
JavaSymphony: A System for Development of Locality-Oriented Distributed and
Parallel Java Applications�

Thomas Fahringer
Institute for Software Science, University of Vienna

Liechtensteinstrasse 22, A-1090, Vienna, Austria
tf@par.univie.ac.at

Accepted for publication in IEEE Intl. Conf. on Cluster Computing CLUSTER 2000, Chemnitz, Germany, Dec. 2000

Abstract

Most Java-based systems that support portable parallel and
distributed computing either require the programmer to deal with
intricate low-level details of Java which can be a tedious, time-
consuming and error-prone task, or prevent the programmer from
controlling locality of data. In this paper we describe JavaSym-
phony, a programming paradigm for distributed and parallelcom-
puting that provides a software infrastructure for wide classes of
heterogeneoussystems ranging from small-scale cluster computing
to large scale wide-area meta-computing. The software infrastruc-
ture is written entirely in Java and runs on any standard compliant
Java virtual machine.

In contrast to most existing systems, JavaSymphony provides
the programmerwith the flexibility to control data localityand load
balancing by explicit mapping of objects to computing nodes. Vir-
tual architectures are specified to impose a virtual hierarchy on a
distributed system of physical computing nodes. Objects can be
mapped and dynamically migrated to arbitrary components ofvir-
tual architectures. A high-level API to hardware/softwaresystem
parameters is provided to control mapping, migration, and load
balancing of objects. Objects can interact through synchronous,
asynchronous and one-sided method invocation. Selective remote
classloading may reduce the overall memory requirementof an ap-
plication. Moreover, objects can be made persistent by explicitly
storing and loading objects to/from external storage.

A prototype of the JavaSymphony software infrastructure has
been implemented. Preliminary experiments on a heterogeneous
cluster of workstations are described that demonstrate reasonable
performance values for a small test program.

1. Introduction

Distributed and parallel computing have been investigatedfor
many years but recently research on this topic has gained newim-
petus due to the explosive growth of the Internet on the one hand,
and the availability of the portable programming language Java [1]
on the other hand. Java is very popular due to its ability to sup-� This research is partially supported by the Austrian Science Fund as
part of Aurora Project under contract SFBF1104.

port code mobility, object-orientation, portability, multi-threading,
synchronization mechanisms, and communication APIs. Although
there is no agreement whether Java can ever satisfy the needsof
high-performance driven applications, it is commonly usedto ex-
ploit medium grain shared memory parallelism based on threads as
well as medium to coarse grain data and task parallelism based on
remote method invocation (RMI) and socket communication.

Much work has been conducted in the area of improving Java
Virtual Machine (JVM) implementations (for instance, JavaRMI
or object serialization), providing a high-level veneer that removes
some of Java’s RMI and/or socket communication complexity,and
introducing language extensions or class libraries to support trans-
parent distributed objects. Most research projects that offer a soft-
ware infrastructure for high-level distributed and parallel program-
ming, however, lack any programmer control over locality ofdata.
Automatic distribution and dynamic migration of objects can eas-
ily lead to significant performance degradation as the underlying
runtime system has little information about the distributed Java ap-
plication. Frequently only system load and application monitoring
is considered for distribution of objects. Monitoring based sys-
tems may detect performance inefficient mapping of objects and
high interaction among computing nodes in a distributed system.
However, at the time where such an effect is detected, performance
has already been lost and probably expensive migration mustbe
invoked to reduce performance degradation. Most of the time, pro-
grammers are very much aware of the particular nature of their
application, how to distribute objects, which objects to should be
mapped together with other objects, when to migrate objects, etc.
Programming paradigms that do not allow to specify this informa-
tion lose a strong potential for increased performance.

In this paper we introduce JavaSymphony, a programming
paradigm for distributed and parallel computing that provides a
distributed and parallel computing infrastructure for wide classes
of heterogeneous systems ranging from small-scale clustercom-
puting to large scale wide area meta computing. JavaSymphony
provides a class library which is entirely written in Java and runs
on any standard compliant JVM. The key features of JavaSym-
phony – currently not included in Java – which substantiallyalle-
viate performance-oriented distributed and parallel programming:

1



� Dynamic Virtual Distributed Architectures: The program-
mer can dynamically define and modify virtual distributed
architectures that impose a virtual hierarchy on a distributed
system of physical computing nodes. Virtual architectures
consist of a set of components: computing nodes, clusters
(collection of nodes), sites (collection of clusters), anddo-
main (collection of sites). Virtual architectures can be re-
stricted by a system of constraints in order to include only
those computing resources that satisfy the needs of an appli-
cation (hardware/software requirements) and honors the pol-
icy of a computing site (e.g. only use idle workstations).
Multiple virtual architectures can be defined that possibly
share common architecture components.� Access to system parameters: JavaSymphony provides a
high-level API to a large variety of system parameters, in-
cluding CPU load, idle times, available memory size, num-
ber of processes and threads, network latency, network band-
width, etc. These system parameters can be requested from
the JavaSymphony runtime system (JRS) and are commonly
used to define constraints for requesting virtual architectures
and/or controlling mapping, migrating, and load balancingof
objects.� Automatic and User-Controlled Mapping of Objects:
The programmer can control the creation and mapping of
objects to specific components of virtual architectures. Map-
ping of objects can be done in relation to the location of other
objects. E.g a set of objects may be placed physically close to
each other or even on the same processing node if they heav-
ily interact with each other. If the programmer does not pro-
vide explicit mapping of objects, then JRS offers automatic
mapping based on periodically monitored system constraints.� Automatic and User-controlled Object Migration :
JavaSymphony supports both automatic and user-controlled
migration of objects through periodically monitoring system
parameters.� Asynchronous Remote and One-sided Method Invoca-
tion: Whereas all RMIs under Java are performed syn-
chronously in blocking-mode, JavaSymphony in addition
supports also asynchronous remote method invocation. A
handle is returned that can be used in the future to determine
the availability and access of the method’s result. Moreover,
one-sided method invocation is provided which eliminates
the need to return any result or wait for the method to be
completed.� Selective Remote Classloading: Instead of replicating all
Java classes to all nodes executing an application, classes
may be considered to be loaded only to the nodes that actually
need them. JavaSymphony supports classloading to specific
architecture components. This feature can reduce the overall
memory requirement of an application.

In addition JavaSymphony supports persistent objects thaten-
able the programmer to explicitly store and load objects to/from
external storage. Moreover, JavaSymphony does not requireto ex-
tend Java, modify the JVM, compiler or stub compiler. A prototype
software infrastructure for JavaSymphony has been implemented

as an agent based system. We are currently in the process to evalu-
ate our system through the development of several JavaSymphony
applications.

The rest of this paper is organized as follows: The next sec-
tion discusses related work. In Section 3 we describe and discuss
dynamic virtual distributed architectures. Section 4 presents the
programming model of JavaSymphony which includes register/un-
register applications under JRS, generation of virtual architectures,
class loading, creation, mapping and freeing of objects, method in-
vocations, object migration, and persistent objects. Section 5 de-
scribes the implementation of JRS. Experiments are presented and
discussed in Section 6. Finally, some concluding remarks are made
and future work is outlined in Section 7.

2 Related Work

There is a large amount of related work which has made col-
laborative use of computational resources over a global network,
including low-level communication systems such as MPI [8] and
PVM [24] and higher-level dedicated systems, including Globus
[9], Legion [12], and NetSolve [4]. Although these systems offer
heterogeneous collaboration of multiple systems in parallel – some
of them in wide-area setting – they involve rather complex main-
tenance of different binary code, multiple execution environments,
etc. CORBA [19] defines a middleware that bridges distributed
objects across heterogeneous environments. It allows client ob-
jects to invoke server objects across the network. All objects, as
long as they expose a well-defined interface in the InterfaceDefi-
nition Language (IDL) that describes the services they provide to
other objects, can be invoked anywhere in the network. CORBAas
well as Globus and Legion can be used to build the JavaSymphony
runtime system. However, we decided to use Java/RMI instead
assuming that it entails less complexity and overhead.

Jini [2] provides a sophisticated technology to interconnect
generic devices that provide services to other devices or users. De-
vices and their services register under a lookup service. Services
are located by using the lookup service. Once connections are
made to devices, the lookup service is no longer involved in result-
ing interactions between clients and servers of services. Jini could
be used to build part of the runtime system of JavaSymphony (see
Section 5). However, whereas JRS is currently built on a thinpro-
tocol layer to provide JavaSymphony functionality (such asprovid-
ing virtual architectures), we believe that performance problems
may arise by using Jini due to larger protocol overheads.

In order to overcome system complexity, several research
groups introduced Java-based global computing systems that ben-
efit by Java’s platform independence. These efforts can be broadly
classified into two categories. The first category concentrates on
improving the implementation of JVM (e.g. Java/RMI or object
serialization) [27, 26, 21, 20]. The second category extends Java
with special distribution primitives and semantics or provides class
libraries to alleviate the usage of Java as a distributed program-
ming language. JavaParty [22] extends Java with a class modifier
remote. Objects generated for remote classes can be distributed.
JavaParty greatly simplifies RMI programming at the cost of in-
creased complexity of the actual Java code produced. JavaParty of-
fers transparent object migration. It is claimed that user-controlled

2



dynamic changing of object distribution strategies is enabled with-
out providing further details of how this is done. JavaPartyalso
handles static methods and variables. Both JavaParty as well as
other systems such as Charlotte [3] support a distributed shared
memory on top of the JVM that inherently does not enable the pro-
grammer to control locality of data.

Javelin [5] and Ninflet [25] employ a three-tier architecture
where the Javelin’s broker, client, and hosts correspond tothe Nin-
flet system’s dispatcher, Ninflet, and the server. Clients seeking
computing resources by submitting their work in form of applets,
register with a broker and submit their work in the form of an ap-
plet. Hosts are donating resources, contact the broker and run ap-
plets. Javelin makes it relatively easy for a user to act as a comput-
ing server by leveraging the existing WEB technology.

Javelin [5], Jada [6] and JavaSpaces [10] can be considered as
Linda derivatives which provide either none or only very limited
means (compared to the functionality offered by JavaSymphony)
to control locality.

ObjectSpace Voyager [11] and Aglets [15] are mobile agent
systems that do not target efficient, global computing whichre-
quires extensive communication among objects. Typically these
systems do not provide references to remote objects which limits
interaction among objects such as remote method invocation.

Ajents [14] has influenced JavaSymphony’s programming
model for remote object creation, asynchronous remote method
invocation and class loading. However, Ajents just as most other
systems does not allow the programmer to explicitly controlobject
locality. Ajents also does not support virtual architectures, one-
sided remote method invocations, selected classloading tospecific
computing nodes, and access to hardware/software system param-
eters as introduced in JavaSymphony. Ajents, however, offers so-
phisticated checkpointing mechanism and allows to migrateob-
jects while their methods are executing.

Another source of influence for JavaSymphony’s programming
model is the OpusJava [17, 16] system. OpusJava is a Java based
framework for distributed high performance computing thatpro-
vides a high level component infrastructure and facilitates a seam-
less integration of HPF [13] modules into distributed environments
via its interface to the HPF based coordination language Opus [18].
Although the main focus of OpusJava is the interoperabilityof high
level parallel languages, such as HPF and Java, it may be usedas a
pure Java framework that provides similar means for remote object
creation, synchronous and asynchronous method invocation, and
object migration as JavaSymphony. However, OpusJava only pro-
vides basic support for a user driven mapping of objects and does
not have an elaborated concept of virtual architectures. Weare
currently investigating a possible combination of JavaSymphony
and OpusJava, in particular we intend to employ the elaborated ar-
chitectural features of JavaSymphony, such as virtual architectures
and on-line status information, within the OpusJava framework.

3 Dynamic Virtual Distributed Architectures

Most programmers are well aware of how a distributed applica-
tion should be structured, where to place objects, which objects in-
teract with each other, and how to exploit locality. JavaSymphony
supports automatic mapping, load balancing, and migrationof ob-

jects without involving the programmer (see Section 5.1). How-
ever, fully automatic systems commonly cause poor performance
results due to lack of information about the application andinsuf-
ficient static and dynamic analysis. JavaSymphony, therefore, pro-
vides a semi-automatic mode which leaves the error-prone and te-
dious low-level details (e.g. creating and handling of remote prox-
ies for Java/RMI) to underlying system whereas the programmer
controls the most important strategic decisions which includes:� the setup of the virtual distributed architecture by determin-

ing which processing nodes, clusters, collection of clusters,
wide-area computing infrastructure, etc. should be used for
executing a distributed/parallel program. System constraints
can be specified in order to include only those comput-
ing resources that satisfy the needs of an application (hard-
ware/software requirements) and honors the policy of a com-
puting site (e.g. only use idle workstations).� the mapping of data in relation to other data. E.g a set of
objects may be placed physically close to each other or even
on the same processing node if they heavily interact with each
other,� the mapping of data (objects) onto specific processing nodes
based on system constraints (e.g. nodes with a minimum
amount of memory available or a maximum of CPU load)� placement of code (Java byte-code) on specific computing
nodes which reduces the overall memory requirement of an
application, and

JavaSymphony introduces the concept ofdynamic virtual dis-
tributed architectures(called virtual architectures in the remainder
of this paper) which enables the programmer to define a structure
of a heterogeneous (in terms of type, speed, or configuration) net-
work of computing resources and to support mapping, load balanc-
ing, and migration of objects and code placement. Every virtual
architecture (see Figure 1) defines a domain which is subdivided
into nodes, clusters, and sites. At the lowest level computingnodes
can be selected which commonly corresponds to arbitrary PCsor
workstations. Several nodes can be combined to form acluster
which usually correspond to a local PC/workstation cluster. At the
next higher level asitecan be defined which connects a set of ge-
ographically distributed clusters for instance via WANs (wide area
networks). At the highest level several sites can be combined to
form a domainwhich may define a large computational grid that
can be distributed across several continents. Note that every node
belongs to a unique (cluster,site,domain) triple. Similarly, every
cluster belongs to a unique pair (site,domain) and every site to a
specific domain. Virtual architectures can be dynamically created
and modified which will be described in the next section. Every
component (node, cluster, site, and domain) of a virtual architec-
ture is controlled by a manager which is not seen by the applica-
tion programmer but used to implement JRS. More details about
the implementation of virtual architectures are given in Section 5.

4 JavaSymphony Programming Model

In this section we describe the JavaSymphony programming
model. Commonly, every JavaSymphony application first must

3



cluster

cluster
manager

manager
site

manager
domain

domain

site

cluster

node

site

site

cluster

cluster cluster

cluster
site

domain

cluster

Figure 1. Example of a JavaSymphony Virtual Architecture Domain

register with the JavaSymphony runtime system (JRS). Thereafter,
virtual architectures can be defined. In order to reduce the im-
pact of Java class loading, all required classes are stored in Java
archive files and loaded onto arbitrary nodes of a defined virtual
architecture. Objects can be created, mapped, and migratedboth
on a local as well as on a remote computing node. JavaSymphony
supports three kinds of method invocations which includes syn-
chronous, asynchronous, and one-sided invocations. Finally, an
application should un-register from JRS.

4.1 Register/Un-register Application

Every JavaSymphony application first needs to register withthe
underlying JRS which is then aware that this application is access-
ing its services.
...
// register application with JRS
JSRegistration reg = new JSRegistration();
...
// un-register application
reg.unregister();
...

An application should un-register from JRS as soon as none of
the objects generated under JRS are still needed. Un-registration
enables JRS to reduce the underlying book-keeping overheadand
allows the garbage collector to deallocate memory.

4.2 Generate Dynamic Virtual Distributed Archi-
tectures

In order to specify locality, JavaSymphony provides dynamic
virtual architectures. The programmer can define arbitrarytopolo-
gies comprising nodes, clusters, sites and a domain based onthe
concept introduced in Section 3. Architecture constraintsare in-
troduced in order to specify system constraints, to controlload

balancing, to honor computing site policies, etc. The basicidea
is to include only nodes in a virtual architecture which obeyuser-
defined constraints defined over static and dynamic system param-
eters. Static parameters are not changed during execution of an
application program which includes name of a machine, operat-
ing system, cpu type, peak performance parameters, etc. Dynamic
parameters can change while the application program is executing
which comprises system load, idle times, available memory,num-
ber of context switches or system calls, etc.

JavaSymphony allows to create an object of a class
JSConstraintswhich holds a set of constraints. Constraints
are added to this object by invoking calls to methodsetCon-
straints(systemparameter,relationaloperator,numberstring).
Each method invocation adds a constraint with the followingpat-
tern:

systemparameter relationaloperator numberstring

where relationaloperator corresponds to arbitrary relational
operators and numberstring refers to floating point/integer num-
bers or strings. For instance, consider the following JavaSymphony
code excerpt:

JSConstraints constr = new JSConstraints();
constr.setConstraints(JSConstants.NODENAME,”! =”,”milena”);
constr.setConstraints(JSConstants.CPUSYS LOAD,” <=”,10);
constr.setConstraints(JSConstants.IDLE,”>=”,50);
constr.setConstraints(JSConstants.AVAILMEM,” >=”,50);
constr.setConstraints(JSConstants.SWAPSPACE RATIO,” >=”,0.3);

A set of constraints is collected in objectconstr. The constraints
specify that a computing node with the name “milena” cannot be
included in a virtual architecture (yet to be requested fromJRS).
The system executes less than 10 % in system mode, is idle for
more than 50 %, has at least 50 MBytes of unused memory, and
the ratio of used to available swap space is less than 0.3. Overall
the programmer can define constraints defined over approximately
40 different system parameters.

4



The programmer can request a virtual architecture from JRS by
generating nodes, clusters, and sites that form a domain.

Nodes

Nodes can be created and released by the programmer as fol-
lows:

// request arbitrary node
Node n1 = new Node();

// request node with name ”rachel”
Node n2 = new Node(”rachel”);

// request node for which constraints hold
Node n3 = new Node(constr);

// determine the associated cluster, site, and domain of n1
Cluster c1 = n1.getCluster();
Site s1 = n1.getSite();
Domain d1 = n1.getDomain();

n1.freeNode(); // release node n1 from application

Noden1 is requested without specifying any constraints. In
this case JRS will allocate a node with low system load and rea-
sonable resources (e.g. memory) available. The programmerwants
n2 to be the node with name “rachel”. For noden3 all constraints
collected in objectconstr- as defined previously - must hold. Ac-
cording to Section 3 every node is associated with a unique cluster,
site, and domain which can be determined by invoking methods
getCluster, getSite, andgetDomain, respectively. A node can also
be released from a given application by using methodfreeNode.

Clusters

A cluster can be requested by indicating the number of nodes
to be included in the cluster. Optionally, a set of constraints can be
specified which must be satisfied by every node in the cluster.In
the following example a clusterc1with 5 nodes is requested. Note
that ”[...]” expresses optionality in all code skeletons ofthis paper.
A cluster can also be defined by adding individual nodes each of
which may honor a specific set of constraints. For instance, cluster
c2 is defined by adding nodesn1, n2, andn3– which are instances
of classNode– to it.

Node n1, n2, n3;
// allocate cluster with 5 nodes

Cluster c1 = new Cluster(5[,constr]);

// define individual cluster which contains nodes n1, n2, andn3
Cluster c2 = new Cluster();
c2.addNode(n1); c2.addNode(n2); c2.addNode(n3);

// determine current number of nodes in cluster
c1.nrNodes();

// access node-3 in cluster
Node n3 = c1.getNode(3);

// determine site of cluster
Site s1 = c1.getSite();

// determine domain of cluster

Domain d1 = c1.getDomain();
// release node n2 from cluster c2

c2.freeNode(n2);
// release node-2 from cluster c2

c2.freeNode(2);
// release cluster c2

c2.freeCluster();

Method nrNodescan be invoked for every cluster object in
order to determine the current number of nodes included in the
cluster. The nodes of a clusterc are numbered from 0 to
c.nrNodes() - 1. MethodsgetNodes, getSite, and getDomainare
used to access individual nodes, the site, and the domain of aclus-
ter. Nodes of a cluster can also be released by invoking method
freeNode. The entire cluster can be released through method
freeCluster.

Sites

Sites can be generated and modified similar as done for clusters.
In the following code excerpt a site s1 with 3 clusters is generated.
If constraints are used then they must hold for all nodes in the site.
A site can also be defined based on already existing clusters by
generating an instance of classSiteand calling methodsaddClus-
ter.

int[] SiteNodes =f2,4,5g;
// request for site with 3 clusters with 2, 4
// and 5 nodes, respectively

Site s1 = new Site(SiteNodes [,constr]);

// define individual site which contains cluster c1 and c2
Site s2 = new Site();
s2.addCluster(c1); s2.addCluster(c2);

// determine current number of clusters and nodes in the site
s1.nrClusters();
s1.nrNodes();

// access cluster-1 in site
Cluster c1 = s1.getCluster(1);

// access node-1 in cluster-2 of site s1: alternative-1
Node n1 = s1.getCluster(2).getNode(1);

// access node-1 in cluster-2 of site s1: alternative-2
Node n1 = s1.getNode(2,1);

// determine domain of site
Domain d1 = s1.getDomain();

// release node-1 from cluster-2 of site s1: alternative-1
s1.freeNode(2,1);

// release node-1 from cluster-2 of site s1: alternative-2
s1.getCluster(2).freeNode(1);

// release cluster 1 of site s1
s1.freeCluster(1);

// release cluster c2 of site s1
s1.freeCluster(c2);

// release site s1
s1.freeSite();

The number of clusters and nodes in a site can be obtained by
using methodsnrClustersandnrNodes. Clusters can be accessed
by invoking methodgetCluster(int ClusterID). There are two alter-
natives to reference the nodes of a site. Firstly, methodgetNode(int

5



ClusterID, int NodeID)which accesses node with NodeID in clus-
ter with ClusterID. NodeID (ClusterID) must be in the range be-
tween 0 andnrNodes-1(nrClusters-1). Secondly, methodgetClus-
ter can be used to access a specific cluster of a site which can be
further referenced by using the previously defined cluster method
getNode. The domain of a site can be accessed by using method
getDomain. Partially or fully releasing a site is supported similarly
as done for clusters.

Domains

Domains are build similar to clusters and sites by incorporating
multidimensional arrays. In the following code excerpt a domain
with 2 sites is allocated.

int[][] DomainNodes = ff1,3,5g,f6,4gg;
// request for domain with 2 sites
// site-1 with 3 clusters with 1, 3, and 5 nodes, respectively
// site-2 with 2 clusters with 6 and 4 nodes, respectively

Domain d1 = new Domain(DomainNodes [,constr]);

// define individual domain which contains site s1 and s2
Domain d2 = new Domain();
d2.addSite(s1); d2.addSite(s2);

// determine current number of sites, clusters and nodes
// in the domain

d1.nrSites();
d1.nrClusters();
d1.nrNodes();

// access site-2 in domain
Site s2 = d1.getSite(2);

// access node-3 in cluster-2 of site-1 in domain : alternative-1
Node n1 = d1.getSite(1).getCluster(2).getNode(3);

// access node-3 in cluster-2 of site-1 in domain : alternative-2
Node n1 = s1.getNode(1,2,3);

// release node-3 from cluster-2 of site-1: alternative-1
d1.freeNode(1,2,3);

// release node-3 from cluster-2 of site s1: alternative-2
d1.getSite(1).getCluster(2).freeNode(3);

// release cluster-2 of site-1: alternative-1
d1.freeCluster(1,2);

// release cluster-2 of site-1: alternative-2
d1.getSite(1).freeCluster(2);

// release site-1 of domain d1
d1.freeSite(1);

// release site s1 of domain d1
d1.freeSite(s1);

// release domain d1
d1.freeDomain();

The first site has 3 clusters with 1, 3, and 5 nodes, respectively.
The second site has 2 clusters with 6 and 4 nodes, respectively.
Constraints can be optionally specified which must hold for all
nodes in the domain. Individual domains based on already exist-
ing sites can be allocated by using methodaddSite. Domains can
also change dynamically by using methodsfreeNode, freeCluster,
freeSite, andfreeDomain. The current number of nodes, clusters,
and sites in the domain can be determined by invoking methods
nrNodes, nrClusters, andnrSites, respectively.

4.3 Class Loading

JavaSymphony enables the programmer to generate objects
both locally and remotely. As JavaSymphony is built on top of
the Java RMI mechanism, we require all objects that can be cre-
ated remotely to be serializable. Before an object can be gener-
ated, the class file of this object commonly must be located either
locally in the CLASSPATH or at an arbitrary URL. JavaSymphony
assumes that all Java class files are available at the nodes ofa given
virtual architecture before objects are generated. This reduces the
amount of data transferred when objects are created. For this pur-
pose, JavaSymphony enables to build a codebase which is then
transferred (by using methodcodebase.load) as Java archive file
to arbitrary components of a virtual architecture. JavaSymphony,
therefore, not only supports the programmer to control data(ob-
jects) locality but also program locality. Only those components of
a virtual architecture may store a class file that need it.

Node node; Cluster cluster; Site site; Domain domain;

// initialize a codebase
JSCodebase codebase = new JSCodebase();

// a Java archive or class file is added to the codebase
codebase.add(“../classes.jar”);
codebase.add(“../testclasses.class”);

// Java archive or class file is fetched from URL
// and added to the codebase

URL classURL =
new URL(“http;//www.par.univie.ac.at/JS/test/file.class”);
codebase.add(classURL);

// load codebase to a node of a virtual architecture
codebase.load(node);

// load codebase to all nodes of a cluster, site, or domain.
codebase.load(cluster);
codebase.load(site);
codebase.load(domain);

// free codebase
codebase.free();

A methodfree() can be invoked on a codebase object which
frees the codebase and associated memory.

4.4 Create, Map, and Free Objects

Assuming that class files are available on every component of
a virtual architecture where needed, objects can now be created by
generating instances of class JSOBj which is part of the JavaSym-
phony class library. The first parameter of thenewcommand for
object includes the class name for which an object has to be gener-
ated. Optionally, a second parameter indicates where to place the
object which can be local on the node where the program is being
executed, on a specific node of a domain, or on a node of a specific
cluster, site, or domain. In the latter case JRS chooses a node with
the smallest system load and reasonable resources available. The
same accounts if no mapping parameter is indicated. A predefined
classJSas part of the JavaSymphony class library offers various
static methods which includes among others a methodgetLocalN-
odeto determine the local node. A set of constraints (see Section

6



4.2) can be provided as a third parameter when generating an ob-
ject to restrict the virtual architecture components on which the
object can be generated and to improve load balancing of objects.

// get node on which this application is being executed
Node local = JS.getLocalNode(); JSConstraints constr;
Node node; Cluster cluster; Site site; Domain domain;

// generate an object of class “classname” at
// a node decided by JRS or restricted to constraints

JSObj obj1 = new JSObj(“classname” [, constr]);
// generate object on the local node

JSObj obj1 = new JSOBj(“classname”,local);

// generate object on a specific node
JSObj obj1 = new JSOBj(“classname”,node);

// generate object on an arbitrary node of a cluster, site,
// or domain decided by JRS or restricted to contraints

JSObj obj1 = new JSOBj(“classname” [,clusterjsitejdomain ,constr]);

// generate obj1 on the same node
// where obj2 has been generated

JSObj obj1 = new JSOBj(“classname” ,obj2.getNode());
// generate obj1 on the same cluster, site,
// or domain where obj2 has been generated

JSObj obj1 = new JSOBj(“classname”,obj2.getCluster() [,constr]);
JSObj obj1 = new JSOBj(“classname”,obj2.getSite() [,constr]);
JSObj obj1 = new JSOBj(“classname”,obj2.getDomain() [,constr]);

// free object
obj1.free();

Moreover, the programmer has a choice to map an object on the
same node, cluster, site or domain where some other node already
resides. If obj1 should be generated on a cluster, site, or domain on
which obj2 resides, then JRS or a user-provided set of constraints
decides on which node within this cluster, site, or domain, obj1
actually will be generated.

Finally, an object if no longer needed should be released by
the programmer through invoking methodfreewhich reduces the
overall book-keeping effort and enables the garbage collector to
deallocate the memory for this object.

4.5 Method Invocation

Java/RMI imposes blocking remote method invocation which
prohibits overlapping of waiting time – for results of remote
method invocations to arrive – with some useful local computa-
tions. In addition to synchronous (blocking) RMI, JavaSymphony
also offers asynchronous (non-blocking) and one-sided RMI(non-
blocking without results).

Synchronous Method Invocation

Synchronous method invocation (by using predefined method
sinvokeof an object) blocks the calling site for as long as the result
arrives. Parameters are passed as an array of objects. JavaSym-
phony always returns a method invocation result of class Object
which must be explicitly casted to the actual class of the result. In
the following code excerpt a method with name ”methodname”
with parametersParam1()andParam2()is invoked based on ob-
jectobj.

JSObj obj = new JSOBj(“class name”);
...
Object[] params = fnew Param1(), new Param2()g;
ResultClass result = (ResultClass)obj.sinvoke(”methodname”,params);

Asynchronous Method Invocation

Asynchronous method invocations (by using predefined
methodainvokeof an object) are commonly employed to paral-
lelize computations. Again an array of objects is used to hold the
method parameters. The method call, however, does not blockbut
immediately returns a handle. Execution continues at the calling
site. If a pre-defined methodhandle.isReadyreturns TRUE then
the result is available, FALSE otherwise. If the calling site wants
to block until the result has arrived – for instance, becauseno other
useful computations can be done – then methodhandle.getResult
can be called. Note that this method returns the result object of
type Object. It must be explicitly casted to the actual classof the
result.

// invoke remote method with parameters; a handle is returned
// to refer to the method’s result in the future

Object[] params = fnew Param1(), new Param2()g;
ResultHandle handle = obj.ainvoke(”methodname”,params);
...

// verify whether result is available
if (handle.isReady())f

// wait for result to arrive in blocking mode
ResultClass result = (ResultClass)handle.getResult();g

...
// wait for result to arrive in blocking mode
// without checking for available result

ResultClass result = (ResultClass)handle.getResult();

One-sided Method Invocation

A one-sided method invocation (by using predefined method
oinvokeof an object) is used in case that it is not necessary to wait
for the completion of a remote method invocation and no result is
returned. This method invocation can improve the performance of
the application because there is no need to transfer back a result
from a node that hosts the remote object. Moreover, one-sided
method invocation reduces some book-keeping overhead of JRS.
Object[] params = fnew Param1(), new Param2()g;
obj.oinvoke(“method”,params);

4.6 Dynamically Migrate Objects

Objects can be migrated during execution of an application.
JRS, however, verifies before object migration, whether anyof
its methods are currently being executed. If so, then migration
is delayed until all unfinished method invocations have completed
execution, otherwise the object can be immediately migrated.
JavaSymphony offers two forms of object migration: automatic
migration which is controlled by JRS or explicit migration which
is controlled by the programmer.

Automatic object migration can be enabled through the JS-
Shell (see Section 5). In the automatic mode JRS periodically ex-
amines whether the creation constraints of a virtual architecture

7



provided by the programmer still hold. If no programmer con-
straints have been provided, then a set of system constraints de-
fined by the JS-Shell must hold. In both cases if the constraints
of certain virtual architecture components do not hold thenthe ob-
jects on these components will be migrated to another component
for which the constraints hold.

Explicit migration can be encoded by the JavaSymphony ap-
plication programmer. For this purpose JavaSymphony allows to
access system parameters for virtual architectures. System param-
eters for clusters, sites, and domains are averaged across the con-
tained nodes. MethodgetSysParamcan be called for every archi-
tecture component to examine the system parameter of interest.
Moreover, through methodconstrHoldit can be verified whether
a set of constraints currently hold for a given architecturecompo-
nent. These are the same parameters that are also used to restrict
requests for virtual architectures according to Section 4.2. For in-
stance, in the following code excerpt it is examined whetherthe
noden1on which an specific object resides has less than 50 % idle
time. If so, then this object can be migrated by using methodmi-
grate. If migrateis called without any parameters then JRS decides
where to migrate the node.

JSConstraints constr;
Node node; Cluster cluster; Site site; Domain domain;
JSObj obj;

Node n1 = object.getNode();
// node on which object resides has less than 50 % idle time
// set of constraints constr hold for node n1

if (n1.getSysParam(JSConstants.IDLE)< 50) jj
n1.constrHold(constr))f

// migrate object to a node destined by JRS
obj.migrate();

// migrate object to a node according to a set of constraints
obj.migrate(constr);

// migrate object to a specific node
obj.migrate(node);

// migrate object to a node of a cluster, site, or domain
// to be destined by JRS or optionally based on constraints

obj.migrate(clusterjsitejdomain [,constr]);g
Methodmigratecan be invoked with a node as parameter that

defines where to migrate the object. If a cluster, site or domain is
indicated without constraints then it is up to JRS to which node
within the given domain component the object should be migrated.
If constraints are indicated then a node found by JRS that honors
the constraints is chosen as the target node for object migration.

4.7 Persistent Objects

JavaSymphony provides facilities to make objects persistent by
saving and loading them to/from external storage. An objectcan
only be stored/loaded when none of its methods are currentlyex-
ecuting which is verified by JRS. A unique string can be provided
for storing the object. If no string is specified then JRS willgener-
ate and return a unique string for the object just stored. Otherwise
JRS returns the string provided by the programmer.

JSObj obj; String str;

// save object on external storage
str = obj.store([“string”]);
...

// load object from external storage
JSObj obj = (JSObj)JS.load([“string”]);

Objects are loaded by invoking methodload from classJS
(part of JavaSymphony class library) with a string parameter that
uniquely identifies a previously stored object under JRS. JavaSym-
phony persistent objects can be easily implemented throughJDK’s
object serialization mechanism.

5 JavaSymphony Runtime System (JRS)

The JavaSymphony Runtime System (JRS) is implemented
as an agent based system (see Figure 2) that consists of a net-
work agent system (NAS), an object agent system (OAS), and
the JavaSymphony Administration Shell (JS-Shell). The nodes on
which JRS is installed are configured by using the JS-Shell. The
set of nodes can be changed by adding or removing nodes dynam-
ically during execution of JavaSymphony applications (JSAs) by
using JS-Shell. On every node a single network agent (NA) is
placed which monitors the system behavior. The JS-Shell controls
the network agents by using the Java/RMI mechanism.

Every NA is associated with an object agent (OA) that provides
an interface to JSAs. The object agent is subdivided into twoparts.
Firstly, a public object agent (PubOA) which is integrated with
the NA in a single JVM, and secondly, an application object agent
(AppOA) which is created for every JSA. AppOAs and JSAs on
the one hand, and PubOAs and NAs on the other hand interact by
local (direct) method invocation. Whereas between AppOA and
PubOA on the same node and on different nodes, the Java RMI
mechanism is used.

5.1 The Network Agent System

The network agent system [7] is responsible to monitor the sys-
tem behavior. It provides a limited fault tolerance mechanism in
case that some node does not respond anymore, and determines
system performance parameters that can be accessed by the JS-
Shell, the OAS, and the JSA programmer (see Section 4.6).

Every component (node, cluster, site, and domain) of a virtual
architecture is controlled by a manager which is transparent to the
application programmer. Both NAS and JS-Shell can determine
whether a node becomes a cluster, site, or domain manager (see
Figure 1). Note that virtual architectures are stored within the JVM
that holds both PubOA and NA. Therefore, both NA and PubOA
have access to information about virtual architectures. The nodes
in a cluster are controlled by a cluster manager which by itself
is a node of the cluster. Similar accounts for sites. Only a clus-
ter manager can be a site manager and only a site manager can
be a domain manager. This also means that a cluster, site or do-
main manager are at the same time part of a cluster. In addition
to management tasks every manager node can also be used as a

8



JSA

AppOA

JVM

JSA

AppOA

JVM

PubOA

NA

JVM

JSA

AppOA

...

node N

...

node 1
JVM

JS-Shell

...

method invokation within JVM

remote method invokation via JAVA/RMI

JVM

JVM

AppOA

PubOA

NA

JSA

JSA

AppOA

PubOA

NA

JS-Shell

JavaSymphony application

network agent

JavaSymphony shell
Object

System
Agent

(OAS)

Network
Agent
System
(NAS)

public object agent

application object agent

Figure 2. JavaSymphony Runtime System Architecture (JRS) based on object agent and network agent system.

computing node for JSAs. Moreover, managers determine system
performance parameters of their architecture component and for-
ward them to other managers or nodes in the system. The system
parameters provided by JRS are determined by invoking theexec
method of thejava.lang.Runtimeclass [23] with various system
performance commands.

The resources are periodically monitored at every node to col-
lect up-to-date values of processor and network parameterswhich
includes static and dynamic system parameters. Static parame-
ters remain unchanged during execution of an application program
which comprises node name, IP address, architecture type, total
memory size, operating system, peak performance parameters, etc.
Dynamic parameters may change while a program is executing
which includes CPU load, idle times, available memory size,num-
ber of processes and threads, number of context switches or sys-
tem calls, network latency, network bandwidth, etc. Overall JRS
supports close to 40 different system parameters. Moreover, mon-
itoring is employed to examine the resources for system failures.

The nodes forward the observed system parameters to their as-
sociated cluster manager which averages these values across all
cluster nodes and stores them locally. The cluster manager for-
wards these data to the site manager which collects all data from
its clusters and finally sends averages values to the domain man-
ager. Every manager locally stores system data for all its architec-
ture components (e.g. a site manager is at the same time a cluster
manager) and forwards them to the next higher level in the virtual
architecture hierarchy. The performance measurement and collec-
tion periods can be controlled under the JS-Shell. Storage size for
these data is kept reasonably small as only the least recently mea-
sured data are kept. Currently we do not maintain a history of
measurements, although, it would be easy to support it.

Managers periodically examine their virtual architecturecom-
ponents as well as the manager of the next lower and higher hier-
archy (for instance, a site manager examines its associatedcluster
managers and domain manager) for system failures. If a certain
node does not respond within a predefined time period (change-
able under JS-Shell) then this node is said to have caused a failure
and will be released by JRS according to the following simplified
fault tolerance mechanism:� If a non-manager or backup-manager (see below) node of a

cluster failed, then the managerof this cluster simply releases
this node.� If a manager node failed then a backup manager within the
same hierarchy releases the manager and takes over as the
new manager of this virtual architecture component. The
backup manager then informs the JS-Shell, all of its asso-
ciated lower-level and higher-level managers, and nodes in
its component about the failure. For instance, a backup site
manager would inform all of its cluster managers, the nodes
of its cluster, and the domain manager about the failure. Fi-
nally, as the backup manager becomes the new manager, a
second backup manager (pre-defined by the JS-Shell) is acti-
vated.

Upon failure of a node, the JS-shell and the associated PubOA
of this node are informed either by the manager (if a non-manager
node fails) or backup-manager (if a manager node fails) about this
failure through the Java/RMI mechanism. Note that currently the
object agent system does not exploit information about system fail-
ures provided by the NAS. Future work will address the issue of
allowing the object agent system to at least partially recover from
certain system failures.

9



Network agents are implemented as a set of threads within a
single JVM. For more details the reader may refer to [7].

1. request for migration

1. request for migration 2. m
igra

te object

3. c
onfirm

 m
igratio

n

3. confirm migration

4. update object tables

4. update object tables
4. update object tables

OAS OAS

OAS

n1

n2

n3

Figure 3. Object migration under the JavaSym-
phony Object Agent System.

5.2 The Object Agent System

The object agent system (OAS) directly interacts with
JavaSymphony applications. OAS supports the administration of
objects which includes creation, mapping, migration, loadbalanc-
ing, and deletion of objects. Furthermore, OAS is responsible to
manage RMIs, transfer method parameters, to execute these meth-
ods at the object’s location, and to return the corresponding result
to the call site.

Every JSA has a specific AppOA associated that stores the fol-
lowing information for every generated object of this JSA inthe
local-objects-table:� unique object handle� location of PubOA where object instance is generated and

stored� result objects for invoked methods of this object� flag that specifies whether any method of the object is cur-
rently being executed

For every generated object, AppOA returns a handle to JSA. The
actual object instance is generated by the local AppOA or a remote
PubOA which can be user-defined (see Section 4.4) through map-
ping objects onto specific components of a virtual architecture. If
no mapping is specified then the AppOA invokes the PubOA to de-
termine a node that must honor a set of constraints (e.g. nodewith
smallest system load) defined under JS-Shell. Note if an object in-
stance of a JSA is generated locally, then it is always storedin the
local-objects-tableof the associated AppOA. An object which is
generated on a remote noden is stored – with similar information
as mentioned above – in theremote-objects-tableof the PubOA
on n. Every PubOA that possesses a handle to an object has full
access to the object’s data and methods. Object handles are as-
sociated with information about the location of the object and the
AppOA from which the object originates. Object handles (first-
order objects) can be passed to methods of other objects thatmay

reside on arbitrary nodes. Methods are always executed at the local
AppOA or at remote PubOAs where the object has been generated
and the corresponding results are sent back to the local AppOA. An
AppOA that invokes a method on a remote object always directly
interacts with the AppOA or PubOA that holds the object.

Object migration commonly involves an AppOAaoassociated
with a JSA on a noden1, a PubOApa1 that holds the object in-
stance on noden2, and a PubOApa2 on noden3 to which the
object should be migrated. The following protocol (see Figure 3)
is executed for an object migration frompa1to pa2:

1. ao requestspa1andpa2to migrate object frompa1to pa2.

2. pa1transfers object topa2.

3. pa2confirms migration toaoandpa1.

4. ao, pa1, andpa2update their object tables.

The object migration protocol is very similar if the object is stored
or migrated to the local AppOA. This protocol ensures that the Ap-
pOA from which the object originates (site of associated JSA) is
always aware about the location of the object. If a remote method
invocation fails due to object migration, the new object location is
accessed from the AppOA from which the object originates. This
is done automatically by the OAS (see Figure 4).

4. RMI with correct

   object location

   o
bject 

loca
tio

n

2. r
equest 

for

3. s
end object 

loca
tio

n

1.
 R

M
I w

ith
 in

co
rr

ec
t

   
ob

je
ct

 lo
ca

tio
n

OAS

OAS

OAS

OAS

n2

n1 n3

n4

Figure 4. RMI on migrated object under the
JavaSymphony Object Agent System.

An AppOA requests a virtual architecture from the local NA
via the PubOA of the same node. The PubOA stores all virtual ar-
chitectures generated by any JSA on the local node which includes
the following information: virtual architecture identification and
specification, identification of associated JSA and AppOA, con-
straints that must hold by this architecture as indicated during cre-
ation, etc. The PubOA periodically examines whether the con-
straints of the stored virtual architectures are still fulfilled through
accessing system parameters via its local NA. A list of all archi-
tecture components that no longer fulfill these constraintsis sent to
the corresponding AppOA. The AppOA is then trying to migrate
(according to the object migration protocol mentioned above) all
objects originating from its JSA that are on this list to other ar-
chitecture components which fulfill the original constraints. To
maintain all mapping constraints (for instance, if severalobjects

10



have been mapped on the same node for locality reasons) it is tried
to migrate all objects of an overloaded node to some other node
for which a given set of architecture constraints hold. To maintain
locality JRS tries to migrate objects of one node to another node
within the same cluster of the original node. If the constraints do
not hold for any node in the cluster of the original node then an-
other cluster within the same site of the original node is tried next,
and so forth. Automatic migration can cause performance degra-
dation if a large number of objects is transferred. Therefore, it is
possible to enable/disable automatic migration under the JS-Shell.

Both AppOA and PubOA are implemented as a collection of
threads underJDK 1.2.1. AppOA consists of several threads which
includes: one thread for interaction with the associated JSA, one
thread for every asynchronous method invocation in order toover-
come blocking Java/RMI, and one thread for interaction withthe
local and all remote PubOAs. On the PubOA there is one thread
running for every local AppOA, one thread for all remote AppOAs,
one thread for all remote PubOAs, and one thread for the localNA.

6 Experiments

A preliminary version of JavaSymphony has been implemented
which includes all functionality described in this paper except for
object migration and persistent objects. In this section wedescribe
an experiment that has been conducted on a non-dedicated hetero-
geneous cluster of 13 Sun workstations comprising Sparcstations
4/110, Sparcstations 10/40, Sparcstation 5/70, Sun Ultras1/170,
Sun Ultras 10/300, and Sun Ultras 10/440. All Sun Ultra worksta-
tions are connected based on 100 Mbits/sec bandwidth, whereas
communication among all other workstations rely on 10 Mbits/sec
bandwidth. All workstations run Sun Solaris 7. These worksta-
tions are used by individual people for their regular work. We used
Sun’s JDK 1.2.1 with a JIT compiler and native threads as the plat-
form JVM.

0 5 10 15 20

Number of nodes

0

100

200

300

400

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

N=400, 1st run
N=400, 2nd run
N=500, 1st run
N=500, 2nd run
N=600, 1st run
N=600, 2nd run

Figure 5. JavaSymphony matrix multiplication
performance for different problem sizes and sys-
tem loads.

For our experiment we implemented a 2-dimensional matrix
multiplication (A � B = C) using a master-slave parallelization
strategy as shown in Figure 6. For the sake of demonstration Fig-
ure 6 shows only the most important excerpt of our application.
We omitted in particular exception handling and any kind of er-
ror checking. ClassAux is an auxiliary class with several methods
for initializing arrays and setting up slave tasks. ClassMatrix pro-
vides methods for initializing arraysA;B; andC, and merging
results in matrix C. At the beginning, the application registers with
the JRS. A cluster withnr nodesnodes is requested from JRS. A
codebase with all important byte-code is transferred to every node
of the cluster. MatrixB is replicated on the entire cluster by using
a one-sided invocation of methodinit. Sets of rows (defined by
variablerows per task) of matrixA define a task to be executed by
an individual node. The number of rows does not change during
execution of the application. In each iteration of the WHILE-loop
every node of the cluster is examined whether it is waiting for a
task or whether it is still executing a task. If a node is waiting for a
task then a new task is assigned to it via asynchronous invocation
of methodmultiply. If a node is still executing a task, then it is
verified whether a result is already available. If so, then the result
is merged with matrix C and the node is marked as being ready
for a new task. The WHILE-loop is exited if all tasks have been
processed and the results are returned. After the parallel matrix
multiplication finished, the application un-registers from JRS.

Figure 5 shows the time required to complete a matrix mul-
tiplication of two N*N matrices on the indicated heterogeneous
workstation cluster for varying workstation (node) numbers. Note
that the times plotted for the one-node-experiments are based on a
sequential matrix multiplication that does not use JavaSymphony
at all. We ran each experiment (defined by a specific N and a set
of nodes) twice for two different system loads based on identical
set of nodes. The first set of experiments (see solid line execution
time functions in Figure 5) was conducted during the day whenthe
workstations have been used by individual people for their every-
day work (e.g. program development, e-mailing, etc.). The sec-
ond set of experiments (see dashed line execution time functions
in Figure 5) has been done at night with very little system load im-
plied by individual users. If we compare both experiments, then
it can be clearly seen, that the overall performance exploited from
the workstation cluster is considerably better at night where almost
linear speed-up is achieved for up to 6 nodes. Beyond 6 nodes the
scaling behavior deteriorates. The execution times for theexperi-
ments conducted during the day scales up to 2 nodes. Adding up
to 10 nodes reduces the execution time. For all experiments,us-
ing more than 10 nodes increases the execution time of the matrix
multiplication which is mostly due to a larger number of RMIs.

Note for the reviewer: We plan to add more experiments if the
paper is accepted.

7 Conclusions and Future Work

JavaSymphony provides a programming paradigm and soft-
ware infrastructure to alleviate distributed and parallelprogram-
ming that effectively exploits heterogeneous resources ranging
from small-scale cluster computing to large-scale wide-area meta-
computing. In contrast to most existing work, JavaSymphonyal-

11



public class MatrixMultiply f
public static void main (String args[]) f
...

// register JavaSymphony application
JSRegistration reg = new JSRegistration();

// allocate cluster
Cluster c1 = new Cluster(nr nodes);

// define codebase and load on cluster c1
JSCodebase cb = new JSCodebase();
cb.add(“../matrix-test/classes.jar”);
codebase.load(c1);

// allocate and initialize matrices A, B, and C for matrix multiplication: A*B = C
float [] A = new float[dimA1*dimA2];
float [] B = new float[dimA2*dimB2];
float [] C = new float[dimA1*dimB2];
Matrix.initMatrix(A,B,C);

// copy matrix B to all cluster nodes
Object[] paramB = fdimA2,dimB2,Bg;
for (i=0;i < c1.nrNodes(); i++)f

JSObj DistrMpy[i] = new JSObj(“Matrix”,c1.getNode(i));
DistrMpy[i].oinvoke(“init”,paramB);g
// determine nr of tasks to be processed by cluster nodes

nr tasks = dimA1/rows per task;
if (dimA1 % rows per task != 0) nr tasks++;
next task = 0;
Aux.initArray(nodeBusy,-1); // init nodeBusy with ”-1” fo r every cluster node

// distribute tasks (set of rows of matrix A) to nodes of cluster
while (next task< nr tasks)f

for (i=0;i < c1.nrNodes(); i++)f
if (nodeBusy[i]>= 0) f // node is executing task

if (hdl[i].isReady()) f // result is available
Matrix.mergeResult((ResultData)hdl[i].getResult());// merge result in matrix C
nodeBusy[i] = -1; // set node to be free againgg

if (nodeBusy[i]< 0) f // node is free to work on next task
Object[] paramA = fAux.setupTask(nexttask,rows per task,dimA1,matrixA)g;
ResultHandle hdl[i] = DistrMpy[i].ainvoke(“multiply”,p aramA);
nodeBusy[i] = next task; // set node to be busy again
next task++;ggg

... // do something with the result

reg.unregister(); // unregister JavaSymphony application
...gg

Figure 6. Code skeleton of master/slave JavaSymphony matrix multiplication (A*B=C)

12



lows the programmer to explicitly control locality of data and load
balancing. Moreover, JavaSymphony supports sophisticated re-
mote method invocation mechanisms, persistent objects, a high-
level API to access hardware/software system parameters, and se-
lective remote classloading. Preliminary experiments have shown
that our software infrastructure achieves reasonable performance
on a heterogeneous cluster of workstations.

We are currently in the process to evaluate JavaSymphony with
larger applications. Moreover, we are extending JavaSymphony to
handle static methods and variables, and to enable recoveryof the
OAS from certain system failures. Finally, we continue to improve
our techniques for automatic mapping and migration of objects.

ACKNOWLEDGMENTS

The author is very grateful to Erwin Laure from the Institutefor
Software Science, University of Vienna, for many fruitful discus-
sions on the design and implementation of JavaSymphony and for
proof-reading this paper. Furthermore, the author thanks L. Hofer
and A. Kulin for implementing the network agent system and G.
Aschenbrenner and T. Pfeiffer for implementing the object agent
system.

References

[1] K. Arnold and J. Gosling.The Java Programming Language.
Addison-Wesley, Reading, MA, USA, second edition, 1998.

[2] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and
J. Waldo.The Jini specification. Addison-Wesley, Reading,
MA, USA, 1999.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Char-
lotte: metacomputing on the Web. In K. Yetongnon and
S. Hariri, editors,Proceedings of the ISCA International
Conference. Parallel and Distributed Computing Systems,
Dijon, France, 25–27 September, 1996, volume 1, pages 2–
??, Raleigh, NC, USA, 1996. International Society of Com-
puters and Their Applications (ISCA).

[4] H. Casanova and J. Dongarra. NetSolve: A network-enabled
server for solving computational science problems.The In-
ternational Journal of Supercomputer Applications and High
Performance Computing, 11(3):212–223, Fall 1997.

[5] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary,
K. E. Schauser, and D. Wu. Javelin: Internet-based paral-
lel computing using Java.Concurrency: Practice and Ex-
perience, 9(11):1139–1160, Nov. 1997. Special Issue: Java
for computational science and engineering — simulation and
modeling II.

[6] P. Ciancarini and D. Rossi. Jada - Coordination and Com-
munication for Java Agents. In J. Vitek and C. Tschudin,
editors,Mobile Object Systems: Towards the Programmable
Internet, volume 1222 ofLecture Notes in Computer Science,
pages 213–228. Springer-Verlag: Heidelberg, Germany, Apr.
1997.

[7] T. Fahringer, L. Hofer, and A. Kulin. The JavaSymphony
Network Agent System (in german). Technical Report
TR2000-09, Institute for Software Science, University of Vi-
enna, May 2000.

[8] M. P. I. Forum. Document for a Standard Message Passing
Interface, draft edition, Nov. 1993.

[9] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[10] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces princi-
ples, patterns, and practice. Addison-Wesley, Reading, MA,
USA, 1999.

[11] G. Glass. ObjectSpace voyager — the agent ORB for Java.
Lecture Notes in Computer Science, 1368:38–??, 1998.

[12] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and
P. F. Reynolds, Jr. Legion: The next logical step toward a na-
tionwide virtual computer. Technical Report CS-94-21, De-
partment of Computer Science, University of Virginia, June
08 1994. Mon, 28 Aug 1995 21:06:39 GMT.

[13] High Performance Fortran Language Specification Version
2.0, January 1997.

[14] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an environ-
ment for parallel, distributed and mobile java applications. In
Proceedings of ACM 1999 Java Grande Conferernce, pages
15–25, San Francisco, CA, June 1999.

[15] D. B. Lange and M. Oshima.Programming and Deploying
Mobile Agents with Java Aglets. Addison-Wesley, Reading,
MA, USA, Sept. 1998.

[16] E. Laure. Distributed High Performance Computing with
OpusJava. In E. H. D’Hollander, J. R. Joubert, F. J. Pe-
ters, and H. Sips, editors,Parallel Computing: Fundamentals
& Applications, Proceedings of the International Conference
ParCo’99, 17-20 August 1999, Delft, The Netherlands, pages
590–597. Imperial College Press, Apr. 2000.

[17] E. Laure. OpusJava: A Java Framework for Distributed High
Performance Computing.Future Generation Computer Sys-
tems, in print 2001.

[18] E. Laure, P. Mehrotra, and H. Zima. Opus: Heterogeneous
Computing With Data Parallel Tasks.Parallel Processing
Letters, 9(2):275–289, June 1999.

[19] D. S. Linthicum. CORBA 2.0?Open Computing, 12(2):68–
??, Feb. 1995.

[20] C. Nester, M. Philippsen, and B. Haumacher. A more effi-
cient rmi. InProceedings of the ACM Java Grande Confer-
ence, San Francisco, CA., pages 152–159, New York, NY,
June 1999. ACM Press.

[21] M. Philippsen and B. Haumacher. More efficient object seri-
alization. Lecture Notes in Computer Science, 1586:718–??,
1999.

[22] M. Philippsen and M. Zenger. JavaParty — transparent re-
mote objects in Java.Concurrency: Practice and Experience,
9(11):1225–1242, Nov. 1997. Special Issue: Java for compu-
tational science and engineering — simulation and modeling
II.

[23] Sun Microsystems. Java class packages.
[24] V. S. Sunderam. PVM: A framework for parallel dis-

tributed computing.Concurrency: practice and experience,
2(4):315–339 (or 315–340??), Dec. 1990.

[25] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh,
and U. Nagashima. Ninflet: a migratable parallel objects
framework using Java. In ACM, editor,ACM 1998 Workshop
on Java for High-Performance Network Computing, pages
??–??, New York, NY 10036, USA, 1998. ACM Press.

[26] R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and
R. Veldema. Wide-area parallel computing in java. InPro-
ceedings of the ACM Java Grande Conference, New York,
NY, June 1999. ACM Press.

[27] A. Wollrath, J. Waldo, and R. Riggs. Java-centric distributed
computing: Providing a homogeneous view of a heteroge-
neous group of machines.IEEE Micro, 17(3):44–??, May/
June 1997.

13


