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ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS
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Abstract

The three-dimensional wall-bounded open cavity may be considered as a simplified geom-
etry found in industrial applications such as leading gear or slotted flats on the airplane.
Understanding the three-dimensional complex flow structure that surrounds this particular
geometry is therefore of major industrial interest.

At the light of the remarkable former investigations in this kind of flows, enough evi-
dences suggest that the lateral walls have a great influence on the flow features and hence
on their instability modes. Nevertheless, even though there is a large body of literature on
cavity flows, most of them are based on the assumption that the flow is two-dimensional
and spanwise-periodic. The flow over realistic open cavity should be considered. This
thesis presents an investigation of three-dimensional wall-bounded open cavity with ge-
ometric ratio 6:2:1. To this aim, three-dimensional Direct Numerical Simulation (DNS)
and global linear instability have been performed.

Linear instability analysis reveals that the onset of the first instability in this open
cavity is around Recr ∼ 1080. The three-dimensional shear layer mode with a complex
structure is shown to be the most unstable mode. It is noteworthy that the flow pattern
of this high-frequency shear layer mode is similar to the observed unstable oscillations in
supercritical unstable case.

DNS of the cavity flow carried out at different Reynolds number from steady state until
a nonlinear saturated state is obtained. The comparison of time histories of kinetic energy
presents a clearly dominant energetic mode which shifts between low-frequency and high-
frequency oscillation. A complete flow patterns from subcritical cases to supercritical
case has been put in evidence. The flow structure at the supercritical case Re=1100
resembles typical wake-shedding instability oscillations with a lateral motion existed in
the subcritical cases. Also, This flow pattern is similar to the observations in experiments.

In order to validate the linear instability analysis results, the topology of the composite
flow fields reconstructed by linear superposition of a three-dimensional base flow and
its leading three-dimensional global eigenmodes has been studied. The instantaneous
wall streamlines of those composited flows display distinguish influence region of each
eigenmode. Attention has been focused on the leading high-frequency shear layer mode;
the composite flow fields have been fully recognized with respect to the downstream wave
shedding. The three-dimensional shear layer mode is shown to give rise to a typical
wake-shedding instability with a lateral motions occurring downstream which is in good
agreement with the experiment results. Moreover, the spanwise-periodic, open cavity with
the same length to depth ratio has been also studied. The most unstable linear mode is
different from the real three-dimensional cavity flow, because of the existence of the side
walls.

Structure sensitivity of the unstable global mode is analyzed in the flow control con-
text. The adjoint-based sensitivity analysis has been employed to localized the receptivity
region, where the flow is more sensible to momentum forcing and mass injection. Because
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Abstract

of the non-normality of the linearized Navier-Stokes equations, the direct and adjoint field
has a large spatial separation. The strongest sensitivity region is locate in the upstream lip
of the three-dimensional cavity. This numerical finding is in agreement with experimental
observations. Finally, a prototype of passive flow control strategy is applied.
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recognize his fiancée, Maria José, I learned Spanish cuisine from her. My kind-hearted
office mate Juan Angel Tendero, Wei He, Dong SiWei and Soledad Le Clainche are great
appreciated.

During the work, I recklessly asked help from people who I never have a chance to see
face to face. Thanks to Dr. Jean-Christophe Loiseau and Mattias Brynjell-rahkola for the
unselfish instruction in Nek5000.

Thanks to my private friend Yu JianGang in RWTH Aachen University, the com-
munication with him for the Ph.D life really helps me in hard time. He lent me his
computational resource when my daedalus had a fatal problem.

I am willing to express myheartful appreciation to my parents, Yu HuYang, my older
brother Liu YuZhou, my sister Cui LiPing, my dear nephew Liu YiXuan. Your endless
support and confidence are great treasure in my life.

v



Acknowledgements

vi



Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1

1.1 Novelty and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Hydrodynamic Instability 9

2.1 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Instability analysis theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 BiGlobal stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 TriGlobal stability analysis . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Determination of the Instability Core: Structure Sensitivity . . . . . . . . . 13

3 Numerical Solution of the Eigenvalue Problem 15

3.1 Direct and adjoint linearized Navier-Stokes equations . . . . . . . . . . . . . 16

3.2 Residual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Time-stepping method implemented in Nek5000 . . . . . . . . . . . . . . . . 22

3.4 Steady state solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Validations 27

4.1 Validation in OpenFoam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Two-dimensional open cavity flow . . . . . . . . . . . . . . . . . . . 27

4.1.2 Spanwise periodic open cavity flow . . . . . . . . . . . . . . . . . . . 30

4.2 Validation in Nek5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Two-dimensional lid-driven cavity validation . . . . . . . . . . . . . 33

4.2.2 Two-dimension flow over cylinder . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Square open cavity with L:Λ:D=1:1:1 . . . . . . . . . . . . . . . . . 43

4.2.4 Spanwise Periodic Open Cavity L:Λ:D= 6:2:1 . . . . . . . . . . . . . 48

4.2.5 Three-dimensional lid-driven cavity validation . . . . . . . . . . . . . 51

5 Three-dimensional wall-bounded open cavity flow 55

5.1 Model description and parameters . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Boundary conditions and initial conditions . . . . . . . . . . . . . . . . . . . 55

5.2.1 Domain and grid validations . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Tri-Global linear instability of three-dimensional open cavity flow . . . . . . 61

5.3.1 Case 1: Re = 900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



Contents

5.3.2 Case 2: Re = 950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.3 Case 3: Re = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.4 Case 4: Re = 1050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Critical Reynolds number evaluation . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Topological changes exerted by the global modes . . . . . . . . . . . . . . . 83
5.6 Sensitivity sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Eigenvalue sensitivity to the size of computational domain . . . . . . . . . . 86
5.8 Nonlinear evolution of supercritical flow . . . . . . . . . . . . . . . . . . . . 88

6 Attempts for the cavity flow control 93
6.1 Passive cavity flow control via square cylinder . . . . . . . . . . . . . . . . . 93

7 Final Remarks 99

A Adjoint equations 103
A.0.1 Variables and inner products . . . . . . . . . . . . . . . . . . . . . . 103
A.0.2 Operators and PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.0.3 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . 104

B Chebyshev Polynomial and Staggered grid 107

viii



List of Figures

1.1 Sketches of global instability analysis examples . . . . . . . . . . . . . . . . 2

2.1 Sketches of typical impulse responses . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Sketches of global instability analysis examples . . . . . . . . . . . . . . . . 13

3.1 Temporal exponential transformation [52]. . . . . . . . . . . . . . . . . . . . 23

4.1 Two-dimensional open cavity mesh. . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Residual of kinetic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 The real part of direct and adjoint eigenmodes at Re = 1400. . . . . . . . . 31

4.4 The real part of direct and adjoint eigenmodes at Re = 1900. . . . . . . . . 31

4.5 Structure functions of 2D open cavity. . . . . . . . . . . . . . . . . . . . . . 32

4.6 Direct module, adjoint module and sensitivity region of 3D open cavity. . . 33

4.7 (a) Lid-driven cavity mesh based on the spectral element method. (b)
Temporal evolution of the velocity residual of the 2D lid-driven cavity at
Re = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 The steady state stable base flow of lid-driven cavity at Re = 2000. . . . . . 35

4.9 The comparison of the spectrum of two-dimensional lid-driven cavity at
Re=2000 calculated by matrix-forming method (EVP, •) and current method
matrix-free method (TS, �). The matrix-forming results refers to the pri-
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Chapter 1

Introduction

Viscous flows inside three-dimensional open cavities are of significant interest in fluid
mechanics. This kind of flows have been comprehensively employed as engineering models
for the understanding of different aeronautical devices, such as slotted flats or landing-
gear bays. Despite cavities have a simple geometry, the flow over this particular geometry
has proven to be a challenging task due to a complex flow structure. The flow consists
of rich flow features involving shear layers, centrifugal motions, shock waves, expansion
waves, acoustic waves, and interactions amongst all these phenomena. All these physical
features have been subject of an extensive research since the 1950’s [72, 99, 104] and a
large number of experimental and numerical studies of cavity flow have been carried out
since then. Table 1.1 summarizes a list of these studies depending on their geometry and
Reynolds number that will be detailed in what follows.

A large part of literature has addressed the flow structure and instability properties of
two-dimensional and spanwise-periodic cavity flows. The shear layer instability, centrifugal
instability and wake mode instability are well understood.

Shear layer instability, as the well known feature of low Mach number cavity flows, has
been widely proved by experiment and numerical simulations in the cavity flow. Rossiter
[100] was the first to describe the physical mechanism driving the self-sustained oscillations
in cavity flows. He observed that, the small vortices generate at the leading edge by
velocity shear, follow their convection and impinge on the trailing edge. This leads to mass
injection inside of the cavity in an unsteady fashion, and the vorticity inside of the cavity
interact with the flow over the cavity, finally strong fluctuations develop at the trailing-
edge corner. In the case of an incoming laminar boundary layer, these interactions are
expected to be quasi-regular. Hence the physical mechanisms of self-sustained oscillations
can be understood as a feedback process. The schematic diagram of self-sustained fluid
mechanism is presented in figure 1.1, a fluid with a far-field velocity U following streamwise
direction x flows over a length to depth ratio L/D cavity.

Based on this experimental observations, Rossiter [100] developed his semi-empirical
formula to predict the resonance frequencies.

StL =
fL

U
=

n− α
M + 1/κ

, (1.1)

where n = 1, 2, 3, ... leads to the frequency of the Rossiter mode I, II, III... and M is
the freestream Mach number. The empirical constant α represents the average convection
speed of vortices traveling over the cavity normalized by freestream speed. κ is the phase
delay of vortices adainst the upstream traveling acoustic waves. In the original experiment
from Rossiter, α = 0.25 and κ = 0.57.

Besides the shear layer instability, centrifugal instability represents one type of low-
frequency oscillation associates to the main recirculation eddy inside cavity. Brès and
Colonius [19] conducted a linear instability analysis of two-dimensional steady stable flow
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1. Introduction
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Figure 1.1: Sketches of global instability analysis examples

for a periodic cavity in the spanwise direction, and were first to report that this centrifu-
gal instability is responsible for the loss of stability of two-dimensional cavity flows to
three-dimensional instabilities. In their numerical experiments of spanwise-periodic cavi-
ties, they observed that the spanwise oscillations had a frequency one order of magnitude
lower than the two-dimensional Rossiter mode. Also, they noted that the spanwise oscil-
lations had a wavelength of one cavity depth. This observation was in agreement with the
experimental visualizations by Faure et al. [39].

Later, Faure et al. [40] experimentally confirmed that the three-dimensional flow struc-
tures in the open cavity were independent of the shear-layer instability. Recently, de Vi-
cente et al. [34] performed an extensive investigation of the onset of the three-dimensional
centrifugal instabilities in a L/D = 2 spanwise-periodic incompressible cavity flow and
compared their results to experiments, reaching an qualitative agreement. In the same
line, Meseguer-Garrido et al. [83] presented an extension of the theoretical results of de Vi-
cente et al. [34] for a wide range of parameters. They obtained empirical relations for the
Strouhal numbers of the possible centrifugal modes. Recent numerical results on spanwise-
periodic open cavities provided by Citro et al. [26] are also in agreement with previous
investigations.

A new understanding of cavity flow arises as cavity aspect ratio increases. A different
behavior of the shear, termed as wake mode, was firstly revealed by Gharib and Roshko
[48] firstly. In their experiments of incompressible flow over an axisymmetric cavity, they
observed that under certain Reynolds numbers or length to depth ratio L/D, the cavity
flow can behave as a bluff body flow. As such, the flow features changed substantially; the
mean streamlines were no longer horizontal along the cavity and the primary recirculation
eddy inside the cavity was lost. Hence, they stated that the wake mode was intrinsically
different to the shear layer mode, and it is always related to the unstable fashion. Pereira
and Sousa [89] and Colonius et al. [30] observed similar behaviors in two-dimensional
direct numerical simulation of the cavity flow. Later, Rowley et al. [101] investigated the
onset of the shear layer mode and the wake mode in the open cavity flow using modal
linear theory. The study clearly demonstrated that the wake mode was a two-dimensional
feature and it occurred in large length to depth ratio cavities.

In this context, it is worth mentioning that Komerath et al. [71] established a classifica-
tion of open cavities based on their length to depth ratio and their behavior. They stated
that the flow over cavity can be classified into three types: (1) open flow :L/D ≤ 10, (2)
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closed flow: L/D > 13 and (3) transitional flow: 10 < L/D ≤ 13. The recent work of Sun
et al. [110] on compressible flow over cavities with aspect ratio aspect ratio L/D = 2 and
L/D = 6 also corroborates these different possible behaviors.

Although these well-known instabilities in the cavity flow have been validated in many
studies, apparent discrepancies have been found with respect to three-dimensional wall-
bounded open cavity flows. For instance, Sarohia [103] investigated the laminar axis-
symmetric flow over shallow cavities and found that a large lateral motion of shear layer
occurs in the proximity of the downstream lip. This motion leads to a periodic shedding
of vortices at a frequency of cavity oscillation different to the Rossiter frequencies.

Forestier et al. [46] studied a deep cuboid cavity with an aspect ratio L/D = 0.42
and depth to width D/W = 1 at Reynolds number ReL ≈ 8.6 × 105 based on the cavity
length. They observe that the flow was subject to regular self-sustained oscillations with
a highly two-dimensional and periodic organization of the mixing layer over the cavity.
They pointed out the formation of coherent vortices close to the boundary layer separation
had similarity to the ’collective interaction mechanism’ introduced by Ho and Huang [60].
Larchevêque et al. [73] identified two different regions in the shear-layer by means of
large-eddy simulation of a L:D:W = 5:1:1 cavity at ReL = 7 × 106. The first region of
the shear was dominated by two-dimensional Rossiter modes and the subsequent second
region behaved very similarly to a free mixing layer. Results from Forestier et al. [45] and
Larchevêque et al. [74] in a similar open cavity L:D:W = 2:1:0.42 at ReD = 8.6 × 105

revealed that the mean flow could present asymmetry inside the cavities.

The observation which expresses the asymmetry structure existed in the three-dimensional
cavity has also be confirmed subsequently. Crook et al. [32] investigated the flow topology
of the time-averaged flow of a cavity with aspect ratio L:D:W=6:2:1 at Re=4.3 × 104 −
3.4× 105. Apart from the previous observed flow features inside the cavity, they pointed
out the existence of a single vortex located near the cavity centerline. This support that
this vortex was responsible for asymmetries in the cavity and postulated that the observed
asymmetry in the time-average flow field was due to the asymmetric in the instantaneous
flow field, which switched between two extremes at low frequency.

Zhang and Naguib [125, 126] corroborated these observations by performing experi-
ments of a cuboid shallow cavity flow with fixed L/D = 3.4 and various values of W/D.
They observed that low frequency fluctuations were associated to the centrifugal instabil-
ity identified by Brès and Colonius [19]. In this context, Yao et al. [123] investigated the
unsteady incompressible flow past three-dimensional rectangular cavities at different as-
pect ratios. They observed that as the Reynolds number increases, both three-dimensional
centrifugal modes and two-dimensional shear layer modes coexist.

Recently, the effect of the sidewalls in the cavity flow has been studied by George et al.
[47]. The experiment were carried on Ma∞=1.4, over full and finite span rectangular
cavities with aspect ratio L:D=6:2. The unsteady surface pressure and particle image
velocimetry results revealed the dominant mode switches from the third to the second
Rossiter mode when comparing the full span to the finite span. Also results on flow
control of the cavity by leading edge slot blowing technique were presented. The research
performed on subsonic cavity flow is presented in the work Zhang et al. [128], who analyzed
three-dimensional cavity flow via steady blowing fixed upstream lip. Additionally, they
expected that the global instability analysis should be consider as the further researches,
which may be provide insight as to the optimal properties of the disturbance.

The previous discuss show that three-dimensional wall-bounded flow gives rises to
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1. Introduction

rather complex flow structure patterns, finding instability properties and indicating re-
sponsibility of flow unsteadiness are still an open topic nowadays. In this context, an
attempt to understand the instability onset of open cavity flows bounded by lateral walls
is made in this thesis.

Direct numerical simulation of an open cavity bounded by lateral walls will be per-
formed in order to investigate the instability onset and prove whether the spanwise-
periodicity assumption is adequate to accurately describe the flow features of a realistic
cavity. Additionally, we will apply global instability analysis Theofilis [112] to identify
the linear modes responsible for the instability. To ease comparison with the flow features
observed in the literature, we will choose the same cavity geometry as Crook et al. [32].

Moreover, a novel insight into the theoretical flow control are performed. The cavity
control follows a frame of receptivity and structural sensitivity analysis.
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References Type M∞ L/D L/W ReD θ0

Sarohia [104] 2D 0.015 0-50 - 2× 104 − 105 -

Gharib and Roshko [48] 2D 0.00015
0.678 0.985

- 1.2× 104 0.041
1.081

Rowley et al. [101] 2D 0.2-0.8
1 2 3 4

- 750-3748.3 0.0162-0.0985
5 6 8

[122] 2D 0.04-0.9 1 2 - 7500 0.0043-0.0292

Sun et al. [110] 2D
0.1-1.6 2

-
238 - 3802

0.0379
0.1-1.2 6 132 - 1214

Özsoy et al. [84] 2.5D 0-0.0582 4 3.75
4000 0.035
9000 0.028
13000 0.025

Faure et al. [39] 2.5D 0.1-1.6 2 0.333 275-5335 -

Brès and Colonius [19] 2.5D 0.1-0.8 1 2 4
0.2 0.25

755-6960 0.0033-0.0571
2 3.2

Faure et al. [40] 2.5D 0.01 0.25-2.5 0.125-4.8 1150-36800 -

de Vicente et al. [34] 2.5D - 2 0.796-6.369 1100-2400 0.0363-0.0392

Meseguer-Garrido et al. [83] 2.5D -
1.0, 1.1, 1.2,

0.0455-∞ 800-4600 0.1157-0.31.3 1.4
1.5 2 3

Citro et al. [26] 2.5D - 1
2.134 1370 0.0113
3.503 4140 0.0065

Forestier et al. [46] 3D 0.8 0.42 0.42 2.048× 106 0.0054

Yao et al. [124] 3D -
1

0.333
3000 10000

0.008 0.015
0.013 0.028

2 3000 0.013
4 3000 10000 0.013

Larchevêque et al. [73] 3D 0.85 5 5 1.4× 106 -

Ashcroft and Zhang [5] 3D ∼ 0.1
2.0 0.111 1.1× 105

-3.0 0.167 1.3× 105

4.0 0.222 1.4× 105

Larchevêque et al. [74] 3D 0.8 2 0.42 4.3× 105 -

Zhang and Naguib [125, 126] 3D - 3.4
0 0.479 4067 0.169

1.417 0.971 12200 0.252

Crook et al. [32] 3D - 6 3
7.167× 103 0.01
5.667× 104 0.011

Zhang et al. [128] 3D
0.33 0.43 0.53

6 1.56 4× 105 4.46× 10−4

0.63 0.73 5.09× 10−4

George et al. [47] 3D 1.4 6 3 4× 106 3.187× 10−4

Table 1.1: The index of the previous studies of the open cavity in numerical simulation and
experiment. 2.5D is the spanwise periodic cavity flow.
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1. Introduction

1.1 Novelty and Overview

In the past, cavity flow has been analyzed over different configuration ratios from two-
dimensional to two and half-dimensional (spanwise periodic flow) and three-dimensional,
either experiments or numerical simulations. The majority of this research focuses on the
high Mach and high Reynold number flows. This leaves the onset of the first instability
from laminar transits unsteady state still an open question in the cavity flow. Our study
is in an attempt to fill the gaps of low Reynolds number three-dimensional cavity flow in
the literature. For the first time, linear instability is applied to three-dimensional cavity
flow.

This thesis includes direct numerical simulation (DNS) of an three-dimensional wall-
bounded open cavity, the discussion of the first instability of this particular flow and the
instability properties comparison with the spanwise-periodic counterpart. Insight into the
receptivity and structure sensitivity are obtained in order to control the flow instability.
To ease comparison with the flow features observed in the literature, we will choose the
same cavity geometry as Crook et al. [32].

In this context, achievements have been obtained in OpenFOAM by implementing
direct and adjoint linearized Navier-Stokes solver. A time-stepping method, iterative ap-
proach of solving eigenvalue problem, coupled with the previous modified code has been
used to investigate three-dimensional problem. The code modification and the successful
numerical simulations are described in Chapter 3 and Chapter 4, respectively. Owing to
two main reasons, three-dimensional open cavity flow with lateral walls is investigated
using Nek5000 rather than OpenFOAM. Firstly, second order finite volume numerical
scheme in OpenFoam is less sufficient for researching small amplitude perturbation prob-
lem. Secondary, the requirement of huge computational resource fetters investigation for
three-dimensional complex flow.

The present thesis is divided into different chapters, each one addressing a different
objective of the present work:

• Chapter 2 details the instability theory. Different instability approaches depend on
the dimensionality of the base flow. In this context, the attention is focused on the
BiGlobal and TriGlobal analyses.

• Chapter 3 describes the different numerical methods used in this thesis, from the
standard second-order Finite Volume Method (OpenFoam) to high-order spectral
element method (Nek5000). All of these numerical methods follow a time-stepping
method.

• Chapter 4 presents the implementation and validation of the numerical methods used
in this thesis. Two parts of the work are presented. In the first part, the validations
are carried out from 2D to 2.5D cavity flows in OpenFoam. The second part of
work is performed with Nek5000, and it includes the two-dimensional cylinder flow,
spanwise periodic cavity flow, and three-dimensional lid-driven cavity cases.

• Chapter 5 documents the global instability analysis of three-dimensional long open
cavity with lateral walls. The geometry and flow conditions are briefly discussed.
A different flow structures are found as the flow transits from stable to saturated
unstable states. A new three-dimensional shear layer mode is observed, with a more
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1.2. Publications

complex flow structure than the spanwise periodic counterpart. Additionally, the
structural sensitivity region has been detected using the adjoint-based theory .

• Chapter 6 proposes a method to examine where a spatial modification of the base
flow has the largest impact on the instability features. The spatial variation of base
flow is based on the structural sensitivity result of three-dimensional open cavity
in the previous chapter 5. It has relevant implications for the passive control of
instabilities.

• Chapter 7 summarizes the final conclusions and suggests further lines of research.

1.2 Publications

Most of the material in this thesis, along with additional specific details, has been presented
in the following publications:

• Journal Papers (JCR Peer-Reviewed)

– Q. Liu, F. Gómez, J. M. Pérez and V. Theofilis. ”Instability and sensitivity
analysis of flows using OpenFOAM”. Accepted in Chinese Journal of Aeronau-
tics.

– Q. Liu, F. Gómez and V. Theofilis. ”TriGlobal linear instability analysis
of incompressible flow over a cuboid cavity”. Journal of Fluid Mechanics,
(In preparation).

• Book Chapters (Peer-Reviewed with ISBN/ISSN)

– Q. Liu, F. Gómez and V. Theofilis. Flow instabilities in an open aircraft bay
model cavity. AIAA Aviation and Aeronautics Forum and Exposition (AIAA
AVIATION 2016). (Under revision).

– Q. Liu, F. Gómez,and V. Theofilis. Linear instability analysis of incompressible
flow over a cuboid cavity. Procedia IUTAM, Volume 14, 2015, pp 511-518.

– Q. Liu, A. Kazakidi, M.A. Medeiros and V. Theofilis. Numerical Simulation
of a Synthetic Jet with OpenFOAM. Fluid Mechanics and Its Applications,
Volume 107, 2015, pp 197-202, Springer International Publishing.

– H. Zhang, J. Li and Q. Liu. Flight loads analysis of a maneuvering transport
aircraft. Advance Materials Research, Vol. 1016, pp. 460-464.

– F. Gómez, V. Theofilis, P. Paredes, Q. Liu and W. He. On the role of global flow
instability analysis in closed loop flow control. 2012, AIAA paper 2012-2679.

• List of talks

– 2015 Sept. 28-Oct. 4 Global flow instability and control symposium VI, Crete,
Greece.

– 2013 Sept. 4-6. ”Numerical simulation of a synthetic jet with OpenFoam”,
Instability and control of Massively Separated flows, Monash Center in Prato,
Italy.

– 2012 Nov. 29-30. 2nd Annual Review Meeting of ICOMASEF consortium,
Universidade de São Paulo, Brazil.
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Chapter 2

Hydrodynamic Instability

Hydrodynamic instabilities play an essential role in the investigation of the sequence of
physical mechanisms leading laminar flow through transition to turbulence. Although
turbulent is encountered in nature and engineering application in the majority of fluid,
it is typically unwelcome in aerodynamic application, and directly solving the turbulence
flow is still a huge challenge. Hydrodynamic instability analysis is of great importance
in many flows of engineering relevance, it puts forward a theoretic basis for flow control.
As far as we know, flow control plays an important role to enhance the performance of
the aerodynamic devices, suppresses the flow separation, delays the evolution to transition
and turbulence, depresses acoustic noise or decreases the oscillation which could induce
the structure fatigue.

Instability analysis theory has occupied a substantial part of fluid mechanics research
for over a century. The bulk of numerical efforts has been confined into analyzing the
decay/growth of a small amplitude perturbation superimposed upon a steady or unsteady
laminar base flow. The growth amplitude of the perturbation leads to a bifurcation from a
steady laminar state to unsteady state. The assumption of asymptotic instability leads to
a generalized large-scale eigenvalue problem. The spectrum of the linear global modes are
related to the numerical solution of this large matrix, of which eigenvectors are known as
global modes, and the corresponding eigenvalues represent the frequencies and growth/-
damping ratios of the small perturbation.

With flow instability dominating the unsteady motion existing at even low Reynolds
numbers, it is expected that classification of the flow manifestations provides intuitively
understanding of properties of flow. The stability of a flow can be determined by calcu-
lating the response of an impulse at the original of time and space, say x = 0 and t = 0.
If the amplitude of the response dies out in all space, the flow is stable. If it amplifies, a
further distinction is necessary.

If the response is convected away from x = 0, the flow is locally convective unstable,
as see in figure 2.1(a). Boundary layer flow is an example of convective unstable flow, small
amplitude perturbations develop inside a thin boundary layer over a fairly long distance,
the flow goes through laminar, transition until turbulence, forms TS waves, generates
spanwise vorticity, and finally, three-dimensional vortices break down.

If the response expands around x = 0, the flow is locally absolute unstable, as seen in
figure 2.1(b). Instability appearing around a cylinder flow belongs to this kind of unstable
flow.

2.1 Navier-Stokes equations

The incompressible continuity equation and Navier-Stokes equations are considered,

∇ · u = 0, (2.1a)

9



2. Hydrodynamic Instability

(a) Convective unstable (b) Absolute unstable

Figure 2.1: Sketches of typical impulse responses

∂u

∂t
+ u · ∇u = −∇p+Re−1∇2u, (2.1b)

u = (u, v, w) is the velocity in three directions, streamwise x, wall normal y and spanwise
direction z, respectively. p is the pressure. Re is the Reynolds number,

Re = UL/ν, (2.2)

where U and L are the characteristic velocity and length scales, respectively. ν is the
kinematic viscosity.

2.2 Instability analysis theory

Flow instability theory deals with the evolution of a small-amplitude perturbation in time
and space, superimposed upon a steady or unsteady laminar base flow. The flow defined
by the governing equations (2.1) is decomposed as a base flow ū and unsteady small-
amplitude perturbations ũ,

u = ū(x) + εũ(x, t), (2.3)

where ε << 1, x is the spatial coordinations depending on the dimensionality of the flow.

By introducing the decomposition (2.3) in to the governing equations (2.1) and re-
taining the infinitesimal terms O(ε), the linearized Navier-Stokes equations (LNSE) are
obtained

∇ · ũ = 0, (2.4a)

∂ũ

∂t
+ ū · ∇ũ + ũ · ∇ū = −∇p+Re−1∇2ũ. (2.4b)

Writing (2.4b) in matrix form, the initial-value-problem (IVP) is

∂ũ

∂t
= Aũ, (2.5)

where A is the Jacobian matrix of the right-hand side of the Navier-Stokes equation.
Specific comments on the dependence of these quantities on the spatial coordinates x
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2.2. Instability analysis theory

Denomination Basic State Assumptions Phase Function Θ

TriGlobal - ū(x, y, z) exp(λ · t)
Global PSE-3D ∂xū << ∂yū, ∂zū ū(x∗, y, z) exp(

∫
α(x∗)dx∗ + λ · t)

BiGlobal ∂zū = 0 ū(x, y) exp(βz + λ · t)
Non-Local PSE ∂xū << ∂yū; ∂zū = 0 ū(x∗, y) exp(

∫
α(x∗)dx∗ + βz + λ · t)

Local OSE ∂xū = ∂zū = 0 ū(y) exp(αx+ βz + λ · t)

Table 2.1: Classification of global linear theory appraches, where λ is a complex value: λ =
λr + i · λi, λr is damping/growth rate, λi is the frequency.

and time t, will be made in the following. The operator A is associated with the spatial
discretization of the linearized Navier Stokes equations (LNSE) and comprise the base
state ū. The separation between time and space coordinates in (2.5) permits introducing
a Fourier decomposition in time. The perturbation term is usually written as the product
of an amplitude function û with a phase function Θ, ũ = ûΘ. Table 2.1 summarizes the
different instability approaches associated on the dimensionality of the base flow analyzed.

At the strongest level of approximation local instability analysis, the base flow is con-
sidered homogeneous along two spatial directions and then the parallel flow approximation
is made. In this approximation, the streamwise and spanwise derivatives of the mean flow
are assumed to be negligible. One can then assume small-amplitude perturbations ũ in
(2.3) as following expression,

ũ(x, y, z, t) = û(y)ei·(αx+βz)+λt + c.c. (2.6)

with complex wave numbers α, β and complex frequency λ. The periodicity lengths
Lx = 2π/α and Lz = 2π/β have been imposed to the disturbances shape in the x− and
z− direction respectively.

Substituting (2.6) in (2.4), Once the appropriate boundary condition imposed, these
stability equations turn into an eigenvalue problem whereby eigenfunctions exist only is
α, β and λ satisfy a dispersion relation [3, 28, 62]. For simplicity, the wavenumber β in
(2.6) is taken as a real parameter like a control parameter Re, without losing any of the
essential characteristics of instability.

D[α, λ;β,Re] = 0. (2.7)

The dispersion relation D[α, λ;β,Re] is equivalent in space differential operator
D[i∂/∂x,−i∂/∂t; i∂/∂z,Re] in physical space[11, 12, 20, 61, 76, 109], the eigenfuction
satisfies

D(i
∂

∂x
, i
∂

∂t
;
∂

∂z
,Re)û = 0. (2.8)

The dispersion relation (2.8) maps points between the complex α-plane and the com-
plex λ-plane. The disturbances characterized by α and λ can grow/decay in space (spa-
tial local instability), in time (temporal local instability) separately, or simultaneously
grow/decay in space and decay/growth temporally (spatio-temporal instability)[62, 68].

In temporal local stability analysis, the quantity α in (2.6) is real wavenumber param-
eters, the sought complex eigenvalue is λ = λr+i ·λi, where λr is the growth/damping rate
and λi is the circular frequency. In spatial local stability analysis, λ is a real frequency pa-
rameter and α = αr + iαi is complex eigenvalue, αr is related with the periodicity length
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2. Hydrodynamic Instability

along the homogeneous spatial direction, through and αi is the spatial amplification/-
damping rate. In spatio-temporal stability analysis, both α and λ can be complex. The
velocity of wave crests c = λ/α is called phase velocity and the velocity of the envelope of
the wave crests cg = ∂λ/∂α is group velocity. Absolutely instability would appear if the
wave has cg = 0 and the temporal growth rate λr > 0. The border of absolute instabil-
ity and convective instability can be defined by the parametric region of those wave-like
disturbances.

The traditional instability theory are based on the quasi-parallel flow assumption. It
does not account for such shear layer flow, boundary-layers, jet and far wakes, which
base flow has a weak variation in one direction (e.g. x direction) and strong variation in
another direction (e.g. y direction). PSE have made a successful effort in this kind of
flow. The base flow evolves in the streamwise direction with a large scale X, while the
disturbances evolves with a small scale x. The small-amplitude perturbations ũ in (2.3)
can be decomposed as the following expression,

ũ(x, y, z, t) = û(X, y)ei(
∫
X α(X)dX+βz)+λt + c.c., (2.9)

where amplitude function û and the streamwise wavenumber α are slowly varying functions
on X. The PSE are valid for convective unstable flows. See more details in Bertolotti
[13], Herbert [57].

2.2.1 BiGlobal stability analysis

Assuming that the base flow varies in two out of the three spatial directions. For in-
stance, lid-driven cavity with a large span in z direction in figure 2.2(a), the base flow is
dependent on the x−y plane, whereas the perturbation is three-dimensional, with the ho-
mogeneous z direction, the periodicity length is assumed Lz = 2π/β. The small-amplitude
perturbations ũ in (2.3) can be decomposed as

ũ(x, y, z, t) = û(x, y)e(i·βz+λt) + c.c.. (2.10)

For the temporal BiGlobal instability case, β is a real number and sought complex eigen-
value is λ = λr + i ·λi. For the spatial BiGlobal instability case, β is the complex number,
and λ is the real number[112].

2.2.2 TriGlobal stability analysis

TriGlobal stability analysis is the most general case with the base flow and perturbations
being non-homogeneous in the three coordinates. The small-amplitude perturbations ũ in
(2.3) can be decomposed

ũ(x, y, z, t) = û(x, y, z)eλt + c.c., (2.11)

where λ = λr + i · λi, λr is the growth rate and λi is the circular frequency. As shown in
figure 2.2(c), three-dimensional wall-bounded open cavity flow has three non-homogeneous
directions, it is a TriGlobal stability analysis example.

Substituting (2.5) by TriGlobal decomposition (2.11), it leads to the generalized matrix
eigenvalue problem (EVP),

λû = Aû. (2.12)

12



2.3. Determination of the Instability Core: Structure Sensitivity

(a) BiGlobal example (b) PSE-3D example

(c) TriGlobal example

Figure 2.2: Sketches of global instability analysis examples

2.3 Determination of the Instability Core: Structure Sensi-
tivity

The adjoint-based sensitivity analysis has been widely applied from optimal shape design
[66, 90] to model-based optimal control of fluid flows [70]. The adjoint analysis yields
a very efficient way to determine the receptivity properties of the flow, which reveals
the initial disturbance amplitude and the influence of external excitation on this flow.
Thus, inspecting the adjoint eigenfunctions and assessing the receptivity regions of the
flow provide the precious information to the structural sensitivity. An overview of recent
developments in adjoint methods studying hydrodynamic stability has been compiled by
Luchini and Bottaro [79].

The structure sensitivity of the eigenmodes to modifications of the base flow can be
calculated with the construction of a bi-orthogonal or adjoint operator A∗[50, 58, 59, 79,
80], with adjoint velocity and pressure field v̂ and m. These adjoint equations can be
written in a similar fashion (2.4), adjoint linearized Navier-Stokes equations are

∇ · ṽ = 0, (2.13a)

−∂ṽ

∂t
+ ū · ∇ṽ + ṽ · ∇ū = −∇m+Re−1∇2ṽ, (2.13b)

The adjoint TriGlobal ansatz is introduced,

ṽ(x, y, z, t) = v̂(x, y, z)e−λt + c.c.. (2.14)
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2. Hydrodynamic Instability

Combination of the ansatz (2.14) with (2.13b) leads to the adjoint eigenvalue problem,

−λv̂ = A∗v̂, (2.15)

or equivalently,
v̂(A− λI) = 0. (2.16)

In the spatial structures, the non-normality of the eigenvalue problem gives rise to large
differences between direct and adjoint eigenfunction. This suggests that the instability
mechanism cannot be identified from the direct and adjoint eigenfunctions separately
[8, 50, 82]. So a practical way is to evaluate the overlap between direct and adjoint
eigenfunction [50]. The product of overlap indicates the sensitive region[58, 59], where a
spatially base flow modification may alter the stability properties of the flows.

By perturbing the direct eigenvalue problem (2.12), it is obtained that,

δ(A− λI)û = (δA− δλI)û + (A− λI)δû. (2.17)

and using the adjoint relation (2.16) leads to a relation between the change induced in the
eigenvalue δλ by the modification of the Jacobian-matrix,

δλ =
ûδAv̂

< û · v̂ >
. (2.18)

If a localized in space perturbation as δA=δ(x − x0, y − y0, z − z0) is introduced in the
above equation, it is possible to define a function that localizes the spatial positions where
the λ eigenvalue is most sensible to perturbations of the Jacobian-matrix through small
changes in the base flow, enabling the possibility of suppressing instability onsets by small
modifications in the base flow, as done experimentally by Strykowski and Sreenivasan
[108], which leads to

δλ =
‖û‖‖v̂‖
< û · v̂ >

. (2.19)

See Appendix A for the derivation of the adjoint operator, the derivation is omitted for
simplicity and the adjoint equations will be presented with correct boundary conditions
that satisfy a zero bilinear concomitant, the most critical step is deriving proper boundary
conditions for the treatment of the bilinear concomitant. Further details can be checked
in the literature [10, 50, 58, 116].
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Chapter 3

Numerical Solution of the Eigenvalue Problem

In the previous chapter, linear stability theory and adjoint-based sensitivity theory are
presented. Different numerical methods to analyze global instability are documented in
this Chapter, and alternative matrix-free methods are proposed to solve global instability.
The numerical details of time-stepping method implemented in open-source CFD code are
presented.

Recent advances in CFD software have provided to the computational fluid dynamics
community with a great variety of open-source solvers and tools, such as the Stanford
University Unstructured (SU2) [85], Nek5000 [43], Nektar++[22, 118], FreeFem[56] or
OpenFOAMr[120], among many alternatives. From an academic point of view, the major
advantage of the use of these numerical solvers against the proprietary software, besides
license related issues, is the access to the source code and the possibility of customize it
for multiple purposes. In addition, these suits allow the use of multiple pre- and post-
processing tools such as parallel processing or mesh creation/manipulation utilities, whose
availability a priori can save significant effort and time in the obtaining of results from
numerical simulations.

Two classes of approaches can be used to solve the eigenvalue problem (EVP): matrix-
forming and time-stepping. The matrix forming strategies give all the information of
eigenmodes by providing access to larger subsets of the full spectrum, it costs a large com-
putational memory (RAM memory) due to storage of the large matrices. Time-stepping
method provides smaller subsets of the spectrum at the cost of long time integration (CPU
time). Both methods have different advantages.

Matrix-forming approach has an inherent advantage in deposing the simple geometry,
programming simplicity and flexibility. For the one-dimensional problem, it is straight-
forward to form any of the linear one-dimensional operators. In two or three dimensional
problem, the Kronecker product of matrices can be used for multi-dimensional problems.
An additional key advantage of a matrix-forming approach is its flexibility: incompressible
or compressible, viscous or inviscid operators may be programmed in a straightforward
manner into the same code, thus minimizing the amount of validation and verification
work necessary when a new problem is to be tackled.

Alternative time-stepping method may be used due to simply implemented to existed
CFD codes. A linearized Navier-Stokes solver are need to be implemented in the DNS
code firstly, operation is performed in the same manner as those of the underlying DNS
code used. Moreover, time-stepping method is good at tackling complex geometry.

In this chapter, details of implementing direct and adjoint linearized Navier-Stokes
solver are presented in OpenFOAM. Time-stepping method, moreover Residual Algorithm,
coupled with the previous modified code has been introduced. With an effort, solving
EVPs by Arnoldi methods in Nek5000 has been introduced briefly. Since mature version
of time-stepping code has been developed by Peplinski et al. [88], in this context, all the
work in Nek5000 part has been solved based on this remarkable progress.
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3. Numerical Solution of the Eigenvalue Problem

3.1 Direct and adjoint linearized Navier-Stokes equations

The development of the direct and adjoint linearized Navier–Stokes equations by modifying
the incompressible transient solver of the open-source CFD software OpenFOAMr, named
icoFoam is shown next. This solver, based on a classical finite volume formulation [42]
and a PISO [41, 64, 67] algorithm (Pressure-Implicit with Splitting of Operators), has
demonstrated a high quality performance in the recent literature [15, 16, 54, 102]. This
algorithm and its modifications to create solvers for the linearized and adjoint Navier-
Stokes equation, named dirIcoFoam and adjIcoFoam respectively, are explained here in
detail. The key idea of the PISO algorithm is that for small time-steps the pressure-
velocity coupling is much stronger than the non-linear convective coupling, therefore it is
possible to split the solution into a set of corrections where the pressure is decoupled from
the velocity, since the velocity in the momentum equation does not need to be updated
for each pressure correction. Although this procedure is not formally necessary to solve
the linearized Navier–Stokes equations (LNSE), since these equations are linear, the PISO
method of solution can be applied in order to treat in a explicit manner the convective term
in which the volume flux contribution of the perturbation velocity needs to be evaluated,
as it is detailed next.

A similar notation to Jasak [67] will be employed in what follows. As an example, the
semi-discretization of the convective term of the Navier–Stokes using finite volumes in a
polyhedron is written as:∫

V
∇ · (uu)dV =

∫
S
uu · n̂dS =

∑
i

ui · Siui =
∑
i

φiui = aPuP +
∑
N

aNuN , (3.1)

where the velocity is evaluated on the faces i of the polyhedron P . Si is the normal vector
to face i which norm equal to the face area, and subscript N represents the neighbors
polyhedron to P. φi is the flux across face i, and aP and aN are the function of u. Finally,
the flux is obtained by interpolation of the node values adjacent to each surface. Taking
this formulation into account, the momentum equation of the Navier–Stokes equation in
(2.1b) can be equivalently defined and initialized as:

u = aP
−1H(u)− aP

−1∇p , (3.2)

where aP contains the discretization matrix operator of the implicit terms while H rep-
resents the explicit terms of the velocity. The first two terms of the above equations are
represented in line 1 of Listing 3.1 in OpenFOAMr notation, where fvm is the namespace
which are defined the implicit version of the operators (ddt, div or laplacian). A mo-
mentum predictor is then obtained using the momentum equation and the pressure from
a previous step, which in OpenFOAMr notation is written in line 3 of Listing 3.1.
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3.1. Direct and adjoint linearized Navier-Stokes equations

Listing 3.1: Projection step

fvVectorMatr ix UEqn ( fvm : : ddt (U)+ fvm : : div ( phi , U) − fvm : : l a p l a c i a n (nu , U) ) ;
. . .
s o l v e (UEqn == −f v c : : grad (p ) ) ;
. . .
v o l S c a l a r F i e l d rUA = 1.0/UEqn .A( ) ;
U∗ = rUA∗UEqn .H( ) ;
. . .
phi = ( fvc : : i n t e r p o l a t e (U∗) & mesh . Sf ( ) ) ;
fvSca la rMatr ix pEqn ( fvm : : l a p l a c i a n (rUA, p) == fvc : : d iv ( phi ) ) ;

Recalling equation (3.2), the explicit terms can be written as

u∗ = aP
−1H , (3.3)

This term is represented in lines 5 and 6 in Listing 3.1, where the functions UEqn.A() and
UEqn.H() extract the implicit and explicit terms from equation (3.2). The momentum
equation is then written as:

u = u∗ − aP
−1∇p , (3.4)

where the left hand side term is divergence-free and the continuity equation can be applied
to obtain the laplacian equation:

∇ · u∗ = ∇ · aP
−1∇p , (3.5)

in which the left hand side can be treated explicitly. Next the velocity flux φ is updated
with the new velocity, which permits the obtention of the new pressure field, as seen in
lines 8 and 9 in Listing 3.1.

Finally the divergence-free velocity u is corrected with the correct pressure gradient
with Equation (3.2) and the last step of the PISO algorithm consists of advancing the
time-step. Non-orthogonality effects, boundary conditions corrections and details about
the discretization have been omitted for simplicity. This PISO algorithm is summarized
in Algorithm 1. This algorithm can be easily modified in order to solve the direct and
adjoint linearized Navier-Stokes equations. It is trivial to observe from (2.4) and (A.6)
that the main difference with the full Navier-Stokes equations are the additional advection
terms and the different signs in case of the adjoint equations. Since the terms related with
the base flow are constant, and the predictor fluxes of the perturbation are constructed
with the perturbation velocity from previous step, the additional advection term of direct
and adjoint equations can be formed in a explicit manner, thus the equations to be solved
are equivalent to the non-linear case. In other words, the base flow advection term can
be treated as a source term. Therefore, the dirIcoFoam and adjIcoFoam solvers for
the solution of the temporal evolution of the linearized direct and adjoint Navier–Stokes
equations (2.4) and (A.6) can be constructed by modifying the matrix UEqn including the
new advection terms without further modifications. For dirIcoFoam this is represented
in Listing 3.1, where U refers now to the perturbation, UB to the base flow and fvc is the
namespace which are defined the explicit version of the operator (div).

Listing 3.2: Correction step in dirIcoFoam
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3. Numerical Solution of the Eigenvalue Problem

fvVectorMatr ix UEqn
(

fvm : : ddt (U)
+ fvm : : div ( phiB , U)
+ fvc : : d iv ( phi , UB)
− fvm : : l a p l a c i a n (nu , U)

) ;

Similarly, the adjoint equation solver dirIcoFoam is represented in Listing 3.3, where V

refers to the adjoint perturbation. Note that special treatment of the temporal scheme is
required for the backwards temporal integration of the adjoint equations.

Listing 3.3: Correction step in adjIcoFoam

fvVectorMatr ix VEqn
(
− fvm : : ddt (V)
+ ( fvc : : grad (UB) & V)
− fvm : : div ( phiB , V)
− fvm : : l a p l a c i a n (nu , V)

) ;

3.2 Residual Algorithm

Residual algorithm [112, 114, 119] has been employed to validate the transient behavior
of the solver. In the case of steady state flow, when the govern equations of motion (2.1)
start from a random initial condition, match as the time integration, the path of the flow
quantity u to the steady state solution is charged by the damping of the least stable flow
eigenmodes. As such, during the time prior to convergence, the residual is governed by
only the leading damped linear global mode. In the particular case of a steady leading
mode, if the time-accurate integration is close to convergence, the decomposition (2.3) is
valid, the corresponding damping ratio can be extracted from the logarithmic derivative
of the signal, which reads

λr =
ln( ε(t+∆t)

ε(t) )

∆t
, (3.6)

λr is identified as the damping ratio corresponding to the global modes and

ε(t) = |q(x, y, z, t)− q̄|, (3.7)

q is any flow quantity obtained from the DNS transient data.
In the case of a traveling leading mode, in order to extract frequency λi, fast Fourier

transform is performed to the time trace of flow quantity in the finite convergence range.
For the least stable eigenmode, it has largest damping/growth ratio and dominant

oscillation than secondary eigenmode. Damping/growth ratio and circular frequency can
be settled using aforementioned methods. Residual algorithm developed by Theofilis [111]
is used to determine the spatial eigenmode û. This consists of writing solution (2.11) at
two different times t1 and t2 with two unknown parameters ûr and ûi

ũ(x, y, z, t1) = (ûr(x, y, z) cosλit1 − ûi(x, y, z) sinλit1)eλrt1 (3.8a)
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3.2. Residual Algorithm

ũ(x, y, z, t2) = (ûr(x, y, z) cosλit2 − ûi(x, y, z) sinλit2)eλrt2 , (3.8b)

leading to a easily solvable linear system. Since this method is solely based on power
iterations, the present algorithm can only provide the structural sensitivity of the leading
eigenvalue of the flow, which is the responsible for the onset on the instability. In addition,
this method is equivalent to the temporal integration, so it converges as ∼ e|λ1−λ2|τ , thus
this algorithm is very effective when a gap between first and second eigenvalue is expected
in the spectrum. In addition, because of this, the computational resources employed in
terms of CPU time in the analysis can be significantly smaller to those required in the
obtaining of the steady base flow using a transient method. Further modifications based
on the update of the eigenvalue shift λs at each step by making use of the direct adjoint
relationship (2.19), as envisaged by Giannetti and Luchini [50] in a shift-invert matrix-
forming framework, can be introduced in the algorithm.

Alternatively, Krylov–subspace projection methods, such as those described in Tuck-
erman and Barkley [116] and Barkley et al. [10], are straight forward to implement with
the dirIcoFoam and adjIcoFoam solvers. Particularly, this is the prefered method in
case the obtention of a larger subset of the spectrum is required. Algorithm 3 shows the
implementation of this methodology employing the solvers dirIcoFoam and adjIcoFoam.

Algorithm 1 PISO algorithm

S1: Set initial conditions

S2: Time-step iteration (t = 0, ..., tf )

T1: Obtain momentum predictor by solving momentum equation using mass flux φ
from previous velocity and pressure aPu∗ = H−∇pn−1

T2: PISO Iteration (i = 1, ..., NPISO)

P1: Compute volume fluxes

P2: Solve the pressure equation

P3: Correct the velocity with new pressure field

P4: Update boundary conditions.

S3: Advance time-step
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3. Numerical Solution of the Eigenvalue Problem

Algorithm 2 Sensitivity analysis with direct and adjoint power iteration

A1. Direct problem: Solve the linearized Navier-Stokes equations

B1. Initial Condition: Set τ , u′(0), ū

B2. Call dirIcoFoam: u′ ← eAτu′(0)

C1. Fit resisdual data via least-squares to obtain λr, λi :

C2. Apply residual algorithm to obtain ûr and ûi:

A2. Adjoint problem: Solve the adjoint linearized Navier-Stokes equations

B1. Initial Condition: Set τ , v′(0), ū

B2. Call adjIcoFoam: v′(0)← eA
∗τv′

C1. Fit residual data via least-squares to obtain λr, λi :

C2. Apply residual algorithm to obtain v̂r and v̂i:

A3. Structural sensitivity: Compute δλ(x, y) = |v̂1||û1|
v̂1·û1
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3.2. Residual Algorithm

Algorithm 3 Sensitivity analysis following Barkley et al. [10] methodology

A1. Direct problem: Solve direct EVP

B1. Initial condition direct problem: Set m, ε and u′1

B2. Arnoldi iteration: Perform until convergence (l = 1, ...,m),

C1. Call dirIcoFoam: u′l ← eAτu′l
C2. Gram-Schmidt orthonormalization: (i = 1, ..., l)

D1. Form Hessenberg matrix hil = u′Ti e
Aτu′l

D2. Orthogonalize u′l+1 = eAτu′l −
∑j

i=1 hilu
′
i

D3. Normalize hl+1,l = ‖u′l+1‖ , u′l+1 =
u′l+1

hl+1,l

B3. QR: Perform eigenvalue decomposition of the m × m matrix H and undo
exponential transformation.

A1. Adjoint problem: Solve adjoint EVP

B1. Initial condition adjoint problem: Set m, ε and v′1

B2. Arnoldi iteration: Perform until convergence (l = 1, ...,m),

C1. Call adjIcoFoam: v′l ← eA
∗τv′l

C2. Gram-Schmidt orthonormalization: (i = 1, ..., l)

D1. Form Hessenberg matrix h∗il = v′Ti e
A∗τv′l

D2. Orthogonalize v′l+1 = eA
∗τv′l −

∑j
i=1 h

∗
ilv
′
i

D3. Normalize h∗l+1,l = ‖v′l+1‖ , v′l+1 =
v′l+1

h∗l+1,l

B3. QR: Perform eigenvalue decomposition of the m × m matrix H∗ and undo
exponential transformation.

A3. Structural sensitivity: Compute δλ = ||v̂1||||û1||
v̂1·û1
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3.3 Time-stepping method implemented in Nek5000

The non-linear Navier-Stokes equations as well as their linear counterparts are partial
differential equations, they need to be spatially and temporally discretized in order to
be solved numerically. The open-source code Nek5000 is based on high order numerical
scheme spectral element method [87], it combines the generality of the finite element
method with the accuracy of spectral techniques. Moreover spectral elements mesh relies
on two different grid levels: finite element grid and spectral collocation points n within
each element, the accuracy of spatial-discretization p depends on p = n − 1. A stagged
grid technique is used for the velocity and pressure spatial-discretization, hence pressure
boundary conditions are omitted. Semi-implicit scheme BDFk/EXTk is used for temporal
discretization. More details can be found in [69].

Linear stability analysis introduces Jacobian matrix A in (2.5), which contains the key
stability property of the flow. So, the core task becomes how to solve eigenvalue problems
from (2.5) and obtain eigenpairs (λ, û). while, solving the large eigenvalue problems
by direct methodology is still a challenge job, especially for three-dimensional complex
geometry. So time-stepping method has been taken as one of the efficient methodology, it
has been introduced in the mid 90’s[38] and popularized since 2009[8].

The initial value problem (2.5) can be transformed to the following form:

ũ1(τ) = eAτ ũ0, (3.9)

where ũ0 is the arbitrary initial perturbation which arranged as the vector and assume
to be of unit norm ‖ ũ0 ‖= 1, integration time is τ .

The eigenpairs of A contain the information of instability of the fluid model which
can not be solved directly from (3.9). However, the iteration method for calculating the
leading eigenparis of matrix exponential eAτ is practical, for convenience, denote eAτ as
Σ. Moreover, their eigenpairs of A and Σ have a temporal exponential relationship.

A −→ Σ,

(λ, û)
temporal−−−−−−−→

exponential
(σ, û)

and

λ =
log(σ)

τ
, û = û. (3.10)

Hence, eigenvalue problems become solving indirect temporal propagator matrix Σ
instead of Jacobian Matrix A. The spectrum transformation is required for the conversion
of the leading eigenvalues into the dominant eigenvalues, which are the ones that the
Arnoldi method can recover. Because of exponential transformation, figure 3.2 shows
the temporal exponential transformation of the spectrum, it can be seen how the leading
eigenvalue of the Jacobian matrix A becomes the dominant in the temporal propagator
matrix σ, at the same time, the dominant eigenvalues are shifted to zero.

The approach for solving eigenvalue problem is resorted to Arnoldi method. Arnoldi
method is an important iterative methods for eigenvalue algorithm. The Arnoldi iteration
[4] uses the stabilized Gram-Schmidt process to produce a sequence of orthonormal vectors,
q1, q2, q3,..., called the Arnoldi vectors, such that for every Krylov dimension k, the
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Figure 3.1: Temporal exponential transformation [52].

Algorithm 4 Arnoldi algorithm

Start with an arbitrary vector q1 with norm 1.
for i = 2, 3, ..., k do

qi ← Bqi−1

for j = 1 : i− 1 do
hj,i−1 ← qjqi
qi ← qi − hj,i−1qj

end for
hi,i−1 ← ||qi||
qi ←

qi
hi,i−1

end for
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3. Numerical Solution of the Eigenvalue Problem

vectors q1,...,qk span the Krylov subspace. Explicitly, the prototype of Arnoldi algorithm
is presented in algorithm 4.

One of the most challenging tasks of the proposed time-stepper method is the corrected
selection parameters: integrate time τ and Krylov subspace dimension k. Bagheri et al.
[7] gave the quantitative criteria for selecting integrate time. Integrate time τ is a balance
value between Nyquist frequency and convergence of numerical simulation. Since every
basis vector of the Krylov subspace is created by a simulation running in time iteration τ ,
the time integration should make sure the created Krylov subspace reflects the physical
structures of the flow. Two guidelines can be considered as the reference to choose properly
time integration, τ must be small enough to include at least two sampling points in one
period of the highest-frequency mode (τ < T = 2π/λi,max); the angular frequency of the
global modes must be contained in the range of Nyquist frequency ωNyquist = π/τ .

λi,max ∈ [0, π/τ ].

Usually, the frequency spectrum of flow field from DNS can be taken as the reference
for time-stepping method.

Note that one does not know beforehand how large the Krylov subspace has to be
to converge to the desired number of eigenvalues. Because the convergence of Arnoldi
method depends very much on initial condition. The classic Arnoldi method, initialized
of random vector, must spend large dimensional of subspace in order to recovery several
leading eigenvectors within satisfied tolerance. So it is quite less efficiency for the fully
three-dimensional problem. Implicit restarting Arnoldi method uses a refined initial con-
dition and restarts the Arnoldi factorization with this new vector instead, it shrinks the
dimensions of the Krylov subspace, the minimal Krylov subspace k can be 2 times of the
desired eigenmodes.

3.4 Steady state solution

Steady base flow solution of Navier-Stokes equations is a pre-requisite to linear stability
studies. Especially when the flow under consideration is globally unstable, it is impossible
to using time-marching method to acquire the steady solution of non-linear Navier-stokes.
Several conservation approaches have been applied for the limited cases, such as enforc-
ing symmetries in the system ( 2D flow over a circular cylinder), artificially setting the
velocity component in certain directions to zero and fixed point of the equations. The
more general approach is Newton iteration methods which relies on the computation of
a Jacobian matrix. It becomes quite expensive and inefficient when dealing with fully
three-dimensional Navier-Stokes equations.

Åkervik et al. [1] overcame this problem by introducing an iteration method known
as the selective frequency damping method. This technique is adapted from large eddy
simulation techniques[93, 94], and it enables a damping of oscillations of the unsteady part
of the solution using a temporal low-pass filter, this is achieved by adding a forcing term
to the right-hand side of the Navier-Stokes equations and extending the system with an
extra equation for the filtered state ū. The extended system is governed by the following
equations.

∇ · u = 0, (3.11a)
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∂u

∂t
+ u · ∇u = −∇p+Re−1∇2u− χ(u− ū), (3.11b)

∂ū

∂t
= ωc(u− ū), (3.11c)

where χ is control coefficient and ωc being filter width [93]. The choice of two open
parameters is critical for the computation. As the guideline, χ is chosen to be twice the
growth rate of the targeted unstable instability mode, and the cutoff frequency ωc ≈ 1

2·ωuns

in order to make sure the unstable disturbances frequency is within the damped region. It
is noteworthy that this technique is failed for the case that the leading unstable global mode
is stationary. In that situation, investigators may resort to the conservation approaches
reminded before.
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Chapter 4

Validations

In the previous chapter time-stepping method is proposed to solve global instability prob-
lems and adjoint-based sensitivity analysis for the detection of flow properties.The code
modification of direct and adjoint linearized solvers are presented using OpenFoam and
Nek5000. These methods and their validations to solve linear global instability and struc-
tural sensitivity are presented in this chapter. The validations are separated in two parts.

Residual algorithm is performed on the two-dimensional and three-dimensional open
cavity with the aspect ration L/D=2. The spanwise length of three-dimensional open
cavity is the approximately one cavity depth, L/Λ = 1.1. In the case of two-dimensional
open cavity, damping rate and circular frequency of the leading eigenmode are detected
at Re = 1400 and Re = 1900, the results are in good agreement with the work from
De Vicente [33]. Moreover, the structural sensitivity results have been revealed in both
cases. The obtained damping rate and frequency of the least stable eigenmode in three-
dimensional open cavity are compared with the results from Brès and Colonius [19]. The
visualized spatial structure of direct and adjoint global mode are confined inside the cavity.
Additionally, structural sensitivity of three-dimensional open cavity has been identified.
More details about these results and the alternative matrix free methods have been pub-
lished in [78].

The intention of this work was to undertake all the thesis with OpenFoam. However,
it become computationally unaffordable for the required resolutions in three-dimensional
problems. Hence, we must leave the OpenFoam and turned to high-order numerical meth-
ods Nek5000. Luckily, the time-stepping method has been employed in this open source
code by Peplinski et al. [88]. Four selected cases from two-dimensional wall-bound to
three-dimensional open flows have been verified using this modified code: two-dimensional
lid-driven cavity [53], two-dimensional circular cylinder [50], two and half dimensional open
cavity [27] and three-dimensional lid-driven cavity [54].

4.1 Validation in OpenFoam

4.1.1 Two-dimensional open cavity flow

The cavity configuration and flow conditions are controlled by the following parameters:
the ratio of the cavity length to depth L/D, the Reynolds number depending on the cavity
depth ReD = UD

ν , the ratio of the cavity length to the initial boundary layer momentum
thickness at the leading edge of the cavity L/θ and the boundary layer displacement
thickness δ∗. Reynolds number depending on the displacement thickness Reδ∗ is also
employed in order to control the inlet boundary layer thickness. All of the parameters
involved with the Blasius boundary layer are measured in the upstream lip of the cavity,
the initial Reδ∗ is the approximately the same in the cases of ReD = 1400 and ReD = 1900,
as shown in the Table 4.1. The sensitive results will show the most unstable region changes
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as the ReD increases.

ReD L/θ δ∗ Reδ∗

1400 51.948 0.0997 139.58

1900 70.572 0.0734 139.46

Table 4.1: Parameters of the two-dimensional open cavity with aspect ratio L/D=2.

A variation of the Richardson [95] extrapolation generalized by Roache [96] is intro-
duced for the mesh refinement study, Sanmiguel-Rojas et al. [102] successfully used this
method for studying the grid independent of the flow past an axisymmetric body. The
grid convergence index can be defined as

GCIj,j+1 = 3× | uj − uj+1

uj+1(ln − 1)
| × 100, (4.1)

where uj is the variable discretized on mesh j, j+ 1 is finer than j, n represents the order
of the convergence rate of this method which is

n = log(
uj − uj+1

uj+1 − uj+2
)/log(l). (4.2)

As shown in Table 4.2, three different resolutions with refinement ratio l = 1.5 in each
direction is employed. The streamwise velocity u at point (2.0, 0.0) which located at the
shear layer region of the cavity has been probed in the two-dimensional open cavity at
ReD = 1400. Notice that as the grid is refined, the grid convergence index decreases,
GCI1,2 > GCL2,3. So the mesh M2 with 24280 cells is enough to accurately predict
the flow in the open cavity at ReD = 1400. Here we used M2 as the resolution for the
two-dimensional and the following three-dimensional computation, the mesh information
is showed in the Figure 4.1.

Mesh cells numbers u(2.0, 0.0) GCIj+1,j(%)

M1 10878 0.20243

M2 24280 0.20338 0.82019

M3 54136 0.20373 0.30266

Table 4.2: Grid convergence study based on u velocity for the two-dimensional open cavity
at Re=1400 using three meshes: M1 coarse, M2 medium and M3 fine. Grid convergence index
obtained with l = 1.5 and n = 1.25.

Four types of boundary conditions are employed to solve two-dimensional incompress-
ible Navier-Stokes equations. The velocity of inlet is uniform u = (u, v) = (1, 0), the
same as the far-field boundary condition. Neumann velocity boundary condition is used
in the outlet and wall u = (u, v) = (0, 0). The boundary condition and domain size for
the outflow in an open-flow problem to the sensitivity research are important issues. As
documented in the previous work of optimal growth analysis from Barkley et al. [10], the
computational domain for an optimal growth computation must have considerably long
inflow and outflow lengths in order to avoid the non-negligible amplitude of perturbation
in the outlet, that is the reason we give up the short upstream computational domain by
employing Blasius profile as the inlet boundary condition. The summary of the boundary
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BCs Base flow (DNS) Direct modes Adjoint modes

Inlet u = (1, 0), ∂p(x,y)
∂n = 0 u = (0, 0), ∂p(x,y)

∂n = 0 u = (0, 0), ∂p(x,y)
∂n = 0

Wall u = (0, 0), ∂p(x,y)
∂n = 0 u = (0, 0), ∂p(x,y)

∂n = 0 u = (0, 0), ∂p(x,y)
∂n = 0

Farfield u = (1, 0), ∂p(x,y)
∂n = 0 u = (0, 0), ∂p(x,y)

∂n = 0 u = (0, 0), ∂p(x,y)
∂n = 0

Outlet ∂u
∂n = 0, p(x, y) = 0 ∂u

∂n = 0, p(x, y) = 0 u = (0, 0), p(x, y) = 0

Periodic† u = (0, 0), ∂p(x,y)
∂n = 0 u = (0, 0), ∂p(x,y)

∂n = 0

Table 4.3: The summary of the Boundary conditions of the open cavity simulation with Open-
FOAM, Periodic† is special for the spanwise periodic open cavity case with the base flow from the
spanwise extent of the 2D base flow.

Figure 4.1: Two-dimensional open cavity mesh.

conditions (BCs) of OpenFOAM runs used in the DNS, linear instability simulation and
sensitivity simulations are shown in table 4.3.

Figure 4.2 shows the time evolution of the residual of kinetic energy from DNS of
the two-dimensional open cavity at ReD = 1400, the constant of slope corrsponds to the
damping rate of the least stable stationary mode λ = 0.0179, where ∆E = E(t)−E0, E0

is the convergence value of kinetic energy. The value is good agreement with the spectrum
which getting from matrix-forming method by Vicente[33].

The recovered eigenvalues calculated by residual algorithm[111, 114] with three differ-
ent solvers can be seen in Table 4.4.

Figure 4.3 shows the corresponding eigenfunctions of these least stable eigenvalues.
At Re = 1400, we can see in the Figure 4.3, the least stable mode is stationary. The
direct and adjoint velocity fields are confined inside of the cavity. It is postulated that
the instability properties in this flow condition are related to the recirculated region inside
cavity. Brès and Colonius [19] have investigated the subcritical condition Re = 1500 for
two-dimensional open cavity flow and point out the shear layer mode damps fast, the oscil-
lation frequency can only be measured at early times which prove the stationary instability
mode are more aggressive. The sensitivity result is considered in the good agreement with
the reference observations, as shown in the Figure 4.5(a). Figure 4.4 displays the direct and
adjoint eigenfunction corresponding to shear layer mode at Re=1900. The wave-shedding
in the downstream of the cavity has been observed in the direct obtained global mode,
while the series of wake shedding instability obtained in the upstream of the cavity of the
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Figure 4.2: The time evolution of kinetic energy residual of the two-dimensional open cavity at
Re=1400 by direct numerical simulation.

adjoint case. This is different from the previous cast Re=1400. The structural sensitivity
is visualized in figure 4.5(b), a clearly shear layer instability has been revealed, which is
consistent with the literature.

Runs
Re = 1400 Re = 1900
λr + i · λi λr + i · λi

DNS −0.0179 + i · 0.000 −0.0123 + i · 0.5001

Linear instability −0.0175 + i · 0.000 −0.0124 + i · 0.5001

Adjoint linear instability 0.0182 + i · 0.000 0.0124 + i · 0.5002

Table 4.4: The eigenvalues of the least stable mode get by residual algorithm for two-dimensional
open cavity flow at Re = 1400 and Re = 1900 with direct numerical simulation (icoFoam), linear
instability analysis (dirIcoFoam) and adjoint linear instability analysis (adjIcoFoam).

4.1.2 Spanwise periodic open cavity flow

A open cavity flow homogeneous in the spanwise direction is simulated in this work using
the three-dimensional linearized and adjoint Navier-Stokes equations. The base flow is
composed by two-dimensional steady base flow and a Fourier expansion in the homoge-
neous direction. To determine the least-damped eigenvalue, the residual algorithm and
L2 fitting routines is applied to the velocity history. The flow conditions and cavity con-
figuration are controlled by: cavity length and depth ratio L/D, spanwise extent Λ, the
Reynolds number based on the cavity depth Re = UD/ν and the Reynolds number based
on the boundary layer displacement thickness Reδ∗ = Uδ∗/ν at the leading lip of cavity.
In order to keep the laminar flow when it reaches the cavity, the upstream length of cavity
is limited by Reδ∗ , which needs to be smaller than critical Reynolds number Reδ∗crit ≈ 520
[105]. Also downstream, after the cavity, Reδ∗ should also keep less than Reδ∗crit in order
to avoid Tollmien-Schlichting waves. All the parameters are sketched in the Figure 4.6(a),
and the values of the flow parameters are listed in table 4.5.

The mesh convergence is the one of the most critical parts for the accurate computation.
In this work a resolution of 171×45×15 grids for the upper domain of cavity and 54×53×15
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(a) û (b) v̂

(c) û∗ (d) v̂∗

Figure 4.3: The real part of direct eigenmode û, v̂ and the real part of adjoint eigenmode û∗, v̂∗

of the open cavity at Re = 1400.

(a) û (b) v̂

(c) û∗ (d) v̂∗

Figure 4.4: The real part of direct eigenmode û, v̂ and the real part of adjoint eigenmode û∗, v̂∗

of the open cavity at Re = 1900.

L/D Λ/D Re L/θ δ∗ Reδ∗

2 1.1 1400 51.9488 0.0997 139.59

Table 4.5: Parameters of the open cavity.
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(a) δλ(x, y) (b) δλ(x, y)

Figure 4.5: The sensitivity functions δλ(x, y) of the two-dimensional open cavity at Re = 1400
and Re = 1900.

degrees of freedom for the cavity domain were considered. Mesh stretching, applied in the
wall-normal direction, accumulates the grids near the shear layer in order to reproduce
the physical properties as precise as possible.

Five types of the boundary conditions are employed for the direct and adjoint sim-
ulations, as summary in the table 4.3. In the adjoint instability case, the size of the
computation domain must be a sufficient large as Barkley et al. [10] explained, the per-
turbations reaches the outlet boundary with non-negligible amplitude will wash the whole
computational domain.

We used the icoFoam solver to calculate the two dimensional base flow. For the two
dimensional open cavity flow, the shear layer mode is the most important phenomena,
and it has been validated by comparing the shear layer spreading rate dδω/dx, where
δω = U/(dU/dy)max[101] along the shear layer of the cavity, Sarohia [104] found that
the spreading was approximately linear, as L/θ increased from 52.5 to 105.2, dδω/dx
increase from 0.025 to 0.088. In this simulation the value of spreading rate is 0.0482 at
L/θ = 51.948, which is close to the one found by Rowley et al. [101].

Three dimensional instability results are shown in Table 4.6, the growth/damping rate
λr, frequency λi and Strouhal number St = λiD/2πU are in good agreement with the
previous work from Brès and Colonius [19].

Figure 4.6(b) shows the modulus of the velocity |û| of the direct mode at Re = 1400. It
corresponds to the unstable configuration because of the positive growth rate. The direct
mode rotates around the primary vortex in the cavity. The three-dimensional instability
is a centrifugal instability(e.g. Brès and Colonius [19]) which depends on the recirculating
region in the rear part of cavity.

The adjoint mode |v̂| shows the region of maximum receptivity to momentum forcing
in open cavity flow, as seen in Figure 4.6(c). Note that the adjoint mode, near the
upstream lip, is not negligible. The spatial distribution of the product between the direct
mode and the adjoint mode δλ(x, y, z) is displayed in Figure 4.6(d). the results show that
”wavemaker” (e.g. Giannetti and Luchini [50]) of the instability is located inside of the
cavity.
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Runs St λr λi

DNS
Brès and Colonius [18] 0.025 - -

icoFoam 0.02440 - -

Linear instability
Brès and Colonius [18] 0.025 - -

dirIcoFoam 0.02548 0.0076 0.1601

Adjoint linear instability adjIcoFoam 0.02561 -0.0076 0.1609

Table 4.6: Comparison of leading mode of 3D instability results from the open cavity by residual
algorithm.

(a) cavity configuration (b) |û|

(c) |v̂| (d) δλ(x, y, z)

Figure 4.6: Normalized module of the |û| direct eigenmode |v̂| adjoint eigenmode and sensitivity
function δλ(x, y, z) of the open cavity at Re = 1400. Translucid isosurfaces represent a normalized
value of 0.2 ans solid isosurfaces indicate a value 0.5.

4.2 Validation in Nek5000

4.2.1 Two-dimensional lid-driven cavity validation

The lid-driven cavity problem is one of the most important benchmarks for numerical
Navier-Stokes solvers. The base flow results of the 2D square lid-driven cavity atRe = 2000
have served as validation case; a grid convergence analysis has been compared with the
benchmark data created by Albensoeder and Kuhlmann [2] and the transient solver qual-
ity have tested comparing the damping ratio using the residual algorithm described in
Theofilis [112].

33



4. Validations

Method AR Nx Ny vmin x vmax x umin y

SEM 1 : 1 240 240 −0.5262 0.9100 0.3762 0.1580 −0.3879 0.1717

SEM 1 : 1 96 96 −0.5270 0.9100 0.3769 0.1580 −0.3884 0.1717

SCM† 1 : 1 96 96 −0.5270 0.9092 0.3769 0.1578 −0.3885 0.1717

Table 4.7: Comparison of the values of the minimum u(0.5, y), v(x, 0.5) and maximum v(x, 0.5)
as well as the position with different resolutions at Re = 1000 in the lid-driven cavity. † represents
the spectral results from Albensoeder and Kuhlmann [2].

Mesh elements× N2 vmin x vmax x umin y

M1 144× 52 -0.5501 0.9300 0.4132 0.1200 -0.4193 0.1200

M2 144× 72 -0.5548 0.9340 0.4140 0.1200 -0.4201 0.1200

M3 144× 92 -0.5558 0.9360 0.4140 0.1200 -0.4201 0.1200

Table 4.8: Comparison of the values of the minimum u(0.5, y), v(x, 0.5) and maximum v(x, 0.5)
as well as the position with different resolutions at Re = 2000 in the lid-driven cavity.

Base flow

Table 4.7 and table 4.8 show the grid convergence results from the spectral element
method: Nek5000[44], the comparison with the research from Albensoeder and Kuhlmann
[2] are included. As the resolution is increased, the maximum and minimum velocity
components in the center line in the lid-driven cavity are in good agreement with the
benchmark date. As shown in figure4.7(a), 12 elements are fixed in the region of [0,1]
in x and y direction, respectively, the refined mesh is used near the wall and the inflow
direction parallel to x direction and from 0 to 1. The velocity components (u, v) are plot
in figure 4.8, the contour plots are in good agreement with the previous researches.

The base flow is calculated by time-marching until the residual satisfies a pre-determined
convergence criterion. Residual algorithm [114, 119] is performed on the time history of
streamwise velocity in the center of the lid-driven cavity. Figure 4.7(b) shows the damping
rate of leading stable global mode. After the initial transient phrase, the numerical solu-
tion is governed by a stationary damping mode until convergence attained. The damping
rate of this stable mode is calculated λr ∼ −0.068.

Linear instability analysis results

In the analysis, a random linear perturbation superimposed upon the base flow used
as initial condition, the total integration time τ = 0.3, 10 eigenvalues have been computed
with an initial Krylov basis of dimension 40; the convergence criterion for the Arnoldi
iterations is based on a tolerance of 10−6.

Table 4.9 shows the eigenvalues obtained from current analysis, as well as the eignvalues
calculated from different methodologies are listed. All the results are in good agreement.
The analysis result confirm the stable flow which comprises both stationary and traveling
decaying modes. Additionally, the comparison of the spectrum of eigenvalues from matrix-
forming and time-stepping are compared in Figure 4.9. The results indicate that the most
leading eigenmodes are in good agreement with matrix-forming results.

Figure 4.10(a) and (b) present the two components of the leading global mode, which
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Figure 4.7: (a) Lid-driven cavity mesh based on the spectral element method. (b) Temporal
evolution of the velocity residual of the 2D lid-driven cavity at Re = 1000.

(a) u(x,y) (b) v(x,y)

Figure 4.8: The steady state stable base flow of lid-driven cavity at Re = 2000.

Mode I Mode II
λr λi λr λi

Current -0.03170 0 0.98160 ±0.06627

EVP† -0.03170 0 0.99662 ±0.06675

TS∗ -0.03175 0 0.96110 ±0.06457

RA∗ -0.03170 0 0.95878 ±0.05998

Table 4.9: Damping rate and frequency of the leading stationary eigenmode and a traveling
eigenmode obtained by solution of the global instability eigenvalue problem at Re = 2000.† refers
to the private communication with J.M. Pérez, ∗ is the results from Gómez et al. [53]
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Figure 4.9: The comparison of the spectrum of two-dimensional lid-driven cavity at Re=2000
calculated by matrix-forming method (EVP, •) and current method matrix-free method (TS, �).
The matrix-forming results refers to the private communication with J.M. Pérez.

corresponding eigenvalue Mode I in table 4.9, the results are in good agreement with
previous from Gómez et al. [53]. Figure 4.10(c) and (d) are flow field of Mode II in table
4.9.
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(a) û(x, y) (b) v̂(x, y)

(c) û(x, y) (d) v̂(x, y)

Figure 4.10: Eigenmodes of the two-dimensional regularized lid-driven cavity ( LCD) obtained
using time-stepping method at Re=2000. The solid iso-lines (−) represent positive eigenmodes
and the dash iso-line (−−) label negative eigenmodes. 10 contour-level of the iso-lines are plotted
for the values û(x, y) = [−1, 1] and v̂(x, y) = [−0.7, 0.65], both û(x, y) and v̂(x, y) normalized by
maximum value of û(x, y).
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Figure 4.11: Schematic description of the 2D cylinder.

4.2.2 Two-dimension flow over cylinder

Base flow

A cylinder with diameter D = 1 in a uniform inflow of velocity U∞ = 1 is proposed as a
validation of open flow. The flow quantities are governed by incompressible viscous Navier-
Stokes equations, Re = U∞D/ν depended on the diameter of cylinder. The geometry is
defined in a Cartesian coordinate system with the original of coordinate (0, 0) is in the
center of cylinder, the geometry, the frame of reference and the notation adopted in this
work are all plotted in figure 4.11. A no-slip boundary condition U = (u, v) = (0, 0)
is apply on Dw, Dirichlet boundary conditions U = (u, v) = (1, 0) on Din, Neumann
boundary condition ∂u/∂x = 0 on Dout, and periodic boundary conditions on Dp.

The numerical procedure described in the preceding section is used to evaluate the
steady flow and to carry out the stability analysis. Depend on the grid independent
results, simulations of cylinder are performed on the domain [−15 : 35] × [−15 : 15] with
34 , 65 elements in the x and y direction respectively, the polynomial order of Guass
Lobatto equations is 7, which means in every element has 8× 8 points.

The cylinder flow is known to become unstable at a critical Reynolds number Rec ≈
46.7 [35, 37, 49, 65, 106] by computation and Rec ≈ 47 in the experiments [81, 92, 121].

Figure 4.13 visualizes the spatial variations of u and v as Re increases. A symmetric
flow structure can be observed in steady stable state at Re=40 in figure 4.13(a) and (b).
When increasing Re=50 above the threshold Re=47, a strong wake shedding occurs after
the cylinder, both flow fields lose the symmetry, as shown in figure 4.13(c) and (d). When
Re=100, a higher-frequency oscillation appears, with a unstable state in figure 4.13(e) and
(f). Steady unstable solution of flow over a cylinder at Re=100 are shown in figure 4.13(g)
and (h), which is considered as the base flow of linear analysis.
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(a) (b)

Figure 4.12: (a) mesh of the cylinder; (b) mesh detail near the cylinder .
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(a) u(x, y) (b) v(x, y)

(c) u(x, y) (d) v(x, y)

(e) u(x, y) (f) v(x, y)

(g) ū(x, y) (h) v̄(x, y)

Figure 4.13: The snapshot of the time-periodic solution of (a) u(x, y) and (b) v(x, y) at Re = 40;
The snapshot of the time-periodic solution of (c)u(x, y) and (d)v(x, y) at Re = 50; The snapshot
of the time-periodic solution of (e) u(x, y) and (f) v(x, y) at Re = 100; The steady unstable base
flow (g) u(x, y) (h) v(x, y) of Re = 100 from selective frequency damping method.
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Figure 4.14: (a) Amplification rate and (b) Strouhal number dependence on Re from the previous
research of Giannetti and Luchini [49], � represent the results from current research.

Linear instability analysis

The stability characteristics of the base flow are assessed by monitoring the behavior of
the most unstable mode in the linearized systems. Figure 4.14 shows the amplification rate
λr and the Strouhal number St = λi/2π of the leading global mode, where λi is the circular
frequency. According to current calculations, the eigenvalues of cylinder at Re = 40,
Re = 50 and Re = 100 are in good agreement with the numerical results of Giannetti
and Luchini [49], as shown in figure 4.14(a) and 4.14(b). In this time-stepping analysis,
Krylov subspace dimensions is m = 40 for calculating 10 eigenvalues, the tolerance of the
Arnoldi iteration is 10−6, while time integration varies as Re changes, time integration is
τ = 0.3 at Re = 40, τ = 0.4 at Re = 50, and τ = 1 at Re = 100. The leading eigenmode
is depicted in figure 4.15 of different Reynolds number by the real part of its velocity field,
the modes û(x, y) are antisymmetric, as the Reynolds number increased, the maximum
magnitude of unstable mode spatially towards to the cylinder.
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(a) û(x, y) (b) v̂(x, y)

(c) û(x, y) (d) v̂(x, y)

(e) û(x, y) (f) v̂(x, y)

Figure 4.15: (a), (b) The leading unstable eigenmode λ = −0.0291 + i · 0.7485 of cylinder at
Re = 40. (c), (d) The leading unstable eigenmode λ = 0.01611 + i · 0.7452 of cylinder at Re = 50.
(e), (f) The leading unstable eigenmode λ = 0.1253 + i · 0.7310 of cylinder at Re = 100
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Figure 4.16: Schematic description of the square open cavity.

Figure 4.17: Mesh information of the square open cavity.

4.2.3 Square open cavity with L:Λ:D=1:1:1

Base flow

Direct numerical simulation of the flow over a spanwise-periodic square open cavity
has been investigated. The computational geometry and the notation of boundary condi-
tion adopted in this work are all displayed in figure 4.16. The original of the Cartesian
reference system is located on the upstream of the cavity with x, y and z denoting the
streamwise, transverse (wall-normal) and spanwise directions. The cavity depth D = 1
as the characteristic length scale and the length to depth ratio is L/D = 1, the uniform
incoming velocity U∞ = (u, v) = (1, 0) as the reference velocity, the Reynolds number is
Re = U∞D/ν = 4140 which is larger than the critical Reynolds number of square open
cavity Recrit ≈ 1370 [27].

The mesh is generated by the spectral element method (genbox) that is part of the
Nek5000 package. The refined mesh is supplied in the boundary layer and near the wall in

43



4. Validations

(a) u(x, y) (b) v(x, y)

Figure 4.18: (a), (b) 2D steady unstable base flow of square open cavity (L : D : Λ = 1 : 1 : 1)
flow at Re = 4140.

Domain Elements

[−1.2,−0.4]× [0, 0.5] 10× 7

[−0.4, 0]× [0, 0.5] 12× 7

[0, 1]× [0, 0.5] 14× 7

[1, 1.75]× [0, 0.5] 13× 7

[1.75, 2.5]× [0, 0.5] 10× 7

Table 4.10: Mesh details of the 2D square open cavity.

order to make sure accurately spatial analog, as shown in figure 4.17. 14×14 elements are
set in the square cavity. The length of first elements which attaches the wall and shear
layer are fixed to 0.015, it is approximate to the displacement thickness δ∗ = 0.0169 of the
boundary layer. 5 domains are defined outside of the cavity.

The mesh information are documented in table 4.10. It is noteworthy that because
of the change of boundary condition in the upstream and downstream of the cavity, the
refined mesh are needed near the intersection.

To ease comparison, the computational domain is the same to Citro et al. [27], as well
as the same boundary conditions in Sipp and Lebedev [107], Barbagallo et al. [9] and
Citro et al. [27]: The Dirichlet boundary conditions at the inflow Din and the stress-free
conditions at the outlet Dout, symmetric condition (i.e. ∂yu = 0 and v = 0) are imposed at
the free-stream upper boundary of the computational domain Df and no-slip conditions
(U = 0) at the solid walls Dw, Note that a slip condition (i.e. ∂yu = 0 and v = 0) with
zero tangential stress is used on the walls close to the upstream Dfs and downstream Dfs.
See in figure 4.16.

The steady base flow of the 2D square open cavity at Re = 4140 is calculated from
steady version incompressible Navier-Stokes equations by the selective frequency damping
method[1], the process is continued until the L2-norm of the residual of the governing
equations becomes smaller than 10−12.

Figure 4.18 presents the two components of steady unstable base flow. This base flow
is resemble to the flow over lid-driven cavity.

Linear instability analysis

BiGlobal Stability analysis is carried out on the two-dimensional steady unstable base
flow with a third homogeneous direction, the periodic spanwise wavelength is Λ=0.285.
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Figure 4.19: Comparison of eigenvalue spectrum of square open cavity at Re = 4140 and β = 22
from current results (�) and results from Citro et al. [27] (•).

Mode λr ± λi
I 0.2380 ±i· 0.0000

II 0.2243 ±i· 0.3005

III 0.1811 ±i· 0.6036

IV 0.1176 ±i· 0.9134

Table 4.11: Unstable eigenvalues of the square open cavity at Re = 4140 and β = 22.

Seven unstable global modes are obtained using time-stepping method. The growth rate
and frequency of these unstable modes are compared with the results of Citro et al. [27], as
shown in figure 4.19, they are in good agreement. Table 4.11 presents the value of growth
rate and frequency. It is obviously to know the most unstable mode is steady, while the
others have low frequencies.

By review perturbation flow field, it is clear that the external flow play little role of the
three-dimensional instability in this square open cavity geometry. The velocity perturba-
tions are most evident insider of the cavity, with a tail in the shear region just around and
above the downstream, see in the figure 4.28. This three-dimensional instability, named
centrifugal instability, is related to the primary vortex inside cavity. It is quit similar to
the instability property of lid-driven cavity flow [107? ? ? ? ? ].
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(a) |û(x, y, z)| (b) |û(x, y, z)|

(c) |û(x, y, z)| (d) |û(x, y, z)|

Figure 4.20: Contour plots of the direct modes: (a) mode I: 0.2380 + i · 0.000, (b)mode II
:0.2243 + i · 0.3005, (c) mode III: 0.1811 + i · 0.6036, (d) mode IV: 0.1176 + i · 0.9134.
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(a) û(x, y, z) (b) v̂(x, y, z) (c) ŵ(x, y, z)

(d) û(x, y, z) (e) v̂(x, y, z) (f) ŵ(x, y, z)

(g) û(x, y, z) (h) v̂(x, y, z) (i) ŵ(x, y, z)

(j) û(x, y, z) (k) v̂(x, y, z) (l) ŵ(x, y, z)

Figure 4.21: Real part of the eigenfunction velocity field of the spanwise periodic square open
cavity at Re = 4140. Eigenfunctions normalized max(û). (a)-(c)mode I: 0.2380 + i · 0.000; (d)-
(f)mode II :0.2243 + i · 0.3005; (g)-(i)mode III: 0.1811 + i · 0.6036; (g)-(i)mode IV: 0.1176 + i ·
0.9134.The iso-surface level are: v̂(x, y, z), v̂(x, y, z), ŵ(x, y, z) = ±0.15.
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(a) p (b) ωz

(c) p (d) ωz

Figure 4.22: The instantaneous numerical schilieren of (a) p = ±0.4 and (b) ωz = ±8 from DNS.
The steady state of (c) p = ±0.04 and (b) vorticity contours ωz = ±5 using SFD.

4.2.4 Spanwise Periodic Open Cavity L:Λ:D= 6:2:1

Base flow

The spanwise periodic three-dimensional open cavity of the aspect ration L/D =
6, Λ/D = 2 is studied here, which Λ is the spanwise wavelength of homogeneous di-
rection. DNS is performed on two-dimensional open cavity L/D=6 at Re=1000. The
flow has been proven to be unstable by reviewing the study of Sun et al. [110], the crit-
ical Reynolds number of this kind of open cavity flow has been reveal in the range of
700 < Recr < 800. The selective frequency damping method[1] (SFD) are used to get the
steady unstable base flow

Figure 4.22 illustrates the pressure and vorticity contours from DNS and SFD. Initially,
the shear layer instability is observed in the unstable results, as shown in figure 4.22(b),
the vortex with the longitude about 2L/5 rolls up in the rear part of the cavity, the
contour plot levels are ±0.4, that is 10 times of the steady-state case, the recirculation
zone inside of the cavity break up into several vortices because of the interrelationship. In
the figure 4.22(d), the shear layer keeps horizontal along the cavity, a large recirculation
zone preserves over the extent of the cavity, the contour levels of vorticity are ±0.04, even
the shear layer vortex and primary vortex have a opposite sign, both are too weak to
interfere each other.

Linear Instability Analysis

Linear instability analysis is carried on the obtained steady unstable two-dimensional
base flow imposing a homogeneous spanwise wavenumber β = π, the parameters em-
ployed in the time-stepping method are chosen: Krylov subspace dimension m = 20, time
integration τ = 2, 0.48 and the tolerance of the Arnoldi iteration 10−6.

The first three unsteady modes acquired, as shown in the table 4.12. The first and
secondary unstable mode are related to the Rossiter mode II (∼ 1.0) and Rossiter mode
III (∼ 1.5), The Strouhal number of the third mode is the typical centrifugal instability
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Parameters τ = 2 τ = 0.48

Mode λr ± i · λi λr ± i · λi
1 0.0850± i · 1.0537 0.0850± i · 1.0537

2 0.0798± i · 1.5313 0.0798± i · 1.5313

3 0.0320± i · 0.2427 0.0320± i · 0.2427

Table 4.12: The first three leading unstable eigenvalues of the spanwise periodic open cavity at
the Re = 1000.

Figure 4.23: Spectrum of spenwise periodic open cavity L:Λ:D=6:2:1 at Re = 1000.

frequency (0.02 ∼ 0.03).
In figure 4.24, spatial structure of the three unstable eigenfunctions are summarized.

The Mode 1 and Mode 2 corresponds Rossiter mode II and Rossiter III, respectively, both
unstable mode exhibit two-dimensionality property, without spanwise distribution. Mode
3 is three-dimensional centrifugal mode, the eigenfunction locates inside of the cavity. This
global mode associates with the recirculation region in the rear part of the cavity.
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(a) û(x, y, z) (b) v̂(x, y, z)

(c) û(x, y, z) (d) v̂(x, y, z)

(e) û(x, y, z) (f) v̂(x, y, z) (g) ŵ(x, y, z)

Figure 4.24: Real part of the eigenfunctions velocity field of the 3D cavity at Re = 1000,
eigenfunctions normalized with max(û).

50



4.2. Validation in Nek5000

Figure 4.25: Geometrical description of the problem and main flow features from Gómez et al.
[54]

4.2.5 Three-dimensional lid-driven cavity validation

Base flow

The instability of the three-dimensional lid-driven cubic cavity has received some sig-
nificant advances, Giannetti et al. [51] found that a stationary mode becomes unstable
just above Re ∼ 2000 by means of the first TriGlobal linear stability analysis applied to
this kind of flows. Late, Liberzon et al. [75] refined the prediction of Giannetti et al. [51]
and experimentally and numerically found that the flow becomes oscillatory at Re < 1970
and a steady-unsteady transition occurs in the range 1700 < Re < 1970.

As summarized by Gómez et al. [54]: the flow structure of three-dimensional lid-
driven cavity are far more complicated compare to the two-dimensional flow. The most
importrant three-dimensional flow features are the Taylor-Görtler like (TGL) vortices and
corner eddies or end-wall vortices (EWV) in the flow field, primary eddy (PE), downstream
secondary eddy (DSE), upstream secondary eddy (USE) and upstream upper eddy (UUE),
as shown in figure 4.25.

The objective of this section is to validate the complex three-dimensional flow. From
DNS results, the three-dimensional base flow is obtained accurately by comparing to pre-
vious researches. Table 4.13 assembles the minimum and maximum velocity u, v on the
centerlines of the current research and the references values from previous studies. As the
resolutions increased, the discrepancies between current research and the reference solu-
tion are smaller, for the mesh 96× 96× 96, it is sufficient to capture the base flow. Figure
4.26 shows comparisons of normal velocities at the centerlines of the cubic lid-driven cavity
at Re = 1000, calculated on mesh 96× 96× 96, against reference values.

Linear instability analysis results

Validation of the present three-dimensional global instability analysis algorithm has
been provided by comparison against reference works, starting with those of Giannetti
et al. [51] and Gómez et al. [54]. 10 eigenvalues are obtained using times-stepping method
with m = 40 dimensional Krylov subspace, time integration τ = 0.6. Table 4.14 demon-
strates the comparison between the reference eigenvalues of Gómez et al. [54] and the
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Method AR Nx Ny Nz vmin x vmax x umin y

SCM† 1 : 1 : 1 96 96 96 −0.4350 0.9096 0.2466 0.1091 −0.2803 0.1242

FVM∗ 1 : 1 : 1 144 144 144 −0.4333 0.9076 0.2456 0.1073 −0.2792 0.1235

SEM 1 : 1 : 1 96 96 96 −0.4350 0.9096 0.2466 0.1090 −0.2803 0.1244

SEM 1 : 1 : 1 64 64 64 −0.4348 0.9104 0.2466 0.1104 −0.2800 0.1296

Table 4.13: Comparison results of the minimum and maximum velocities on the centerlines
v(x, 0.5, 0.5) and u(0.5, y, 0.5) of the cubic lid-driven cavity at Re = 1000. SCM† spectral results
from Albensoeder and Kuhlmann [2] and FVM∗ finite volume method results from Gómez et al.
[54], SEM represent current results from spectral element method.
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Figure 4.26: Normal velocity on the centerlines (0.5, y, 0.5) and (x, 0.5, 0.5) in the cubic cavity
for L : W : D = 1 : 1 : 1 using a resolution Nx × Ny × Nz = 96 × 96 × 96 at Re = 1000. The
symbol (�) represents the results of Albensoeder and Kuhlmann [2].
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Mode I Mode II Mode III
λr ± i · λi λr ± i · λi λr ± i · λi

Current results −0.1353± i · 0.299 −0.1304± i · 0.488 −0.1372± i · 0.000

Gómez et al. [54] −0.1360± i · 0.285 −0.1348± i · 0.485 −0.1382± i · 0.000

F. Giannetti et al.[51] −0.1356± i · 0.284 −0.1377± i · 0.457 −0.1453± i · 0.000

Table 4.14: Comparison of the three eigenvalues of the lid-driven cavity at Re = 1000.
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Figure 4.27: Spectrum of cubic lid-driven cavity at Re = 1000 calculated by Giannetti et al.
[51](GLM, ×) and Gómez et al. [54](FVM, •) and current method (SCM,�)

present results, also the comparison can be checked in figure 4.27, an overall good agree-
ment between the location of the eigenvalues can be seen, while the differences can be
explained by the different numerical methods employed. Figure 4.28 shows the eigenfunc-
tions corresponding of two traveling modes λ1 = −0.1353+i·0.299, λ2 = −0.1304+i·0.488
and one stationary mode λ3 = −0.1372+ i ·0.000. At this Reynolds number, it is observed
that the two traveling eigenvalues are related to the corresponding modes of the two di-
mensional flow, properly affected by the presence of the wall and thus the above-mentioned
EWV structure, however, the existence of different n-cell symmetric and asymmetric fam-
ilies of linear modes with TGL structure may be inferred from the third mode.
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(a) û(x, y, z) (b) v̂(x, y, z) (c) ŵ(x, y, z)

(d) û(x, y, z) (e) v̂(x, y, z) (f) ŵ(x, y, z)

(g) û(x, y, z) (h) v̂(x, y, z) (i) ŵ(x, y, z)

Figure 4.28: (a)-(c)mode I: −0.1353+i·0.299 û(x, y, z) = ±0.6,v̂(x, y, z) = ±0.8,ŵ(x, y, z) = ±0.8
(d)-(f)mode II :−0.1304 + i · 0.488û(x, y, z) = ±0.6,v̂(x, y, z) = ±0.6,ŵ(x, y, z) = ±1 (g)(i)mode
III: −0.1372 + i · 0.000,v̂(x, y, z) = ±0.8,v̂(x, y, z) = ±0.8,ŵ(x, y, z) = ±1
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Chapter 5

Three-dimensional wall-bounded open cavity flow

In the previous chapter, the numerical methods have been validation by the cases of two-
dimensional and three-dimensional open flow. In this chapter, direct numerical simulations
(DNS) have been performed at different Reynolds numbers to study the flow over three-
dimensional open cavity with lateral walls. Flow topology variations are presented. The
numerical results are validated with the experiment results [31]. The characteristics of
both direct and adjoint perturbation modes are studied and the regions of the structural
sensitive to momentum forcing and mass injection are identified.

5.1 Model description and parameters

Numerical simulations have been performed to study the flow on a wall-bounded three-
dimensional open cavity with geometrical ratio L:W:D=6:2:1, where L, W and D are the
length, width and depth of the cavity respectively. The origin Cartesian coordinate (0, 0, 0)
are fixed in the corner of the upstream of the cavity, x, y, z are the direction of streamwise,
transverse, spanwise, respectively.

DNS and instability analysis have been carried out over the results whilst increasing
Reynolds number, defined as:

Re =
DU

ν
(5.1)

where U is the freestream velocity and ν represents the dynamic viscosity.

Moreover, the incoming flow is laminar. Blasius velocity profile is implemented at
the inlet boundary condition, in which subscripts 1 and 0 represents the position at the
beginning of computational domain and at the upstream lip of the cavity, respectively.
Reynolds number depending on the boundary layer displace thickness δ∗ is defined as
Reδ∗ = δ∗∗U

ν , the boundary layer momentum thickness is labeled as θ, and the Reynolds

number depending on the boundary layer displace thickness θ is defined as Reθ = θ∗U
ν .

Figure 5.1 shows the model and the parameters defined in the simulations. The nu-
merical values employed for all these parameters are listed in table 5.1.

5.2 Boundary conditions and initial conditions

Because of the mesh employed was created using the Nek5000 utility genbox, it was com-
posed by two sets of spectral element grids: velocity u are discretized on the Chebyshev
Gauss Lobatto (CGL) grids, while pressure p is resolved on the Chebyshev Gauss (CG)
grids. This is called staggered grid technique (See in Appendix B), and it removes the
need for pressure boundary conditions.

Figure 5.1 provide the boundaries defining the computational region, there are five
different kinds of boundaries defining the computational domain in DNS:
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Figure 5.1: Computational configuration of full 3D open cavity

Re θ0 Reθ0 Reδ∗0 θ1

900 0.0313 28.341 73.007 0.057

950 0.0305 29.117 75.008 0.056

1000 0.0297 29.874 76.957 0.054

1050 0.0290 30.612 78.857 0.053

1100 0.0285 31.332 80.731 0.052

Table 5.1: Parameters characterizing the inflow Blasius boundary layer of the three-dimensional
open cavity with geometric ratio L:W :D=6:2:1.
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• Inlet Din:
u = (ublasius, vblasius, 0) (5.2)

• Wall Dw:
u = (0, 0, 0) (5.3)

• Farfield Df

u = U = 1,
∂v

∂y
= 0 (5.4)

• Outlet Dout

(p− 1

Re
∇u) · n = 0 (5.5)

• Sides of the computational domain Dfs

u · n = 0; (∇u · t) · n = 0 (5.6)

While the perturbation boundary condition in linear stability analysis is defined as fol-
lowing:

• Inlet Din:
u = (0, 0, 0) (5.7)

• Wall Dw:
u = (0, 0, 0) (5.8)

• Farfield Df

u = 0,
∂v

∂y
= 0 (5.9)

• Outlet Dout

(p− 1

Re
∇u) · n = 0 (5.10)

• Sides of the computational domain Dfs

u · n = 0; (∇u · t) · n = 0 (5.11)

5.2.1 Domain and grid validations

It is critical importance that results of the open flow be independent of the size of the
computational domain and the boundary treatment. Colonius et al. [29] has studied
boundary conditions for the direct computation, it shows that if the boundary is treated
improperly, the physical instability will be difficult to identify with the spurious reflections
of waves, which leads to self-forcing of the flow, also the improper domain size will destroy
flow structure inside the cavity. So before the parameters studies, domain validation
analysis needs to be performed, the corresponding relative percentage error is introduced
to quantify the discrepancy between each computational domain, it is defined as below:

εj = |uj − ure
ure

| × 100, (5.12)
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Domain |u|max x ε(%) |w|max z ε(%)

Lz = 4D 0.248183 5.862 0.02136 0.014882 0.193 0.09385

Lz = 8D 0.248134 5.862 0.00161 0.014895 0.193 0.00671

Lz = 12D 0.248130 5.862 - 0.014896 0.193 -

Table 5.2: The maximum absolute value of |u|max at the location of (x,−0.5, 0.5) and |w|max at
the location of (5, -0.5, z) inside cavity at Re = 1000.
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Figure 5.2: (a) Comparison of the streamwise velocity u in x-y plane at z = 0.5 in three difference
spanning of computational domains at Re = 1000. (b) Comparison of the spanwise velocity w in y-
z plane at x = 5 in the different lateral computational domain sizes at Re = 1000. The streamwise
velocity of Lz = 4D, Lz = 8D and Lz = 12D are plotted by − •, �, respectively.

where ure yields any field value discretized on the largest domain size.

We have run the three-dimensional cavity case with three different computational
domain size Lz=4D, 8D, 12D and Ly=3D, 5D and 7D. ure is any flow variable probed
from the largest domain size Lz = 12D and Ly = 7D.

Table 5.2 shows the relative percentage errors of three difference spanning of compu-
tational domains. The relative errors show that the result of the flow field is independent
of the computational domain size since Lz = 4, the streamwise velocity from domain size
Lz = 4 are consistent with the other larger domains Lz = 8 and Lz = 12, it is enough to
accurately simulate the cuboid cavity flow. Further, spatial visualization of the velocity
component u in x− y plane at z = 0.5 and w in y − z plane at x = 5 are shown in figure
5.2. The discretized velocity components are in good agreements along three different
spanning of computational domains. Considering the cost of the computational, Lz = 4
is chosen as the side domain size.

The evaluations of the height of computational domain Ly have been carried out
through review of previous studies. In the work of Citro et al. [26], simulations were
performed on an open cavity with a length to depth ratio L/D=1. The computational do-
main height is Ly=0.5D, and the initial boundary layer thickness displacement δ∗ = 0.0169
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Height u(L/2, 0,W/2) ε(%)

Ly = 3D -0.0828 1.222

Ly = 5D -0.0820 0.244

Ly = 8D -0.0818 -

Table 5.3: Comparison of the streamwise velocity u(x, y) with three different height domain in
the probe point (x = L/2, y = 0, z = W/2) of the cavity.

Domain [x]× [y]× [z] Elements

[−1, 0]× [0, 5]× [−4, 0] 4× 12× 8

[−1, 0]× [0, 5]× [0, 2] 4× 12× 8

[−1, 0]× [0, 5]× [2, 6] 4× 12× 8

[0, 6]× [0, 5]× [−4, 0] 16× 12× 8

[0, 6]× [0, 5]× [0, 2] 16× 12× 8

[0, 6]× [0, 5]× [2, 6] 16× 12× 8

[6, 12.2]× [0, 5]× [−4, 0] 11× 12× 8

[6, 12.2]× [0, 5]× [0, 2] 11× 12× 8

[6, 12.2]× [0, 5]× [2, 6] 11× 12× 8

[0, 6]× [−1, 0]× [0, 2] 16× 6× 8

Table 5.4: Mesh details of the cuboid open cavity.

at the leading edge of the cavity. The ratio between Ly/δ
∗ = 0.5/0.0169 ∼ 30 was proved

as a sufficient domain size. It is worth to note the instabilities of this type flow are confined
in the cavity, centrifugal instability, it has a very little influence of the outside domain.

Following above reference, height validations are carried on Ly=3D, 5D and 7D with
the initial boundary layer thickness displacement δ∗=0.0734. The streamwise velocity u
at (3, 0, 1) are probed in these three different computational domain at Re = 1000, as
shown in table 5.3. The computational domain with Ly=5D is adequate to guarantee the
open flow simulation. Moreover, the effect of the height domain on instability analysis are
documented in section 5.7.

The mesh is generated by the spectral element method (genbox) that is part of the
Nek5000 package, the refined mesh is supplied in the boundary layer and near the wall
in order to make sure accurately spatial analog. The computational domain is split into
10 blocks. The shallow cavity is in the one block with 16× 6× 8 elements, the length of
first elements which attach the wall and shear layer are fixed to 0.16, it is approximate
to the twice of the displacement thickness δ∗0 = 0.086 of the boundary layer, the poly-
nomial order is tested in n = 5, 7, 9 with a constant element distribution. The details of
mesh information are documented in figure 5.3 and table 5.4. The validations of the grid
convergence are in figure 5.4, it is evident that the grid with polynomial order n = 5 is
low-fidelity to interpret the flow field, but the grid with polynomial order n = 7 is good
agreement with higher order n = 9, hence the mesh with polynomial order n = 7 is choice
for the sake of less computational cost.
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(a) x− z plane

(b) y − z plane (c) x− y plane

Figure 5.3: The grid detail for computation
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Figure 5.4: Validation of the time history of the streamwise velocity u(x, y, z) in the center of
the cavity (3, 0, 1) at Re = 1000 with three different polynomial orders.
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5.3 Tri-Global linear instability of three-dimensional open
cavity flow

The flow over the three-dimensional cavity is analyzed here with an increasing of Reynolds
number. Our interest is to highlight the variation of the flow topology and instability
characteristics as the flow conditions transit from subcritical to supercritical condition.
According to the previous studies [77], the critical Reynolds number of this kind of flow
with cavity aspect ratio L:W :D=6:2:1 is revealed at these conditions: 1100 < Recr < 1150,
this condition is higher than 2D and 3D open cavity with the same length to depth ratio.
In the study of Sun et al. [110], they pointed the stability diagram of the 2D open cavity
flow for L/D=6, the critical Reynolds number is around Recr ∼ 790 at low Mach number.

A more complex flow structure and unsteadiness comes with a higher Reynolds number.
In order to thorough understand the instability properties, subcritical flow conditions
(Re = 900, Re = 950, Re = 1000 and Re = 1050) are considered here using DNS and
TriGlobal linear instability analysis.

5.3.1 Case 1: Re = 900

Base Flow

The DNS is carried out on incompressible flow over the cavity at Re = 900. The
simulation is initialized by a Blasius velocity profile above the cavity, flow undergoes a
transition phrase and becomes steady gradually, and ultimately convergences to a steady
state.

Figure 5.5 shows the time-history of the streamwise velocity u(3, 0, 1). The other two
components of the velocity have the similar behavior as streamwise velocity. Intuitively,
the amplitude of the velocity oscillation decrease considerably, steamwise velocity u(x, y, z)
converges to a constant value ultimately.

Time evolution of kinetic energy E residual is calculated by the equation (3.6). The
kinetic energy E is defined as

E =
N∑

(
1

2
(u2 + v2 + w2)), (5.13)

where N is the discretization points of the computational domain.
Figure 5.6 shows the convergence history of kinetic energy. The numerical residuals

is identified as being the stationary least damped perturbation. After a short initial
transient, exponential decay of residuals comes out, this decay purses at the same rate for
almost three decades. So the numerical solution is attracted by this steady large damping
rate disturbance.

A visualization of the base flow structures are presented in figure 5.7(a). Spanwise
velocity w(x, y, z) is shown with a isosurface levels are ±0.01. Antisymmetric structure
are identified with a mainly distribution located in the rear of the cavity. Figure 5.7(b)
plots the negative streamwise velocity (blue color) and the streamwise vorticity (grey
color). The negative streamwise velocity is relate to the recirculation zone in the cavity.
Except the rear vortex inside of cavity, a pair of edge vortices are generated along cav-
ity edge due to the small difference in pressure between the outside and inside of the cavity.
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5. Three-dimensional wall-bounded open cavity flow
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Figure 5.5: Time trace of streamwise velocity u(3, 0, 1) and the details of the signal for the cuboid
cavity at Re = 900.
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Figure 5.6: (a) Time evolution of kinetic energy residual of wall-bounded three-dimensional open
cavity at Re = 900. (b) Eigen-spectrum of obtained global modes at Re = 900.

(a) w(x, y, z) (b)

Figure 5.7: (b) Contour of the spanwise velocity w(x, y, z) of the cuboid cavity at Re = 900,
isosurface level are w(x, y, z) = ±0.01. (c) Grey isosurfaces are streamwise vorticity ωx = ±0.15,
the blue isosurfaces are negative streamwise velocity u(x, y, z).
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5.3. Tri-Global linear instability of three-dimensional open cavity flow

Mode λr ± i · λi
CS −0.0136± i · 0.0000

CT −0.0198± i · 0.0340

CT1 −0.0310± i · 0.0810

CT2 −0.0380± i · 0.0924

CT3 −0.0424± i · 0.1016

CT4 −0.0409± i · 0.0310

Table 5.5: The first six leading eigenvalues of the cuboid cavity at Re = 900.

Linear Instability Analysis

TriGlobal instability analysis has been employed in this obtained base flow. Krylov
subspace dimensions m = 60 is performed for convergence of the 11 eigenmodes, the
convergence criterion for the Arnoldi iteration is based on a tolerance of 10−6. From the
residual of the DNS results in figure 5.6, the most of kinetic energy contains in the steady
mode, the time integration τ = 0.8 make sure there is no aliasing phenomenon for the
instability analysis.

Table 5.5 lists the calculated leading eigenvalues. For convenience, they are denoted as:
centrifugal steady modes (CS), centrifugal traveling modes (CT) and centrifugal modes
CT1, CT2, CT3, CT4 by frequency. The least stable eigenmode at this flow condition is
the stationary eigenmode CS, with a largest damping ratio λcs = −0.0136. Here circular
frequency λi have been transferred using following equation,

f =
λi
2π
. (5.14)

Centrifugal traveling modes CT, CT1, CT2, CT3, CT4 have small frequencies f=0.005−
0.016.

Figure 5.8 shows the obtained global eigenvalues corresponding to the centrifugal
modes. The leading eigenmode is a steady global mode. The spatial structure of each
eigemode is visualized in figure 5.9. Spatial structures of three components of CS mode
reveal the antisymmetric property of this instability, which associates to the primary vor-
tices. Moreover, streamwise perturbation has a long tail along the downstream of the
cavity. From the observation, CT, CT2 and CT3 are also the antisymmetric modes.
Whereas, CT1 and CT4 are symmetric eigenmodes. All the global modes are confined
inside cavity with various structures
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