
sensors

Article

Towards Continuous Camera-Based Respiration Monitoring
in Infants

Ilde Lorato 1,* , Sander Stuijk 1 , Mohammed Meftah 2, Deedee Kommers 3,4, Peter Andriessen 3,4,
Carola van Pul 4,5 and Gerard de Haan 1

����������
�������

Citation: Lorato, I.; Stuijk, S.; Meftah,

M.; Kommers, D.; Andriessen, P.; van

Pul, C.; de Haan, G. Towards

Continuous Camera-Based

Respiration Monitoring in Infants.

Sensors 2021, 21, 2268. https://doi.

org/10.3390/s21072268

Academic Editor: Ki H. Chon

Received: 31 January 2021

Accepted: 21 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Eindhoven University of Technology,
5612 AZ Eindhoven,The Netherlands; s.stuijk@tue.nl (S.S.); G.d.Haan@tue.nl (G.d.H.)

2 Department of Family Care Solutions, Philips Research, 5656 AE Eindhoven, The Netherlands;
mohammed.meftah@philips.com

3 Department of Neonatology, Maxima Medical Centre, 5504 DB Veldhoven, The Netherlands;
Deedee.Kommers@mmc.nl (D.K.); P.Andriessen@mmc.nl (P.A.)

4 Department of Applied Physics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands;
C.vanPul@mmc.nl

5 Department of Clinical Physics, Maxima Medical Centre, 5504 DB Veldhoven, The Netherlands
* Correspondence: i.r.lorato@tue.nl

Abstract: Aiming at continuous unobtrusive respiration monitoring, motion robustness is paramount.
However, some types of motion can completely hide the respiration information and the detection of
these events is required to avoid incorrect rate estimations. Therefore, this work proposes a motion
detector optimized to specifically detect severe motion of infants combined with a respiration rate
detection strategy based on automatic pixels selection, which proved to be robust to motion of the
infants involving head and limbs. A dataset including both thermal and RGB (Red Green Blue) videos
was used amounting to a total of 43 h acquired on 17 infants. The method was successfully applied to
both RGB and thermal videos and compared to the chest impedance signal. The Mean Absolute Error
(MAE) in segments where some motion is present was 1.16 and 1.97 breaths/min higher than the MAE
in the ideal moments where the infants were still for testing and validation set, respectively. Overall,
the average MAE on the testing and validation set are 3.31 breaths/min and 5.36 breaths/min, using
64.00% and 69.65% of the included video segments (segments containing events such as interventions
were excluded based on a manual annotation), respectively. Moreover, we highlight challenges
that need to be overcome for continuous camera-based respiration monitoring. The method can be
applied to different camera modalities, does not require skin visibility, and is robust to some motion
of the infants.

Keywords: thermal camera; respiration; infants; unobtrusive; vital signs; camera; thermography;
infrared; NICU; non-nutritive sucking

1. Introduction

Vital signs need to be monitored in specific hospital environments. Infants, in partic-
ular, may need continuous monitoring when admitted to neonatal wards like Neonatal
Intensive Care Units (NICUs). Commonly monitored vital signs include heart rate, Respi-
ration Rate (RR), blood oxygen saturation, and skin temperature. Respiratory instability
in infants is one of the main reasons for admission. Therefore, respiration is monitored in
neonatal wards to detect critical situations, i.e., apneas (sudden cessations of breathing). If
leading to hypoxia, these events can result in long-term or permanent impairment [1], and
therefore, the detection of apneas is crucial.

The monitoring of respiration, but in general of most vital signals, requires attaching
electrodes and sensors to the infants’ skin, which can be uncomfortable for the infants or
even cause skin damage [2]. Moreover, impedance pneumography or Chest Impedance
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(CI), which is commonly used in neonatal wards for respiration monitoring, is not very
reliable in apnea detection [3].

For these reasons, unobtrusive solutions are being investigated for both hospital
environments and home-care. Respiration motion can be detected using RGB (Red Green
Blue) or Near-Infrared (NIR) cameras [4–6], radars [7–9], or pressure-sensitive mats [10–12].
Solutions using thermal cameras as in Mid-Wave Infrared (MWIR) or Long-Wave Infrared
(LWIR) have also been investigated [13–15]. Thermal cameras can detect both respiration
motion and respiratory flow, which can be useful in the detection and identification of apnea
episodes in infants since obstructive apneas and mixed apneas still present respiratory
effort, i.e., motion, but no flow [16].

Motion artifacts are a major problem for both the current monitoring technologies,
e.g., CI, and most of the non-contact solutions [17,18]. Motion robustness is, therefore,
paramount when aiming at a continuous RR detection in infants. Moreover, since lethargy
(hypotonia and diminished motion) and seizures (epileptic insult, repetitive motion activity)
are associated with serious illnesses of the newborn [19,20], motion is an important vital
sign, that has also been linked to the prediction of apnea and neonatal sepsis [21,22].

Multiple works proposed solutions to tackle the motion artifacts or random body
movement problem in camera-based respiration detection [23,24]. However, not all random
body movements hide the respiration information and by excluding all the segments
containing motion from the respiration monitoring step, potentially usable segments are
also excluded. In a recent study published by Villarroel et al. [25] motion robustness was
achieved by combining an indicator of the quality of the reference signal with an indicator
of the agreement between the RRs obtained using different sources. However, the detection
of the respiration signals is dependent on skin visibility. Infants who are cared for in open
beds in neonatal wards or in home-care environments are usually covered with blankets
and wear clothing. A solution based on skin visibility, particularly of the chest/torso area,
would, therefore, be impractical for these cases.

Therefore, extending our previous work [26], which estimated the RR in static mo-
ments extracted from infants’ thermal videos, in this paper, we analyze the performance
of our algorithm in challenging conditions containing various types of motion, also semi-
periodic ones such as Non-Nutritive Sucking (NNS). We aim at achieving motion robustness
by ensuring that the RR can be accurately estimated also in the presence of some motion,
e.g., head and limbs movements. We achieve this using a motion detector optimized to
detect specifically the kind of motion hiding the respiratory information, which often cause
impaired CI reference signal as well. This algorithm was trained and tested on thermal
and RGB videos, both video types were acquired on different infants, i.e., the babies in the
thermal videos are different from the babies in the RGB videos. In total, the thermal dataset
includes around 42 h of videos recorded on fifteen infants in a neonatal ward. The RGB
dataset is smaller and includes 50 min of video recorded on two infants. We, therefore,
prove that both our motion detector and our RR estimation algorithm with improved
motion robustness can be used for both visible and thermal modalities, without the need
of skin visibility. To our knowledge, this is the first work showing results on such a large
dataset of neonatal thermal recordings for respiration monitoring.

The remaining of this paper is organized as follows: Section 2 describes the method
developed and explains the setup used and the dataset. Sections 3 and 4 present the results
obtained and the discussion, respectively. Section 5 contains the conclusions of this work.

2. Materials and Methods
2.1. Materials
2.1.1. Experimental Setup

Two different setups were used to collect the RGB videos and thermal videos used
in this work. The thermal videos were collected using three thermal cameras positioned
around the infants’ bed. The cameras used are FLIR Lepton 2.5, they are sensitive in the
LWIR range, the resolution is 60× 80 pixels, the thermal sensitivity is 50 mK, and the
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average frame rate is 8.7 Hz. The acquisition was performed using MATLAB (MATLAB
2018b, The MathWorks Inc., Natick, MA, USA). Due to the acquisition strategy, the 3 h of
recording are split into 9 videos of 20 min each, gaps of up to 4 s can be present between
the videos. For further information on the setup refer to [26].

The visible images were obtained in a separate data collection with a single RGB
camera (UI-2220SE, IDS), that was positioned on a tripod to visualize the baby in the open
bed. Some videos were collected from the side and others from the top. The frame rate
and resolution are, respectively, 20 Hz and 576× 768 pixels. In both cases, the reference
CI signal sampled at 62.5 Hz was collected using the patient monitor (Philips MX800). To
solve the synchronization problem, an artifact (simultaneously disconnecting the CI leads
and covering the view of one of the cameras) was generated at the start of each recording
to synchronize CI and videos.

2.1.2. Dataset

The dataset was split into two sets, one called the training and testing set, which is
used to optimize and test the motion detection step, and adjust our respiration monitoring
algorithm. The other one called the validation set will be used to obtain unbiased results
for both the motion detection step and the RR detection step. Table 1 contains the infants’
data and the duration of the recordings for the training and testing set, and the validation
set. The infants were assigned to the two sets based on the availability of the data. The
thermal videos amount to a total of around 42 h acquired on fifteen infants, all the infants
were monitored for around 3 h except for infant 7, which has a total video duration of
around 1 h, due to setup problems.

Table 1. Infants’ data for the training and testing set (indicated with T&T) and the validation set (indicated with V).

Infant Video Type Gestational Age
(weeks + days)

Postnatal Age
(days)

Sleeping
Position

Duration
(hours)

Set

1 Thermal 26w 4d 59 Supine 2.98 T&T
2 Thermal 38w 5d 3 Supine 2.74 T&T
3 Thermal 34w 1d 16 Supine 2.93 T&T
4 Thermal 26w 3d 59 Prone 3.16 T&T
5 Thermal 39w 2 Lateral 3.05 T&T
6 Thermal 40w 1d 6 Supine 2.95 T&T
7 Thermal 40w 2d 1 Lateral 0.92 T&T
8 RGB 36w 47 Supine 0.30 T&T
9 RGB 30w 34 Supine and Lateral 0.57 T&T

10 Thermal 26w 4d 77 Supine 2.94 V
11 Thermal 26w 4d 77 Supine 2.97 V
12 Thermal 33w 4d 5 Supine 2.97 V
13 Thermal 34w 2d 9 Supine 2.87 V
14 Thermal 32w 2d 11 Supine 2.96 V
15 Thermal 35w 1d 8 Supine 2.94 V
16 Thermal 38w 1d 2 Supine 3.00 V
17 Thermal 27w 5d 16 Supine 2.96 V

The RGB videos of infant 8 and 9 amount to a total video duration of around 52 min.
Both thermal and RGB datasets were collected in the Medium Care Unit of the neonatal

ward in the Maxima Medical Centre (MMC) in Veldhoven, The Netherlands. Both studies
received a waiver from the ethical committee of MMC (the thermal dataset with ID N19.074
and the RGB dataset with ID N12.072), and informed consent was obtained from the infants’
parents prior to the study.

2.1.3. Manual Annotation

One of the authors annotated the videos contents, including motion occurrences,
and it was then used as ground truth for the motion detection step. A MATLAB built-in
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application called Video Labeler was used to annotate the videos. A set of labels was defined
to describe the possible visible events, the labels are not exclusive, meaning that multiple
labels can be true at the same time. We defined two classes of motion type 1 and type 2
motion. The labels are presented in Table 2.

Table 2. Labels used for the manual annotation.

Annotation Labels Subcategories and Details

Included
(i) Infant activity

• Still
• Type 1 motion (motion including chest/torso area)
• Type 2 motion (motion involving limbs or head)

(ii) NNS -

Excluded

(iii) Interventions includes both parents and caregivers interventions

(iv) Other

• Someone in the background
• Baby out of bed
• Camera motion
• Unsuitable view

The main difference between the two types of motion, i.e., 1 and 2, is the involvement
of the chest in the motion event. Type 1 is a motion that involves the chest/torso area, where
the respiration motion can be usually seen. In our classification this is, therefore, considered
as the kind of motion that results in hiding the respiration information, which can cause
artifacts also in the CI reference signal. Type 2, instead, does not involve chest or torso
movements but affects other parts as, head, hands, arms, fingers, or even facial expressions.

The segments of videos including events labeled as categories iii and iv in Table 2
were excluded in this work, since they would require different detectors, e.g., interventions
detection or infant presence detection [25]. In particular, the included and excluded
percentages in the entire dataset are, respectively, 73.86% and 26.14%. The majority of the
excluded moments are caused by the babies being out of bed and by interventions, 46.4%
and 31.8%, respectively. The breakdown of the included moments are shown in Figure
1 split between the training and testing, and the validation set. The segments containing
type 1 motion events are considered unusable for the estimation of the RR, whereas, the
ones containing type 2 motion, still, and NNS are considered usable. The cumulative
percentages of type 2 motion, still, and NNS constitute 70.03% and 68.85% of the included
moments for the training and testing, and the validation set, respectively. The remaining
part contains the fragments annotated with type 1 motion. The occurrence of type 1 motion
is, therefore, very similar between the two sets.

Training & testing

Training & testing

Validation

Validation
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Figure 1. Results of the manual annotation: the breakdown of the included class into the subcategories
for the training and testing, and the validation set.
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2.2. Method

The algorithm proposed in this work can be split in two main parts, i.e., motion
detection and RR estimation. The first was designed to detect type 1 motion, since segments
containing type 2 motion are considered usable for the RR detection and it is, therefore, not
necessary to detect their occurrence. Therefore, if type 1 motion was detected the RR could
not be accurately estimated and an indication that the baby was moving was provided.
Otherwise, the video segment did not contain type 1 motion and it was classified as usable
and the RR was estimated using the second part of our algorithm. These steps are shown
in Figure 2. The algorithm was implemented using MATLAB.

Figure 2. Main blocks of the processing chain and an example of the results.

2.2.1. Preprocessing

The thermal videos were linearly interpolated to compensate for the acquisition
strategy, which resulted in a non-uniform sampling rate, because external triggering was
not used. A 1D interpolation was applied to each pixel’s time domain signal, using the
MATLAB function interp1, the result was three videos sampled at 9 Hz, close to the average
frame rate, with a resolution of 60× 80 pixels. The RGB data were converted to grayscale
(using the MATLAB function rgb2gray) and downscaled, to allow faster processing, with
a downscale factor of 3 resulting in a final video resolution of 192× 256. The grayscale
videos were also temporally downsampled to reach the same sampling rate as the thermal
videos, i.e., 9 Hz, from an initial sampling frequency of 20 Hz, for faster processing. The
frame sizes will be indicated as M̃× L̃, which will correspond to 60× 80 in the thermal
case and 192× 256 in the visible case.

A sliding window approach was used for both the motion detection and the RR
estimation steps. Considering a trade-off between latency and frequency resolution and
the fact that longer windows means more sliding windows may contain motion events, a
relatively short window size of 8 s was chosen with a slide of 1 second.

2.2.2. Motion Detection

• Gross Motion Detector: let X(nTs) be the frames in the jth window, with n = 0 + (j−
1)/Ts, 1 + (j− 1)/Ts, ..., N + (j− 1)/Ts, and N = 72 samples, corresponding to the
samples in the jth window with a sampling period Ts = 0.111 s. The gross motion
detector was based on the absolute value of the Difference of Frames (DOFs) in the jth
window. More formally:

D(uTs) = |
∂X(nTs)

∂n
|, (1)

the ∂
∂n operator represents the partial derivative with respect to the time dimen-

sion. D(uTs) contains the frames resulting from the absolute value of the differ-
ence of frames operation at each time sample, with u = 0 + (j − 1)/Ts, 1 + (j −
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1)/Ts, ..., (N − 1) + (j− 1)/Ts. At this point, a first threshold value was introduced,
which turns D into binary images identifying what we considered to be moving pixels:

MP(uTs) =

{
1 if D(uTs) > thr1

0 otherwise.
(2)

thr1 is a threshold that was introduced to differentiate the source of the change
between noise and motion, it is defined as:

thr1 =
Range(X)

f1
, (3)

the numerator represents the range of X, i.e., the difference between the maximum
value and the minimum value considering all the pixels of all the frames in X, and f1
is a value that was optimized. The ratio of moving pixels was then calculated as:

s(uTs) =
∑M̃

m̃=1 ∑L̃
l̃=1 mpm̃,l̃(uTs)

M̃ · L̃
. (4)

Here, mpm̃,l̃(uTs) is an element of MP(uTs) at the position m̃ and l̃.
• Motion Classification: the ratio of moving pixels s(uTs) was used to perform the

classification between usable and unusable segments for RR detection. In particular,
we aim at detecting the unusable moments, i.e., the ones containing type 1 motion.
The main assumption is that type 1 is part of a more complex kind of motion, typical of
infants’ crying motion. Therefore, the simplest way to detect it is to assume that type
1 motion will result in more moving pixels compared to any of the usable segments.
To perform a classification between the two, a second threshold thr2 was introduced,
which was applied to the ratio of moving pixels s(uTs). The final classification was,
therefore, performed on a window-based fashion, i.e., each window was classified as
containing type 1 motion, corresponding to 1, or usable, corresponding to 0.
Since we used three cameras in the thermal setup, we applied this algorithm three
times. For the RGB dataset this was not necessary, as there was only a single camera
used. In the visible case the classification will be:

Motionvis(j) =

{
1 if ∃ u : s(uTs) ≥ thr2

0 otherwise.
(5)

For the thermal case instead:

Motionth(j) =


1 if ∃ u : (s1(uTs) ≥ thr2 OR

s2(uTs) ≥ thr2 OR
s3(uTs) ≥ thr2)

0 otherwise.

(6)

s1(uTs), s2(uTs), and s3(uTs) are the ratios of moving pixels obtained from the three
thermal views.

• Ground Truth: The ground truth used to evaluate the performance of our motion
detector was obtained based on the manual annotations presented in Section 2.1.3.
In particular, the ground truth was built using the sliding window approach. Each
window was classified as excluded, as type 1 motion, or as usable. The condition used
was the presence of at least a frame in the window which results in being true for one
of those categories. The excluded class had the priority, if this was true for at least a
frame in the window, the entire window was classified as excluded. If the latter was
false then type 1 motion was taken into consideration in the same manner, and lastly
if the two above were both false we classified the window as usable.
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• Parameters Optimization: the factor f1, for the moving pixels detection, and the
threshold thr2, for the motion classification, were optimized. A leave-one-subject-out
cross-validation was used to optimize the two parameters. The approach was chosen
considering that environment changes, e.g., environment temperature, blankets type,
and position, can influence the parameters values and therefore, the between-baby
variability is more important than the within-baby variability. The set of parameters
that resulted in the highest balanced accuracy for each fold was considered as a candi-
date set. The final chosen set was the most selected candidate set. This metric was
preferred compared to the classic accuracy due to the imbalance in our two classes
(usable was more frequent than type 1 motion). The optimization was performed
on the training and testing set, presented in Table 1. This set includes 9 babies and
therefore, 9 folds were performed in the cross-validation. Two sets of parameters were
empirically chosen for the training and correspond to f1 = [4; 5; 6; 7; 8; 9; 10; 11; 12]
and thr2 = [0.004; 0.005; 0.006; 0.007; 0.008; 0.09; 0.010; 0.011; 0.012]. The most cho-
sen set, used in the next steps, was f1 = 8 and thr2 = 0.005, more information on the
results can be found in Section 3.

2.2.3. Respiration Rate Estimation

Respiratory signal and rate were both estimated in the windows in which the mo-
tion detection step results in the usable category using an adjustment of our previous
method [26]. Briefly, first the images of the thermal videos were merged together in a single
image plane, resulting in a single video with resolution 180× 80, whereas the grayscale
videos were processed with the single view available, i.e., videos with resolution 192× 256.
These two possible frames dimensions will be referred to as M× L. Our method is based
on the automatic detection of the pixels containing respiration information. This is per-
formed using the three features presented in [26], improvements were applied to tackle
new challenges highlighted by the extension of our dataset and of the acceptable motion.

The changes involve an adaptation of the second feature, Respiration Rate clusters,
adapted to overcome the presence of the respiration’s first harmonic and NNS pattern in
some of the extended dataset. The third feature (Gradient) was also adapted for the use on
visible images, now added to the dataset, and finally the correlation value that indicates
which pixels contain the respiration information was increased. More in detail, each pixels’
time domain signal is indicated as xm,l(nTs), with (m, l) indicating the pixel. Three features
were used to find a core-pixel, in each ĵth window, which was then employed to find (using
a correlation metric) all the helpful pixels that can be combined to compute the respiratory
signal, with ĵ = j : Motion(j) = 0.

• Pseudo-Periodicity: this first feature is based on the assumption that respiration can
be considered a periodic signal. This feature was not changed compared to [26].
A differential filter was used to attenuate low-frequencies resulting in filtered time
domain signals called x′m,l(nTs). The signals were zeropadded, reaching a length
equal to Nz = 120 · N, and multiplied for an Hanning window. Afterwards, a 1D
Discrete Fourier Transform (DFT) was used to estimate the spectrum called y′m,l( fk)

with k = 0, 1, ..., Nz
2 − 1 and fk =

k
Nz ·Ts

Hz. This feature consists of the calculation of
the height of the normalized spectrum’s peak. More formally:

qm,l =

max
0≤ fk≤

(Nz/2−1)
Nz ·Ts

(| y′m,l( fk) |)√√√√ (Nz/2−1)
Nz ·Ts
∑

fk=0
| y′m,l( fk) |2

. (7)

Each qm,l represent the height of the peak of the spectrum of the pixel in position
(m, l), qm,l are elements of the first feature Q.
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This feature is sensitive to the presence of type 2 motion. Regions moving due to
this type of motion can generate a big variation in the pixels’ values (depending on
the contrast). This variation can, therefore, produce a strong DC component, which
will result in a high qm,l . The combination with the other features allows us to obtain
motion robustness, Figure 3 presents an example during a type 2 motion and the
pseudo-periodicity feature is visible in Figure 3b.

• Respiration Rate Clusters (RR Clusters): this feature is based on the observation
that respiration pixels are not isolated but grouped in clusters. To automatically
identify the pixels of interest more accurately, modifications were introduced to this
feature to improve the robustness to the presence of NNS, typical when the infant
has the soother, and to cope with the presence of the respiration’s first harmonic. The
frequencies corresponding to the local maxima of the spectrum y′m,l( fk) were found
and the properties of the harmonic were checked:

hm,l = arg localmax
lim1< fk<lim2

(| y′m,l( fk) |), (8)

hm,l is a vector, obtained for the pixel in position (m, l), containing the frequencies
of the local maxima in the band of interest, which is identified by lim1 and lim2
respectively 0.5 and 1.83 Hz. The length of the vector is, therefore, variable and
dependent on the spectrum content of each pixel (m, l), this operation was performed
using the MATLAB function findpeaks. The harmonic properties were checked:

rrm,l =



hm,l(1) if ∃ ẑ > 1 :| hm,l(ẑ)− 2 · hm,l(1) |< 1
N·Ts

AND
(ym,l(hm,l(ẑ)) < ym,l(hm,l(1)) AND
y′m,l(hm,l(ẑ)) ≥ y′m,l(hm,l(1)))

arg max
fk

(
| y′m,l( fk) |

)
otherwise,

(9)

ym,l( fk) is the spectrum of the pixels’ time domain signal calculated as y′m,l( fk) but
without applying the differential filter and hm,l is an element of hm,l .
We have, therefore, estimated the main frequency component for each pixel. To avoid
erroneous RR estimation caused by higher frequencies components, e.g., caused by
NNS, the rrm,l that were higher than lim2 were put to zero. Therefore:

r̂rm,l =

{
rrm,l if rrm,l < lim2

0 otherwise.
(10)

The r̂rm,l are elements of R̂R, an example is shown in Figure 3f. The non-linear filter
introduced in [26] was applied:

wm,l =
1
9

3

∑
r=1

3

∑
o=1

(
1

exp(κ1· | r̂rm,l − r̂rr,o | /r̂rm,l)

)
, (11)

where r and o identify the kernel cell, whereas m and l indicate the pixel. κ1 is a
constant empirically chosen and equal to 70 as indicated in our previous work [26].
The resulting frame W will map the pixels having similar frequencies around them.
It should be noted that the r̂rm,l on which we imposed the value 0 in Equation 10, will
not result in a high wm,l , even if there are clusters of zeros in R̂R. This is due to the
equation of the filter that with r̂rm,l = 0 will produce NaNs (Not a Number). The same
will happen for regions with type 2 motion, where the main frequency component is
the DC. This property allowed to avoid type 2 motion regions in the pixel selection
phase achieving motion robustness, an example is visible in Figure 3e.
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• Gradient: this last feature is based on the assumption that respiration motion can be
only visualized at edges. This feature has been modified to make it independent of
the setup used:

gm,l =

1 if

√(
∂ām,l

∂m

)2
+

(
∂ām,l

∂l

)2
> Range(A)

κ2
,

0 otherwise,

(12)

where ∂
∂m and ∂

∂l represent the partial derivatives in the two spatial dimensions, κ2 is
an empirical threshold equal to 16, which resulted in identifying the edges of both
thermal and grayscale images and A is the series of frames in the ĵth window. Ā is
an average image representative of the current window ĵ evaluated as the average of
all the images in A, with elements ām,l . The resulting matrix will be the third feature
G. The use of Ā to evaluate the gradient can also ensure robustness to some type
2 motion, whose regions will not be visible in the average image if the motion is
transient enough. In the example in Figure 3c the pixels involved in the type 2 motion
are still selected in the gradient feature, but RR Clusters ensures the correct pixels
are chosen.

First frame of the window

(a)

Pseudo-Periodicity

(b)

Gradient

(c)
Last frame of the window

(d)

RR Clusters

(e)

F
re

qu
en
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B
P

M
)

0

20

40

60

80

100

(f)
Figure 3. Example of features obtained during a type 2 motion, i.e., arm motion. In (a,d) the merged thermal images are
presented, the circle indicates the position of the baby’s arm where the type 2 motion is happening. The images in (b,c,e)
show the three features. While in this case, pseudo-periodicity and gradient are sensitive to the presence of type 2 motion,
Respiration Rate (RR) clusters are not, this is due to the R̂R matrix shown in (f) where the arm area can have frequencies
equal to zero.

The features, Q, W, and G, were then combined together, after being normalized
between 0 and 1, by multiplying them and obtaining V. This feature combination was used
to identify the core-pixel as:

(mpr , lpr ) = arg max
(m,l)

(vm,l), (13)
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where vm,l identifies an element of V. The pixels containing respiration information were
then found from this core-pixel based on the Pearson’s correlation coefficient, estimated
using a bandpass filtered version of the pixels’ time domain signal. The filter used is a
Butterworth bandpass between lim1 and lim2. In our previous work [26] pixels having
a correlation higher than 0.7 with the core-pixel were considered to contain respiration
information, this threshold on the correlation value has been increased in the current work
considering the reduction in window size and the fact that the accuracy of the correlation
estimation depends on the length of the signal. Therefore, the threshold has been set to 0.9
and indicated with κ3. In particular:

p = (m, l) : | cm,l |> κ3, (14)

where cm,l is the correlation between the core-pixel (mpr , lpr ) and the signal of the pixel in
position (m, l), calculated using the MATLAB function corrcoef. p will, therefore, be a vector
indicating the pixels containing the respiration signal and can have variable dimension
depending on the window ĵ. To calculate the RR and the respiration signal, all the bandpass
filtered time domain signals of the pixels in p were combined using an average operation.
The RR was calculated from the spectrum of this signal after using a Hanning window,
and the RR was estimated as the frequency corresponding to the spectrum’s peak for each
window. The same was applied to the CI signal to estimate the reference RR from the
waveform. These spectra were then arranged into a Short Time Fourier Transform (STFT).

2.3. Evaluation Metrics

Accuracy, balanced accuracy, sensitivity, and specificity were calculated for the test
step of the cross-validation and for the validation dataset to obtain unbiased performance
results. The RR was compared to the one obtained using the CI. Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Percentage of correct estimation (PR) [26],
considering an accuracy of 3.75 Breaths Per Minute (BPM) caused by the window size, were
calculated. We estimated the Percentage of Time used (PT) by calculating the percentage of
windows classified as usable by the motion classification step on the number of windows
in the included data (which includes also type 1 motion occurrences).

To prove the improved motion robustness of our algorithm, we used the annotations
to identify the moments containing only type 2 motion and compared it with the ones
containing only stillness. Moreover, the contribution of the NNS segments to the error
was also analyzed. The average MAE was obtained in all these windows to analyze their
contribution to the final error. In these cases, PT is calculated by considering also the
information of the manual annotation on the occurrences of specific events. For example,
PT for the segments containing only type 2 motion is calculated considering the number of
windows classified as usable by our motion detection and that according to the manual
annotation contain only type 2 motion, or PT in the usable segments excluding NNS is
evaluated using the number of windows classified as usable and that do not contain NNS
according to the manual annotation.

3. Results

The average Receiver Operating Characteristics (ROC) curve for all nine folds ob-
tained from the cross-validation applied on the training and testing set, is presented in
Figure 4. The blue points represent the average sensitivity and specificity on all folds for
that particular combination of f1 and thr2, whereas the cross is the average sensitivity and
specificity on all folds corresponding to the most chosen parameter set. Table 3 shows the
results of accuracy, balanced accuracy, sensitivity, and specificity using the final chosen set
of parameters for the testing stage of the cross-validation and for the validation set that
was not involved in the training.
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Figure 4. Receiver Operating Characteristics (ROC) curve obtained with the nine folds of the cross-
validation by using all the parameters combinations.

Table 3. Average performance of the motion detection step for all the babies of the training and
testing, and the validation set using the chosen parameters.

Accuracy Balanced Accuracy Sensitivity Specificity

Training and testing set 88.22% 84.94% 80.30% 89.58%
Validation Set 82.52% 77.89% 66.85% 88.93%

The results obtained in the RR detection step are shown in Tables 4 and 5. The first one
shows the MAE obtained in all moments considered usable by our own motion detection
step (that includes segments containing NNS) and the error in the moments containing
only NNS, whose windows were determined using the manual annotation. Moreover, a
comparison between the respiration detection method introduced in our previous work [26],
and the modified one introduced in this work is also presented. Table 5 contains the results
obtained in all the usable segments excluding the NNS windows on the two sets. Moreover,
using the manual annotation, we also show the errors in the windows containing only type
2 motion, and in the ideal moments in which the infants are still.

Figure 5a,b present Bland–Altman and correlation plots for the training and testing
set, and the validation set, respectively, using the RRs in all the usable windows excluding
the NNS. The mean bias were −0.42 and −0.18 BPM and the correlation plot shows the
agreements between the reference and our estimation with a ρ = 0.90 and ρ = 0.80 for
the training and testing set, and the validation set. Example results are presented in
Figures 6–8.

Table 4. Average and standard deviation of Mean Absolute Error (MAE) and percentage of used time (PT) on all babies
of the training and testing set for the previous version of method [26] and the current one presented in this work, in the
windows classified by the motion detector as usable. We further show the contribution of the Non-Nutritive Sucking (NNS)
to the overall error (these segments were obtained using the manual annotation).

Previous Version of Method [26] Current Version of the Method
Usable NNS Only Usable NNS Only

MAE (BPM) 4.54 ± 1.82 9.39 ± 3.68 3.55 ± 1.63 7.11 ± 4.15
PT 68.59% ± 13.29% 4.59% ± 6.93% 68.59% ± 13.29% 4.59% ± 6.93%



Sensors 2021, 21, 2268 12 of 18

Table 5. Results of the two sets in the segments classified as usable by our motion detector excluding the NNS windows,
obtained thanks to the manual annotation. The errors in the windows containing type 2 motion and moments where the
infants were still are also included. MAE and RMSE are in Breaths Per Minute (BPM).

Infant Usable Excluding NNS Type 2 motion Only Still Only
MAE RMSE PR PT MAE PT MAE PT

Tr
ai

ni
ng

an
d

te
st

in
g

1 1.86 3.34 83.61% 70.38% 1.57 27.92% 1.51 34.61%
2 2.87 3.97 73.71% 40.60% 2.56 20.90% 2.64 13.02%
3 6.30 8.09 39.44% 67.83% 6.32 39.23% 6.28 24.38%
4 4.43 6.21 60.16% 72.75% 4.99 44.09% 2.49 20.39%
5 5.04 7.61 56.44% 40.22% 4.84 29.24% 2.24 5.35%
6 2.97 4.73 71.34% 66.74% 3.70 29.96% 1.94 31.69%
7 2.80 4.15 72.08% 46.16% 2.57 30.28% 0.70 4.61%
8 1.89 3.40 88.63% 89.71% 1.76 11.47% 1.91 77.84%
9 1.62 2.70 85.55% 81.60% 2.88 24.16% 1.08 56.76%

Average 3.31 4.91 70.11% 64.00% 3.47 28.58% 2.31 29.85%
± sd ± 1.61 ± 1.94 ± 15.84% ± 17.82% ± 1.62 ± 9.56% ± 1.62 ± 24.22%

V
al

id
at

io
n

10 4.46 6.62 61.41% 63.62% 5.52 34.40% 2.44 22.78%
11 3.79 5.54 64.96% 55.55% 4.01 34.62% 2.27 12.29%
12 6.23 7.98 38.98% 68.20% 5.98 33.70% 6.60 23.35%
13 6.29 8.51 44.00% 69.53% 6.30 51.04% 3.59 6.13%
14 6.89 9.56 47.37% 73.38% 7.35 44.73% 4.58 18.00%
15 4.75 6.65 54.11% 78.86% 4.83 42.08% 4.39 26.81%
16 4.09 5.73 60.97% 76.84% 4.39 28.92% 3.21 30.73%
17 6.40 8.78 47.79% 71.22% 7.64 40.14% 3.15 19.60%

Average 5.36 7.42 52.45% 69.65 % 5.75 38.71% 3.78 19.96%
± sd ± 1.21 ± 1.49 ± 9.35% ± 7.47% ± 1.32 ± 7.14% ± 1.40 ± 7.90%
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Figure 5. Bland-Altman and correlation plot: (a) training and testing set, (b) validation set. RRCI and RRVideo are in BPM.
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Figure 6. Example of the Short Time Fourier Transform (STFT) obtained using the camera and the Chest Impedance (CI) reference.
The noisiness of the reference’s spectrum during type 1 motion shows the sensitivity of the reference to this type of artifact. The
excluded segments are due to camera motion.
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Figure 7. Example of results showing the RR estimated using our cameras and algorithm, and the reference one. The
difference in the manual annotation of type 1 motion and the detected one is visible in the bottom plot. Examples of frames
during the type 1 motion (infant crying) are also shown.

Video 

20

60

100

Chest Impedance

Time (s)

20

60

100

F
re

qu
en

cy
 (

B
P

M
)

900 910 920 930 940 950 960 970 980 990 1000

Time (s)

-1

0

1
CI

Figure 8. Example of results with periodic breathing. The sudden changes in RR can be seen in the STFTs close to the
breathing pauses (indicated using the rectangular boxes with width of 8 s).

4. Discussion

Our method for motion robust respiration detection can be used for both thermal
and visible modalities, and it does not rely on skin visibility or facial landmark detection.
Moreover, it is able to detect motion events that are problematic for respiration monitoring,
ensuring a more accurate RR detection and delivering motion information. The manual
annotation showed that the RR can be potentially estimated in around 70% of the included
data, since the remaining 30% is annotated as type 1 motion. The impossibility to accurately
estimate a RR in these segments is a limitation present in all unobtrusive technologies
but also in the current monitoring modalities, i.e., CI. An example of the RRs estimated
using both camera and CI in the moments annotated and automatically classified as type 1
motion is provided in Figure 6. The sudden noisiness in the spectrum clearly indicates the
inaccuracy of the RRs estimation in these segments. Table 5 shows an average PT of around
64% and 70% for the two sets, however, there is considerable variability in the PT between
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the infants, especially in the training and testing set, as shown by the standard deviation.
Infants that are more agitated will have an increased occurrence of type 1 motion, reducing
the amount of time usable for RR detection, which can be also lower than 50% (can be
partially due to NNS occurrence as well). However, considering that CI is also unable
to provide a RR in these cases, the information that the infant is agitated and moving
frequently may be much more informative than an inaccurate estimation of RR. In addition,
a patient who is moving for a longer period of time is not likely to be in danger due to a
serious apnea and, therefore, the motion information itself is giving information about the
patient, e.g., the motion could be also linked to the discomfort of the infants [27].

Our motion classification reached an accuracy equal to 88.22% in the training and
testing set. It should be noted that the accuracy results are underestimating the real
accuracy. The manual annotation was performed by a single author and while the automatic
classification is on a second by second basis (due to the sliding window’s slide), the manual
annotation tends to overlook particularly short events. An example is visible in Figure 7,
the detected label (the result of the automatic classification) can present fast oscillations,
whereas the manual annotation is more stable and sometimes stretched compared to the
detected label (anticipated starting point and/or postponed ending point). The validation
set obtained a lower accuracy result, i.e., 82.52%, this is due to the reduced sensitivity of
our motion classification on this dataset. These results could indicate that not enough data
were included in our optimization step or that the training dataset is not representative
enough. Differences were observed between the two sets in the blanket position, which
could end up hiding some of the moving pixels. Whether the infant’s sleeping position
plays a role warrants further analysis. Moreover, the motion detection strategy, as it is
implemented now, is limited by changes in the distance (between camera and infant) or
zoom, however, all infants in our study occupy a similar portion of the image, although
small variations are present. The method may need to be optimized for different distances
or features in the images could be used to make the method independent of the distance.

Table 4 presents a comparison of the MAE obtained by our previously published
method [26] and the adjusted one presented in this work, obtaining an improvement of
around 1 BPM on the average MAE. The harmonic problem was particularly noticeable
in one of the infants, i.e., infant 8, where the introduction of our adjustment drastically
reduced the error (from 7.17 to 1.89 BPM). The NNS is present in less than 5% of the
included segments. This is mostly due to the study protocol since hours in which the
parents were not in the wards were preferred, as the babies would then spend more time in
the bed, but this was not always possible. The percentage of presence of NNS is, therefore,
likely underestimated and not completely representative. This percentage could be higher
if the parents are in the neonatal ward next to the infant or in home-care because the soother
will be given to the baby more often in these cases. The MAE obtained during NNS is
reduced in our new implementation, though still higher than the average MAE considering
all usable segments. NNS frequencies have been reported to vary and can correspond to
the ones of the normal RR or be higher up to 150 sucks per minute [28,29]. Therefore, if
the frequencies of NNS are higher than the normal RR range, our algorithm can detect the
respiration pixels and correctly estimate the RR. However, if the NNS frequency is inside
the respiration band, our method can no longer discriminate between NNS and respiratory
signals. This is a limitation present in all methods that automatically identify the region of
interest or technologies that monitor the motion in an area, e.g., continuous-wave radars.
This problem, particularly important for home-care and babies cared for in open beds,
should be further analyzed.

Furthermore, in Table 5, a comparison of the results between the training and testing
set, and the validation set, in the usable moments excluding NNS, is provided. The errors
are higher in the validation set compared to the training and testing one. We believe this is a
consequence of the reduced sensitivity of the motion classification step for the validation set,
which leads to the inclusion of segments with type 1 motion in the moments used for the
estimation of the RR. Other factors influence the average error, one is the presence of babies
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breathing with a Periodic Breathing (PB) pattern, a physiological breathing pattern in infants
associated with the alternation of normal breathing and breathing pauses [30]. One of the
babies in the training and testing set continuously breathes following a PB pattern (infant 3),
whereas another baby in the training and testing set (infant 4) and six babies in the validation
set (infants 10, 11, 12, 13, 15, and 17) resulted in having segments with a PB pattern. PB
pauses have been reported to last 6 to 9 s [31], in our dataset, we observe breathing pauses
with a duration of up to 10 s. It becomes evident that by using a window size of 8 s, we
will detect a RR in windows that do not contain any respiration-related oscillations. This
causes the estimation of the error to be higher than the real one because both our method
and the CI will provide an incorrect estimation of the RR, an example is visible in Figure
8. Our method requires the selection of respiration pixels in every window, if there is no
respiration information in the video segment, the selected pixels will contain noise. The
results are, therefore, also dependent on the length of the breathing pauses which can be
different for each baby. This problem needs to be further analyzed considering also apneas,
and the number of pixels selected could be used as an indicator to detect the absence of
respiration. The PB pattern is, anyway, clearly visible in the time signals, and in the future,
methods for cessations of breathing detection such as [32,33] could be used to identify
the breathing pauses and remove these from the RR comparison. Moreover, some of the
recordings in the validation set (belonging to infants 13 and 14) contain segments in which
the respiration motion is not visible due to the blanket position, directly influencing the
error. This problem was highlighted also in our previous work [26].

By comparing the errors in the ideal moments where the infants are still and in the
moments where type 2 motion occurs, differences can be noted. On average, the MAE
during type 2 motion segments is higher than the one during ideal moments, with an
increase of 1.16 and 1.97 BPM for training and testing, and validation set, respectively. We
believe the cases in which the errors are higher for the type 2 motion may be related to the
position of the pixels containing respiration. Our approach is based on the assumption that
respiratory pixels are visible on the edge of the blanket and chest/neck area, and type 2
motion, like arm motion or head motion, will not affect our performance. However, this is
not always true, like in cases where most of the respiration pixels come from the arm or the
head itself, which is happening in some babies’ videos. This is again caused by the blanket
covering the main source of respiration signal, i.e., the chest. We can expect this problem to
be further reduced in infants in incubators that are not covered. The inclusion of the type
2 motion segments allows to drastically increase the amount of time used for respiration
estimation at a cost of a higher error.

The two videos of infants 8 and 9 collected using an RGB camera seem to perform
better, yielding lower MAE compared to the other babies (except for infant 1 whose MAE is
comparable). However, we believe that conclusions regarding which technology performs
best cannot be drawn from this comparison, as such would require a dataset acquired
simultaneously with both camera types. Moreover, the RGB videos were not included
in the validation set, therefore, the performance of our algorithm on this type of videos
should be further analyzed and more data should be included.

Overall, our MAEs and Bland-Altman plots are comparable with studies performed
in similar populations, e.g., the work of Villarroel et al. [25] showed a MAE of 4.5 and
3.5 BPM for their training and test set respectively, very similar compared to our 3.31 and
5.36 BPM. Our method, though, can be used on both thermal and RGB/NIR cameras,
provides motion information, and does not rely on skin visibility but only on respiration
motion being visible. The limits of agreement in Figure 5b are higher than the ones in the
training and testing set and higher compared to the results obtained in [25], this is due to a
combination of the problems previously described.

Our study provides promising results and highlights possible challenges for neonatal
respiration monitoring. In particular, in the cases of babies cared for in an open bed and
babies in a home-care environment, the NNS presence and its effect on unobtrusive vital
signs solutions should be investigated further, although the presence of the NNS motion
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itself could indicate the absence of critical situations. Moreover, one of the main limitations
of our method, but in general of camera-based solutions, is the respiration motion being
hidden by blankets covering the infants. While camera-based solutions provide contextual
information undoubtedly usable for the detection of motion, they may also require the
fusion with a different technology that would not be affected by this type of problem, such
as radar or pressure-sensitive mats, or a clearer protocol for blanket positioning.

5. Conclusions

This work presents a combination of a method for motion detection, optimized to
detect motion hiding the respiration, and a method for RR detection that, using three
features, automatically selects the pixels of interest. The motion robustness achieved
thanks to our features, allows us to increment the amount of time used for camera-based
respiration detection, including segments that contain limbs or head movements. The test
of the cross-validation obtained an accuracy of around 88% in the motion identification.
A lower accuracy was obtained in our validation set, indicating that the optimization
could be improved. The RR estimation was compared with the chest impedance reference
and yielded an average MAE of 3.31 and 5.36 BPM for the training and testing set, and
validation set, respectively. The MAE during type 2 motion was higher than the one in the
ideal moments of 1.16 and 1.97 BPM for the training and testing set, and validation set,
respectively. This proves the motion robustness is improved, but more work is needed to
achieve continuous unobtrusive respiration monitoring. Therefore, limitations on the use
of camera-based solutions in a neonatal ward environment are highlighted in this study,
i.e., the PB influence of the errors, the blanket covering respiration motion, and the NNS
presence. This method can be used for different camera modalities and does not require
skin visibility.
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