
 

    by - Patrice Godefroid, 

 Michael Y. Levin and -           

- David Molnar 

Automated Whitebox  
Fuzz Testing 



OUTLINE 

 

 Introduction 

 Methods 

 Experiments 

 Results  

 Conclusion 



Introduction 

 Fuzz testing is an effective Software testing techniques for 

finding security vulnerabilities in software mostly automated 

or semi automated 

 Apply invalid, unexpected or random data to the inputs of a 

program 

 If the program fails (crashing, access violation exception), 

defects can be noted 

 Cost effective and can find most of known bugs 

 

 

 



 

Whitebox Fuzzing 

 

 Combines fuzz testing with dynamic test generation 

 

 Run the code with some initial well formed input 

 Collect constraints on inputs with symbolic execution 

 Generate new constraints (By negating one by one) 

 Solve constraints with constraint solver 

 Synthesize new inputs 

 



Search Algorithm 
void top(char input[4])  

{ 

   int cnt = 0; 

   if (input[0] == ‘b’) cnt++; 

   if (input[1] == ‘a’) cnt++; 

   if (input[2] == ‘d’) cnt++; 

   if (input[3] == ‘!’) cnt++; 

   if (cnt >= 3) crash(); 

} 

 

 Black box will do poorly in this case  

 Dynamic test could do better 

 



Dynamic Test Generation 

 For eg. Take input : ‘good’ 

 Collect constrain from trace 

 Create a new path constraint 

 Solve  new constraints, giving new inputs 

 

 

 



Limitations of Dynamic Testing 

 Path Explosion 

 Path does not scale for large applications with hundreds 

of instruction 

 Can be corrected by modifying the search algorithm 

 

 Imperfect Symbolic Execution 

 Bound to be imprecise due to complex program 

statements (pointer manipulation, arithmetic, etc.) 

 Calls to OS  and library functions have to be expensive 

in order to be precise 

 



Generation Search Algorithm 

 

 Designed to systematically explore large applications 

execution with large input and deep paths 

 

 It uses heuristics to maximize code coverage quickly in order 

to find bugs faster 

 

 Resilient to divergences. Whenever it occurs, search is able 

to recover and continue 

 

 



 Search Algorithm 



Algorithm Summary 
 Part 1 

 Push input to the list 

 Run&Check(input) check bugs in that input 

 Traverse the list by selecting from the list base in score 

 Expanded child paths and adding to the childlist 

 Traverse childlist Run&Check, assigned score and add to list 

 Expand Execution 

 Generates Path constrain 

 Attempt to expand path constraints and save them 

 Input.bound is bound is used to limit the backtracking of each 
sub-search above the branch. 

 



SAGE (Scalable, Automated, 

Guided Execution)  
 

 

 Can test any file-reading program running on Windows by 

treating bytes read from files as symbolic input. 

 

 Another key novelty of SAGE is that it performs symbolic 

execution of program traces at the x86 binary level 

 

 

 



SAGE  

 Performs generation search repeating four tasks 

 Tester task implements function Run & Check 

 Tracer task runs target program on same file again, this time 

recording log of run 

 CoverageCollector task replays the recorded execution to 

compute which basic blocks were executed during the run. 

 SymbolicExecution task implements the function 

ExpandExecution  by replaying the recorded execution once 

again, this time to collect input related constraints and 

generate new inputs using the constraint solver Disolver 



Sage advantages 
 Not source-based, SAGE is a machine-code-based, so it can run 

different languages. 

 Expensive to build at the beginning, but less expensive over 

time 

 Test after shipping 

 Since is based in symbolic execution on binary code, SAGE 

can detects bugs after the production phase 

  Not source is needed like in another systems 

 SAGE doesn’t even need specific data types or structures not 

easy visible in machine code 

 



Experiments 
 Since 1st MS internal release in April’07: dozens of new 

security bugs found (most missed by blackbox fuzzers, 
static analysis) 

 Test in different Apps such as image processors, media 

players, file decoders. 

 Many bugs found rated as “security critical, severity 1, 

priority 1” 

 Now used by several teams regularly as part of QA 

process. 



Results 

 Statistics from 10hour searches on seven test applications, 

each seeded with a well formed input file. 

Reported the number of SymbolicExecutor tasks during the search, the total time 

spent in all SymbolicExecutor tasks in seconds, the number of constraints generated 

from the seed file, the total number of test cases generated, the mean depth per test 

case in number of constraints, the mean number of instructions executed after 

reading the input file, and the mean size of the symbolic input in bytes. 



Results 
 Focused on the Media 1 and Media 2 parsers. 

 Ran a SAGE search for the Media 1 parser with five “well-formed” 
media files, and five bogus files. 

 

 

 

 

 

 

 

 

 
            

 16 



Results 
 Compared with Depth-First Search Method 

 DFS runs for 10 hours for Media 2 with wff-2 and wff-3, didn’t find anything 

while generational search found 15 crashes 

 Symbolic Execution is slow 

 Well formed input are better than Bogus files 

 The heuristic method didn’t have too much impact 

 Divergences are common 

 Most bugs are shallow 

 

 

 

 

 
17 1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

3.5

# Unique 

First-Found 

Bugs



18 

Strengths 

 Novel approach to do fuzz testing 

 Introduced new search algorithm that use code-coverage 

maximizing heuristic 

 Applied as a black box 

 Not source code was needed 

 symbolic execution of program at the x86 binary level 

 Shows results comparing previous results 

 Test large applications previously tested found more bugs. 

 Introduced a full system and applied the novel ideas in this 

paper 

 

 

 



19 

Weakness 

 The results were non-determinism  

 Same input, program and idea different results. 

 Only focus in specific areas 

 X86 windows applications 

 File manipulation applications 

 SAGE needs help from different tools 

 Thus paper extends too much in the implementation of SAGE, and 

the system could of be too specific to Microsoft 

 

 

 

 



Conclusions 
 

 Blackbox is lightweight, easy and fast, but poor coverage 

 

 Whitebox is smarter, but complex and slower 

 

 Many apps are so buggy, any form of fuzzing finds bugs can be used 

 

 Once they are eliminated, we can use whitebox, user-provided 
guidance (grammars), etc.  

 

 Conclusion use both. 

 

 

 

 

20 



Further Work  

 Currently work is going on Whitebox fuzzing 

 Recently it has found one third of all file fuzzing bugs during 

development of Windows 7 

 Which in turn saved millions of dollar in potential security 

vulnerabilities 

 Two new systems are build on these namely SAGAN and 

JobCentre 

 As per researcher in Microsoft end goal of these is a “testing 

cloud” that can accept applications, explore them, and report 

the results to developers with minimum manual work. 



 

 

Questions 



References 

 http://research.microsoft.com/en-

us/um/people/pg/public_psfiles/icse2013.pdf 

 http://en.wikipedia.org/wiki/Fuzz_testing 

 http://research.microsoft.com/en-

us/um/people/pg/public_psfiles/ndss2008.pdf 

 

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/icse2013.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/icse2013.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/icse2013.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/icse2013.pdf
http://en.wikipedia.org/wiki/Fuzz_testing
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf

