Construction of Multivariate Quadratic Quasigroups (MQQs) in Arbitrary Galois Fields

Simona Samardjiska and Yanling Chen and Danilo Gligoroski
Department of Telematics
Norwegian University of Science and Technology
Trondheim, Norway
Email: {simona.samardjiska, yanling, danilo.gligoroski}@item.ntnu.no

Abstract—In this paper we describe two methods for constructing Multivariate Quadratic Quasigroups (MQQ) in Galois fields of any characteristic and order. Our constructions extend the previously known constructions defined for operations over the prime field of characteristic 2. Application of these new constructions can reduce the public key size of the recently introduced family of public key schemes based on MQQs up to 58 times.

Index Terms—Multivariate Quadratic Quasigroups (MQQ); Multivariate Public Key Schemes; Finite Fields;

I. INTRODUCTION

Multivariate quadratic schemes (MQ schemes) have been an attractive and very active research area for more than 26 years, as a new way of constructing public key cryptosystems. Beside their performance advantages over classical public key schemes based on integer factorization (RSA) and on the discrete logarithm problem in the additive group of points defined by elliptic curves over finite fields (ECC), their popularity increased even more as a post-quantum alternative to the most popular RSA and ECC schemes, since there are no known quantum algorithms that would break MQ schemes.

In the open literature there are in general five schemes that conceptually differ in the construction of the nonlinear quadratic part of the scheme. For the first four classes of multivariate quadratic public key cryptosystems: MIA [1], STS [2], [3], [4], HFE [5] and UOV [6], we suggest the reader to see [7] which is an excellent (but a little bit older survey from 2005) made by Wolf and Preneel.

Recently, in 2008, a fifth multivariate quadratic public key scheme, called MQQ, was proposed [8], [9]. The MQQ scheme is based on the theory of quasigroups and quasigroup string transformations. The crucial part of the scheme is the introduction of a new class of quasigroups called Multivariate Quadratic Quasigroups (MQQ). The important characteristic of these quasigroups is that when represented as Boolean functions in their algebraic normal form, their algebraic degree is 2, i.e., they are multivariate quadratic. Compared to other MQ schemes, there is an apparent efficiency advantage of using multivariate quadratic quasigroups for the production of the nonlinear quadratic part of the scheme (the advantage is in the decryption i.e. signing phase), which was demonstrated in practice by the initial software implementations. That fact immediately attracted the attention of cryptographers trying to analyze it. It was first successfully cryptanalyzed independently by Perret [10] using Gröbner basis approach, and Mohamed et al. using MutantXL [11]. Later, an improved cryptanalysis by Faugère et al. in [12] showed exactly why the original MQQ systems were easy to solve in practice.

In order to thwart the previous successful attacks, recently [13] the minus modifier was applied in the design of MQQ-SIG, by removing 2_5 of the public equations of the original MQQ public key algorithm. Although the operational characteristics of MQQ-SIG outperform by two or three orders of magnitude the corresponding schemes based on RSA or ECC, in the current design MQQ-SIG suffers from the common drawback of all MQ schemes defined over GF(2): its public key is very big, from 125 up to 514 Kbytes.

A typical technique to reduce the public key in MQ schemes is to use polynomials over bigger fields GF(p^k). However, depending on the specifics of the design, this transition to a bigger field is not always trivial and straightforward. Concretely, for MQQ-SIG, there are two known techniques for construction of multivariate quadratic quasigroups with operations over GF(2). One is using T-quasigroups [14] as an extension of the concept of T-functions defined by Klimov and Shamir [15]. The other one is a construction of bilinear MQQs [16].

In this paper we extend the work of [14], [16] and generalize the given techniques for the case of arbitrary finite field GF(p^k).

The composition of the paper is as follows: In Section II we provide the basic definitions for quasigroups and multivariate quasigroups and give a brief description of the construction of MQQs defined over GF(2). In Section III we give sufficient conditions for construction of MQQs over GF(p^k), by generalizing the results from [14]. In Section IV we give sufficient conditions for construction of bilinear MQQs with operations over GF(p^k). In Section V we show the gains from the reduction of the public key size using MQQs in bigger fields, and we conclude the paper with the Conclusions.

II. PRELIMINARIES

A. Quasigroups

Let (Q,q) be a groupoid and let a be a fixed element of Q. The mappings Q → Q, called left and right translations
(translation mappings), are defined by:
\[L_{q,a}(x) = q(a, x), \quad R_{q,a}(x) = q(x, a), \]
for every \(x \in Q \).

Definition 1: The groupoid \((Q, q)\) is called a left (right) quasigroup if the mapping \(L_{q,a} \) (\(R_{q,a} \)) is a bijection for every \(a \in Q \). If \((Q, q)\) is both left and right quasigroup, then it is simply called a quasigroup.

A finite quasigroup of \(n \) elements is said to be a quasigroup of order \(n \).

Definition 2: Given a quasigroup \((Q, q)\) we can define a new quasigroup operation \(q_\gamma \) on \(Q \) by
\[q_\gamma(x, y) = z \Leftrightarrow q(x, z) = y, \]
called a parastrophe operation.

The two operations satisfy the identities:
\[q(x, q_\gamma(x, y)) = y, \quad q_\gamma(x, q(y, x)) = y. \]

Definition 3: Two quasigroups \((Q, q_1)\) and \((Q, q_2)\) are said to be isotopic, if there exist bijections \(\alpha, \beta, \gamma : Q \to Q \) such that
\[(\forall a, b \in Q) \quad \gamma(q_1(a, b)) = q_2(\alpha(a), \beta(b)). \]
We denote the isotopy by \((\alpha, \beta, \gamma)\).

Using the definition, we can effectively construct a new quasigroup isotopic to a known one.

Proposition 1 ([17]): Given a binary quasigroup \((Q, q)\), and bijections \(\alpha, \beta, \gamma : Q \to Q \), the operation \(q' \) defined by
\[q'(x, y) = \gamma^{-1}(q(\alpha(x), \beta(y))) \]
defines a quasigroup \((Q, q')\) isotopic to \((Q, q)\).

B. Multivariate Quadratic Quasigroups defined over GF(2)

We will use the representation of finite quasigroups \((Q, q)\) of order \(2^d \) by vector valued Boolean functions (v.v.b.f.). That means that the binary operation \(q \) on \(Q \) can be seen as a v.v.b.f. \(q_{v v} : GF(2)^{2d} \to GF(2)^d \) defined by:
\[q(a, b) = c \Leftrightarrow q_{v v}(x_1, x_2, \ldots, x_d, y_1, y_2, \ldots, y_d) = (z_1, z_2, \ldots, z_d), \]
where \(x_1, \ldots, x_d, y_1 \ldots y_d, z_1 \ldots z_d \) are the binary representations of \(a, b, c \) respectively. Each \(z_i \) depends of the bits \(x_1, x_2, \ldots, x_d, y_1, y_2, \ldots, y_d \) and is uniquely determined by them. So, each \(z_i \) can be seen as a \(2d \text{-ary} \) Boolean function \(z_i = q^{(i)}(x_1, \ldots, x_d, y_1, \ldots, y_d) \), where \(q^{(i)} : GF(2)^{2d} \to GF(2) \) depends on, and is uniquely determined by, \(q \):
\[q(a, b) = c \Leftrightarrow q_{v v}(x_1, \ldots, x_d, y_1, \ldots, y_d) = (q^{(1)}(x_1, \ldots, x_d, y_1, \ldots, y_d), \ldots, q^{(d)}(x_1, \ldots, x_d, y_1, \ldots, y_d)). \]

Recall that each \(k \text{-ary} \) Boolean function \(f(x_1, \ldots, x_k) \) can be represented in a unique way by its algebraic normal form (ANF), i.e., as a sum of products
\[ANF(f) = \alpha_0 + \sum_{i=1}^{k} \alpha_i x_i + \sum_{1 \leq i < j \leq k} \alpha_{i,j} x_i x_j + \sum_{1 \leq i < j < k} \alpha_{i,j,k} x_i x_j x_k + \ldots, \]
i.e., as a multivariate polynomial over \(GF(2) \).

The ANFs of the functions \(q^{(i)} \) give us information about the complexity of the quasigroup \((Q, q)\) via the degrees of the Boolean functions \(q^{(i)} \). In general, for a randomly generated quasigroup of order \(2^d \), \(d \geq 4 \), the degrees are higher than 2.

Definition 4: A quasigroup \((Q, q)\) of order \(2^d \) is called a Multivariate Quadratic Quasigroup (MQQ) of type \(Quad_d-qLin_k \) if exactly \(d - k \) of the polynomials \(f_i \) are of degree 2 (i.e., are quadratic) and \(k \) of them are of degree 1 (i.e., are linear), where \(0 \leq k < d \).

Theorem 1 below, gives sufficient conditions for a quasigroup \((Q, q)\) to be a MQQ.

Theorem 1 ([9]): Let \(A_1 = [f_{ij}]_{d \times d} \) and \(A_2 = [g_{ij}]_{d \times d} \) be two \(d \times d \) matrices of linear Boolean expressions, and let \(b_1 = [v_i]_{d \times 1} \) and \(b_2 = [v_i]_{d \times 1} \) be two \(d \times 1 \) vectors of linear or quadratic Boolean expressions. Let the functions \(f_{ij} \) and \(g_{ij} \) depend only on the variables \(x_1, \ldots, x_d \), and let the functions \(g_{ij} \) and \(v_i \) depend only on the variables \(y_1, \ldots, y_d \). If
\[\text{Det}(A_1) = \text{Det}(A_2) = 1 \text{ in } GF(2), \]
then the vector valued Boolean operation
\[q_{vv}(x_1, \ldots, x_d, y_1, \ldots, y_d) = A_1 \cdot (y_1, \ldots, y_d)^T + b_1 \]
defines a quasigroup \((Q, q)\) of order \(2^d \) that is a MQQ.

Example 1 ([9]): The vector valued Boolean function
\[q_{vv}(x_1, x_2, x_3, y_1, y_2, y_3) = (q^{(1)}, q^{(2)}, q^{(3)}), \]
where
\[q^{(1)} = x_1 + x_3 + x_1 y_1 + x_2 y_1 + x_3 y_2 + y_2 + x_1 y_2 + x_2 y_2 + x_3 y_2 + x_1 y_3 + x_2 y_3 + x_3 y_3, \]
\[q^{(2)} = 1 + x_2 + x_3 + y_1 + x_1 y_1 + x_2 y_1 + x_3 y_1 + x_1 + y_2 + x_2 y_2 + x_3 y_2 + x_1 y_3 + x_2 y_3 + x_3 y_3, \]
\[q^{(3)} = 1 + x_2 + x_3 y_1 + y_2 + x_3 y_2 + y_3 + x_1 y_3 + x_2 y_3 + x_3 y_3, \]
defines the quasigroup \((Q, q)\) of order \(2^3 = 8 \) given by the multiplication table in Table I.
C. Construction of MQQs over $GF(2)$ using T-functions

In [14], the authors give necessary and sufficient conditions for a T-function (defined by Klimov and Shamir [15]) to define a MQQ. They call these quasigroups T-Multivariate Quadratic Quasigroups (T-MQQs). Their characterization provides a deterministic construction of MQQs over $GF(2)$.

Theorem 2 ([14]): A vector valued Boolean function $q = (q^{(1)}, q^{(2)}, \ldots, q^{(d)}) : GF(2)^{2d} \to GF(2)^d$ such that for every $s = 1, \ldots, d$, the component $q^{(s)}$ is of the form

$$q^{(s)}(x_1, x_2, \ldots, x_d) = x_s + y_s + \sum_{i,j > s} A_{i,j}(x_i \cdot x_j) + \sum_{i,j > s} B_{i,j}(y_i + y_j) + \delta^{(s)},$$

defines a T-MQQ of order 2^d.

Proposition 2 ([14]): Let q be a T-MQQ of order 2^d as defined in Theorem 2. Let D, D_1, D_2 be $d \times d$ nonsingular Boolean matrices, and let c, c_1, c_2 be Boolean vectors of dimension d. Then

$$q_s(x_1, x_2, \ldots, x_d) = D \cdot q(D_1 \cdot (x_1, \ldots, x_d) + c_1, D_2 \cdot (y_1, \ldots, y_d) + c_2) + c$$
defines a MQQ that is isomorphic to q.

D. Bilinear MQQs over $GF(2)$

In [16], the authors provide an equivalent form of Theorem 1, where the sufficient condition is simplified.

We denote

$$A_1 = I_d + \left(f^{ij}_1, \ldots, f^{ij}_d \right) \cdot (x_1, \ldots, x_d)^T \quad \text{and} \quad A_2 = I_d + \left(g^{ij}_1, \ldots, g^{ij}_d \right) \cdot (y_1, \ldots, y_d)^T$$

where f^{ij}_k, g^{ij}_k can be 0 or 1, in particular, $f^{ij}_k = g^{ij}_k$ for $1 \leq i, j, k \leq d$. Then according to [16, Theorem 8], we have

Theorem 3: For A_1, A_2 as defined in (1) and (2), if

$$\det(A_1) = \det(A_2) = 1,$$

then for any nonsingular binary matrices B_1, B_2 and a binary vector c, the vector valued Boolean operation $q_{uv}(x_1, \ldots, x_d, y_1, \ldots, y_d)$ which is equal to

$$A_0 \cdot B_2 \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_d \end{array} \right) + B_1 \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_d \end{array} \right) + B_2 \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_d \end{array} \right) + c,$$

defines a MQQ of order 2^d. Here

$$A_0 = \left(f^{ij}_1, \ldots, f^{ij}_d \right) \cdot B_1 \cdot (x_1, \ldots, x_d)^T.$$

Note that (4) has a bilinear nature, where the first term represents the bilinear form, the next two terms are linear parts, and the last one is a constant. Hence, in general, these quasigroups can be seen as bilinear quasigroups, and also (4) can be seen as a standard form of quasigroups constructed using Theorem 1.

Even more, using the above theorem, in order to generate MQQs, one only needs to find appropriate A_1 (thus A_2) such that the condition (3) is satisfied. This significantly simplifies the method deployed in [9], where one needs to search for appropriate A_1, A_2, b_1, b_2 which fulfill Theorem 1.

III. CONSTRUCTION OF MQQs OVER $GF(p^k)$ USING GENERALIZED T-FUNCTIONS

The construction of MQQs from Theorem 2 as vectors of quadratic polynomials over $GF(2)$ can be generalized for the case of any finite field $GF(p^k)$, where p is prime and $k \geq 1$.

Theorem 4: Let $p_1, p_2, \ldots, p_s = 1, \ldots, d$, be quadratic permutations over $GF(p^k)$. The function

$$q = (q^{(1)}, q^{(2)}, \ldots, q^{(d)}): GF(p^k)^{2d} \to GF(p^k)^d$$
such that for every $s = 1, \ldots, d$, the component $q^{(s)}$ is of the form

$$q^{(s)}(x_1, x_2, \ldots, x_d, y_1, \ldots, y_d) = p_1^{(s)}(x_s) + p_2^{(s)}(y_s) + \sum_{i,j > s} A_{i,j}(x_i \cdot x_j) + \sum_{i,j > s} B_{i,j}(y_i + y_j) + \delta^{(s)},$$

defines a MQQ $(GF(p^k)^d, q)$ of order p^{kd}.

Proof: We will use induction in d, i.e. prove that $q = (q^{(1)}, q^{(2)}, \ldots, q^{(d)}): GF(p^k)^{2d} \to GF(p^k)^d$ defines a quasigroup for every $d \in \mathbb{N}$.

Let $d = 1$. Then $q(x_1, y_1) = (q^{(1)}(x_1, y_1))$, where $q^{(1)}(x_1, y_1) = p_1^{(1)}(x_1) + p_2^{(1)}(y_1) + \eta^{(1)}$.

We need to show that the left and right translations of q are bijections. Let $a = (a_1) \in GF(p^k)$. Then

$$L_{q,a}(y) = q(a_1, y) = (q^{(1)}(a_1, y_1)) = (p_1^{(1)}(a_1) + p_2^{(1)}(y_1) + \eta^{(1)}) = (p_2^{(1)}(y_1) + \mu^{(1)}).$$
Since \(p_2^{(1)}(y_1) \) is a permutation, so is \(p_2^{(1)}(y_1) + \mu^{(1)} \). Hence \(L_{q,a} \) is a bijection. Similarly \(R_{q,a} \) is a bijection. It follows that \(q(x_1, y_1) \) is a quasigroup of order \(p^k \).

Now, let
\[
q(x_1, x_2, \ldots, x_{d-1}, y_1, y_2, \ldots, y_{d-1}) = (q^{(1)}(x_1, \ldots, x_{d-1}, y_1, \ldots, y_{d-1}) \ldots, q^{(d)}(x_1, x_{d-1}, y_1, \ldots, y_{d-1}))
\]
define a quasigroup of order \(p^{k(d-1)} \).

For \(d \) we have the function \(q = (q^{(1)}, q^{(2)}, \ldots, q^{(d)}) \), where each component \(q^{(s)} \) has the form (5), and thus depends only on the variables \(x_s, \ldots, x_d, y_s, \ldots, y_d \), i.e.,
\[
q(x_1, \ldots, x_d, y_1, \ldots, y_d) = (q^{(1)}(x_1, \ldots, x_d, y_1, \ldots, y_d), \ldots, q^{(d)}(x_d, y_d)).
\]
By the induction hypothesis,
\[
q'(x_2, \ldots, x_d, y_2, \ldots, y_d) = (q^{(2)}(x_2, \ldots, x_d, y_2, \ldots, y_d), \ldots, q^{(d)}(x_d, y_d)).
\]
is a quasigroup of order \(p^{k(d-1)} \). Again, we have to prove that the left and right translations of \(q \) are bijections.

Let \(a = (a_1, \ldots, a_d) \in GF(p^k)^d \).
\[
L_{q,a}(y_1, \ldots, y_d) = (q^{(1)}(a_1, \ldots, a_d, y_1, \ldots, y_d), q^{(2)}(a_2, \ldots, a_d, y_2, \ldots, y_d), \ldots, q^{(d)}(a_d, y_d)).
\]
By the induction hypothesis,
\[
L_{q',a'}(y_2, \ldots, y_d) = (q^{(2)}(a_2, \ldots, a_d, y_2, \ldots, y_d), \ldots, q^{(d)}(a_d, y_d)),
\]
where \(a' = (a_2, \ldots, a_d) \), is a bijection. For simplicity, let’s write
\[
L_{q,a}(y_1, \ldots, y_d) = (q^{(1)}(a_1, \ldots, a_d, y_1, \ldots, y_d), L_{q',a'}(y_2, \ldots, y_d)).
\]
Suppose \(L_{q,a} \) is not a bijection. This means that there exist \((b_1, \ldots, b_d) \neq (c_1, \ldots, c_d)\) such that
\[
L_{q,a}(b_1, \ldots, b_d) = L_{q,a}(c_1, \ldots, c_d).
\]
If \((b_2, \ldots, b_d) \neq (c_2, \ldots, c_d)\), then since
\[
L_{q',a'}(b_2, \ldots, b_d) = L_{q',a'}(c_2, \ldots, c_d),
\]
we get a contradiction to the inductive hypothesis. Hence \((b_2, \ldots, b_d) = (c_2, \ldots, c_d)\). Now,
\[
q^{(1)}(a_1, \ldots, a_d, b_1, \ldots, b_d) = p_1^{(1)}(a_1) + p_2^{(1)}(b_1) +\sum_{i,j>1} a_{i,j} a_{b,i} b_j + \sum_{i,j>1} b_{i,j} b_{a,j} b_i +\sum_{i>1} a_{i} a_{b,i} + \eta^{(1)}(a_1) = p_1^{(1)}(a_1) + p_2^{(1)}(c_1) +\sum_{i>1} a_{i} a_{b,i} + \eta^{(1)}(a_1) = q^{(1)}(a_1, \ldots, a_d, c_1, \ldots, c_d) + p_2^{(1)}(b_1) - p_2^{(1)}(c_1),
\]
i.e., \(p_2^{(1)}(b_1) = p_2^{(1)}(c_1) \). As \(p_2^{(1)} \) is a bijection, this cannot be true for any \(b_1 \neq c_1 \), a contradiction to (6).

Hence, \(L_{q,a} \) is a bijection. Similarly, \(R_{q,a} \) is a bijection.

So, \(q \) is a quasigroup.

Note that the proof of Theorem 4 applies to Theorem 2 as well, and is different from the one given in [14], where the specific structure of \(GF(2) \) is exploited.

Next, let’s determine the shape of the permutations
\[
\nu_1^{(s)}(a) = (a_1, \ldots, a_d, a), \nu_2^{(s)}(a) = (a_2, \ldots, a_d, a), \ldots, \nu_d^{(s)}(a) = (a_d, a, \ldots, a), \quad s = 1, \ldots, d.
\]
As we need to be at most quadratic over \(GF(p^k) \), the following theorem by Mollin and Small [18], gives a complete characterization.

Theorem 5 ([18]): Let \(f(x) \) be a polynomial over \(GF(p^k) \), with degree at most 2. \(f(x) \) is permutation polynomial if and only if one of the next two conditions is satisfied:

- \(f(x) = ax + b \), where \(a, b \in GF(p^k), a \neq 0 \),
- \(f(x) = ax^2 + b \), where \(a, b \in GF(p^k), a \neq 0 \), and \(p = 2 \).

Using Theorems 4 and 5, and a linear isomorphism defined over \(GF(p^k) \), one can construct a general MQQ of order \(p^{kd} \), suitable for cryptographic purposes.

Example 2: We give an example of a MQQ of order \(2^3 \times 3 \) defined using quadratic polynomials over the field \(GF(2^2) \).

First using Theorem 4, we obtain the quasigroup
\[
q = (q^{(1)}, q^{(2)}, q^{(3)}) \text{ as }
q(x_1, x_2, x_3, y_1, y_2, y_3) =
\begin{bmatrix}
3x_1^2 + 3x_2^2 + 3x_3^2 + 3x_2x_3 + 3x_2y_2 + 3y_2 + 3x_2y_2 + 3x_3y_2 + +x_3 + 9y_2^2 + y_2 + 3y_2 + y_2 + 2y_3 + 3
\end{bmatrix}
\]
\[
= x_2 + 3x_2^2 + 2x_2y_3 + y_3^2 + 2y_3 + y_3 + 2x_2^2 + y_3 + 2x_2^2 + 3y_3^2
\]
which has a “triangular” structure.

Now, let
\[
D_1 = \begin{bmatrix}
0 & 0 & 1 \\
2 & 1 & 1 \\
1 & 2 & 3
\end{bmatrix}, \quad D_2 = \begin{bmatrix}
0 & 3 & 2 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{bmatrix}, \quad D = \begin{bmatrix}
0 & 1 & 3 \\
1 & 2 & 1 \\
0 & 1 & 0
\end{bmatrix},
\]
be \(3 \times 3 \) nonsingular matrices over \(GF(2^2) \), and \(c_1 = (3, 2, 2), c_2 = (0, 1, 0) \) and \(c = (3, 1, 3) \) be vectors over \(GF(2^2) \). Then the quasigroup
\[
q_*(x_1, x_2, x_3, y_1, y_2, y_3) =
\begin{bmatrix}
2x_1^2 + 3x_1y_1 + 2x_1y_2 + 2x_1 + x_1^2 + 3x_2y_2 + +2x_2 + 3x_2^2 + 2x_1y_3 + x_1y_2 + x_3 + 3y_2^2 + 2y_3 + +3y_2^2 + y_2 + 3y_2 + 3
\end{bmatrix}
\]
\[
= x_2 + 3x_2^2 + 2x_2y_3 + y_3^2 + 2y_3 + y_3 + 2x_2^2 + y_3 + 2x_2^2 + 3y_3^2
\]
is a MQQ of order \(2^3 \times 3 \) isomorphic to \(q \).
IV. CONSTRUCTION OF BILINEAR MQQS OVER $GF(p^k)$

In this section, we extend the construction of MQNs from Theorem 3 as vectors of quadratic polynomials over $GF(2)$ to the case of any finite field $GF(p^k)$, where p is prime and $k \geq 1$. Note that in this section addition, multiplication and calculation of determinants are operated over $GF(p^k)$.

We consider

$$A_1' = I_d + \left(\begin{array}{c} f_{ij}^{ij}, \ldots, f_{ij}^{ij} \end{array} \right) \cdot (x_1, \ldots, x_d)^T$$

(7)

$$A_2' = I_d + \left(\begin{array}{c} g_{ij}^{ij}, \ldots, g_{ij}^{ij} \end{array} \right) \cdot (y_1, \ldots, y_d)^T$$

(8)

where $f_{ij}^{ij}, g_{ij}^{ij} \in GF(p^k)$, in particular, $f_{ij}^{ij} = f_{ij}^{ik}$, for $1 \leq i, j, k \leq d$. Then we have the following theorem:

Theorem 6: For A_1', A_2' as defined in (7) and (8), if

$$\det(A_1') \neq 0 \quad \text{and} \quad \det(A_2') \neq 0,$$

for any realizations of (x_1, \ldots, x_d) and (y_1, \ldots, y_d), where $x_i, y_i \in GF(p^k)$ and $1 \leq i \leq d$, then for any non-singular matrices B_1, B_2 over $GF(p^k)$ and any vector c with elements c_i over $GF(p^k)$, the vector valued equation

$$q_{0v}(x_1, \ldots, x_d, y_1, \ldots, y_d) \text{ which is equal to}$$

$$A_0 \cdot B_2 \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_d \end{array} \right) + B_1 \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_d \end{array} \right) + B_2 \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_d \end{array} \right) + \left(\begin{array}{c} c_1 \\ \vdots \\ c_d \end{array} \right), \quad (10)$$

defines a MQQ of order p^{kd}. Here

$$A_0 = \left(\begin{array}{c} f_{ij}^{ij}, \ldots, f_{ij}^{ij} \end{array} \right) \cdot B_1 \cdot (x_1, \ldots, x_d)^T$$

(11)

Proof: First we notice that (10) can also be written as

$$A_0' B_1 = \left(\begin{array}{c} x_1 \\ \vdots \\ x_d \end{array} \right) + B_1 \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_d \end{array} \right) + B_2 \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_d \end{array} \right) + \left(\begin{array}{c} c_1 \\ \vdots \\ c_d \end{array} \right), \quad (12)$$

where

$$A_0' = \left(\begin{array}{c} g_{ij}^{ij}, \ldots, g_{ij}^{ij} \end{array} \right) \cdot B_2 \cdot (y_1, \ldots, y_d)^T$$

(13)

The equality between (10) and (12) holds because of the special structure of A_1', A_2' as defined in (7) and (8).

We consider the equation

$$q_{0v}(a_1, \ldots, a_d, y_1, \ldots, y_d) = (q_1, \ldots, q_d)^T,$$

where $a_i, q_i \in GF(p^k)$ are known, while $y_i, 1 \leq i \leq d$ are unknown. Let $(b_1, \ldots, b_d) = B_1 \cdot (a_1, \ldots, a_d)^T$. According to (10) we have

$$A_0 \cdot B_2 \cdot (y_1, \ldots, y_d)^T = (z_1, \ldots, z_d)^T$$

(13)

where $z_i = q_i - b_i - c_i$ over $GF(p^k)$ for $1 \leq i \leq d$, and A_0 is the valuation of A_1' at $(x_1, \ldots, x_d) = (b_1, \ldots, b_d)$.

Due to (9), the linear system (13) has a unique solution $(y_1, \ldots, y_d)^T = (B_2)^{-1} \cdot (A_0)^{-1} \cdot (z_1, \ldots, z_d)^T$. In a similar manner a unique solution of the equation

$$q_{0v}(x_1, \ldots, x_d, a_1, \ldots, a_d) = (q_1, \ldots, q_d)^T$$

can be found by applying (12), which is equal to (10). Therefore (10) defines a quasigroup. In addition, it is quadratic and has p^{kd} elements, thus it is a MQQ of oder p^{kd}.

Example 3: We give an example of a bilinear MQQ of order $2 	imes 3$ defined over the field $GF(2^2)$. Let

$$B_1 = \begin{bmatrix} 0 & 0 & 3 \\ 2 & 0 & 3 \\ 0 & 1 & 0 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 3 & 1 \end{bmatrix},$$

be $3 	imes 3$ nonsingular matrices over $GF(2^2)$, and $c = (2, 0, 0)^T$ be a vector over $GF(2^2)$. Then

$$A_0 = \begin{bmatrix} 2x_1 + 3x_2 + 2x_3 & 2x_1 + 3x_2 + 3x_3 & x_1 + 2x_2 + x_3 \\ 3x_1 + 2x_2 + 2x_3 & 0 & 2x_1 + x_2 + x_3 \\ 3x_1 + x_2 + 3x_3 & 3x_2 + x_3 & 2x_1 + 3x_2 + 2x_3 \end{bmatrix},$$

and the obtained quasigroup $q = (q^{(1)}, q^{(2)}, q^{(3)})$ is

$$q(x_1, x_2, x_3, y_1, y_2, y_3) = \begin{bmatrix} 3x_1y_1 + x_1y_2 + x_1y_3 + 2x_2y_1 + 2x_2y_2 + 2x_2y_3 + + 3x_3y_2 + 3x_3y_3 + 3x_3 + y_2 + 2 \\ x_1y_1 + 2x_1y_2 + 2x_1y_3 + 2x_1 + 3x_2y_1 + 3x_2y_2 + 3x_2y_3 + + 3x_3y_1 + 3x_3y_2 + 3x_3y_3 + 3y_1 + 3y_2 + 3y_3 \\ x_1y_1 + 2x_1y_2 + 2x_1y_3 + 2x_1 + 3x_2y_1 + 3x_2y_2 + 3x_2y_3 + + 3x_3y_1 + 3x_3y_2 + 3x_3y_3 + 3y_1 + 3y_2 + 3y_3 \end{bmatrix},$$

which is a MQQ of order $2^{2 \times 3}$.

V. BENEFITS OF USING MQQS DEFINED OVER $GF(p^k)$

Although in the previous sections we gave constructions of MQNs over any field $GF(p^k)$, in this section we will focus our interest on the fields $GF(2^k)$ where $k=1, 2, 4$ and 8. That is due to the fact that in software and hardware implementations, these are the most common values used.

The number $\tau(k, n)$ of all possible quadratic terms of a multivariate quadratic polynomial $p(x_1, \ldots, x_n)$ differs depending on the underlying field we are working in, i.e., whether we are working in the prime field $GF(2)$ or in another finite field $GF(2^k)$, $k > 1$ and is given by the expression:

$$\tau(k, n) = \begin{cases} \frac{n(n+1)}{2}, & \text{if } k = 1, \\ \frac{n(n+1)(n+2)}{2}, & \text{if } k > 1 \end{cases}$$

Consequently, the size of the public key in multivariate quadratic schemes depends on the number n of variables and on the number of polynomials in the public key. If instead of the original construction of MQQ-SIG in $GF(2)$ as it is in [13], one would use our designed MQQs over $GF(2^k)$, the formula for calculating the size of the public key (in bytes) would be given by the following expression:

$$MQQ\text{-SIG}{\text{Public\text{Key\text{Size}}}}(k, n) = \left\lceil \frac{n}{16} \right\rceil \times \tau(k, \left\lceil \frac{n}{k} \right\rceil)$$
For the most typical values of \(n \): 160, 192, 224 and 256 the size of the public key for different values of \(k \) is given in Table II. There we see that the reduction of the size of the public key can be up to 58 times.

Table II

<table>
<thead>
<tr>
<th>Size in Kbytes</th>
<th>(GF(2))</th>
<th>(GF(2^4))</th>
<th>(GF(2^8))</th>
<th>(GF(2^8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>121.79</td>
<td>32.43</td>
<td>8.41</td>
<td>2.26</td>
</tr>
<tr>
<td>192</td>
<td>217.14</td>
<td>55.70</td>
<td>14.36</td>
<td>3.81</td>
</tr>
<tr>
<td>224</td>
<td>344.55</td>
<td>88.06</td>
<td>22.60</td>
<td>5.95</td>
</tr>
<tr>
<td>256</td>
<td>514.02</td>
<td>131.02</td>
<td>33.52</td>
<td>8.77</td>
</tr>
</tbody>
</table>

VI. CONCLUSIONS

We have given two new constructions of Multivariate Quadratic Quasigroups (MQQs) in any finite field \(GF(p^k) \). The proposed methods are a natural extension of the methods that were previously developed for MQQs defined over \(GF(2^k) \) where \(k \in \{1, 2, 4 \} \) or \(8 \), is the reduction of the size of the public key up to 58 times.

As a followup of this work we want to mention that one crucial part about using MQQs is the use of their parastrophes in the decryption or the signing process. This part will be included in the extended version of this paper.

REFERENCES

