimod (a TLR7 activator) associated with the intramus-
cular administration of a DNA vector containing HPV16 E7
fused to calreticulin increased the recruitment of CD8+ T cells

Table 1 - Potential prophylactic and therapeutic vaccines against HPV-related diseases.

Receptor Agonist HPV Antigen Reference

Prophylactic Assays
TLR2 Lipopeptide E7 CTL epitope (72)
TLR4 AS04, LPS derivative VLP (L1) (68)
TLR5 Flagellin E6/E7 peptide (77)

Therapeutic Assays

TLR3 Poly (I:C) E7 peptide (73)
TLR3/TLR7 Resiquimod/Poly (I:C) E7 DNA (75)
TLR7 Imiquimod E7-calreticulin DNA (76)
TLR7/TLR9 Imiquimod/CpG E7 DNA (74)

Prophylactic and Therapeutic Assays
TLR2/TLR4 HMGB1 peptide E7 DNA (78)
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to the genital tract in an orthotopic HPV16 E6/E7 syngeneic
tumor model (76).
In addition, the use of flagellin as an adjuvant in order to

induce a strong specific immune response through TLR5
activation has been studied as an alternative. When mixed
with an intranasally administered antitumor vaccine, flagel-
lin induced a cytotoxic response and conferred protection to
mice challenged with HPV-transformed cells (77).
Additionally, the high mobility group box 1 (HMGB1) protein

is related to innate immunity; HMGB1 activates TLR2/4 or
the receptor for advanced glycation end products (RAGE) and
can promote T cell activation. Moreover, an HMGB1 peptide
displayed adjuvant properties in a mouse model when admi-
nistered in combination with an E7 antigen. The data from the
prophylactic and therapeutic assays indicated a substantial
protective effect and showed the activation of the Th1 cellular
immune response and the release of IFN-g (78).
Apart from the agonists used in prophylactic vaccines, no

other vaccines are currently approved for clinical use in the
treatment of HPV-positive tumors. Nevertheless, the poten-
tial of therapeutic vaccines must be investigated since an
efficient therapeutic option will not be established soon.
Persistent HPV infection is associated with the modulation

of immune cells, receptors, transcription factors, cytokines,
chemokines and other immune mediators, all of which play a
crucial role in inducing an effective immune response against
HPV. Moreover, HPV has developed several mechanisms to
evade or downregulate the innate immune response, includ-
ing the modulation of the PRR response, the inhibition of
antiviral molecules and the inhibition of the transcription of
genes associated with the immune response. In addition,
during HPV-associated tumor development, innate immune
cells can contribute to the establishment and progression of
such tumors. Because of the important role of the innate
immune response in inflammatory processes and tumorigen-
esis, investing in studies that target this system to improve
prophylaxis against HPV infection and to elicit efficient
therapeutic responses in HPV-related tumors remains
relevant.
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