JavaSymphony: A System for Development of Locality-Oriented Distribued and
Parallel Java Applications*

Thomas Fahringer
Institute for Software Science, University of Vienna
Liechtensteinstrasse 22, A-1090, Vienna, Austria
tf@par.univie.ac.at
Accepted for publication in IEEE Intl. Conf. on Cluster Coatipg CLUSTER 2000, Chemnitz, Germany, Dec. 2000

Abstract

port code mobility, object-orientation, portability, nitthreading,
synchronization mechanisms, and communication APIs.oitjin

Most Java-based systems that support portable parallel andthere is no agreement whether Java can ever satisfy the néeds

distributed computing either require the programmer to ldeith
intricate low-level details of Java which can be a tedioumet
consuming and error-prone task, or prevent the programmoen f
controlling locality of data. In this paper we describe J8yan-
phony, a programming paradigm for distributed and paradlem-
puting that provides a software infrastructure for wide sdas of
heterogeneoussystems ranging from small-scale clustepating
to large scale wide-area meta-computing. The softwarastfuc-
ture is written entirely in Java and runs on any standard ctamp
Java virtual machine.

In contrast to most existing systems, JavaSymphony pvide

the programmer with the flexibility to control data localand load
balancing by explicit mapping of objects to computing nodés
tual architectures are specified to impose a virtual hielaron a
distributed system of physical computing nodes. Objeatshea
mapped and dynamically migrated to arbitrary componentaref
tual architectures. A high-level API to hardware/softwayestem
parameters is provided to control mapping, migration, andd
balancing of objects. Objects can interact through synnbigs,
asynchronous and one-sided method invocation. Sele&mete
classloading may reduce the overall memory requiremem afa
plication. Moreover, objects can be made persistent byi@xpl
storing and loading objects to/from external storage.

A prototype of the JavaSymphony software infrastructure ha

been implemented. Preliminary experiments on a heteragene
cluster of workstations are described that demonstratsoeable
performance values for a small test program.

1. Introduction

Distributed and parallel computing have been investigéted
many years but recently research on this topic has gainedmew
petus due to the explosive growth of the Internet on the one ha
and the availability of the portable programming languam&]1]
on the other hand. Java is very popular due to its ability o su

* This research is partially supported by the Austrian Sadhend as
part of Aurora Project under contract SFBF1104.

high-performance driven applications, it is commonly usedx-
ploit medium grain shared memory parallelism based on ttgea
well as medium to coarse grain data and task parallelismdoase
remote method invocation (RMI) and socket communication.

Much work has been conducted in the area of improving Java
Virtual Machine (JVM) implementations (for instance, Jé&usll
or object serialization), providing a high-level veneatttemoves
some of Java’s RMI and/or socket communication compleaityg,
introducing language extensions or class libraries to stpm@ns-
parent distributed objects. Most research projects tHat afsoft-
ware infrastructure for high-level distributed and paghirogram-
ming, however, lack any programmer control over localitdata.
Automatic distribution and dynamic migration of objectsieas-
ily lead to significant performance degradation as the ugihey
runtime system has little information about the distrilolid@va ap-
plication. Frequently only system load and application itasimg
is considered for distribution of objects. Monitoring bds®ys-
tems may detect performance inefficient mapping of objects a
high interaction among computing nodes in a distributedesys
However, at the time where such an effect is detected, padnce
has already been lost and probably expensive migration brist
invoked to reduce performance degradation. Most of the, thma
grammers are very much aware of the particular nature of thei
application, how to distribute objects, which objects towl be
mapped together with other objects, when to migrate ohjetts
Programming paradigms that do not allow to specify this rimia-
tion lose a strong potential for increased performance.

In this paper we introduce JavaSymphony, a programming
paradigm for distributed and parallel computing that pdes a
distributed and parallel computing infrastructure for eidasses
of heterogeneous systems ranging from small-scale clostar
puting to large scale wide area meta computing. JavaSynyphon
provides a class library which is entirely written in Javalaans
on any standard compliant JVM. The key features of JavaSym-
phony — currently not included in Java — which substantiallg-
viate performance-oriented distributed and parallel pragming:

¢ Dynamic Virtual Distributed Architectures: Theprogram- as an agentbased system. We are currently in the procesalto ev
mer can dynamically define and modify virtual distributed ate our system through the development of several JavaSymgph
architectures that impose a virtual hierarchy on a distedu applications.
system of physical computing nodes. Virtual architectures The rest of this paper is organized as follows: The next sec-
consist of a set of components: computing nodes, clustergion discusses related work. In Section 3 we describe amlisiés
(collection of nodes), sites (collection of clusters), aiud dynamic virtual distributed architectures. Section 4 pres the
main (collection of sites). Virtual architectures can be re programming model of JavaSymphony which includes redister
stricted by a system of constraints in order to include only register applications under JRS, generation of virtuaiggctures,
those computing resources that satisfy the needs of an-appliclass loading, creation, mapping and freeing of objectshoukin-
cation (hardware/software requirements) and honors the po vocations, object migration, and persistent objects. iSeé de-
icy of a computing site (e.g. only use idle workstations). scribes the implementation of JRS. Experiments are predemtd
Multiple virtual architectures can be defined that possibly discussedin Section 6. Finally, some concluding remaksede
share common architecture components. and future work is outlined in Section 7.

e Access to system parametersJavaSymphony provides a
high-level API to a large variety of system parameters, in- 2 Related \Work
cluding CPU load, idle times, available memory size, num-
ber of processes and threads, network latency, network-band
width, etc. These system parameters can be requested from There is a large amount of related work which has made col-
the JavaSymphony runtime system (JRS) and are Commonb}aborative use of computational resources over a globalonit
used to define constraints for requesting virtual architet ~ including low-level communication systems such as MP!I & a
and/or controlling mapping, migrating, and load balancihg PVM [24] and higher-level dedicated systems, includingsi®

objects. [9], Legion [12], and NetSolve [4]. Although these systerffero
))] heterogeneous collaboration of multiple systems in palrallome
¢ Automatic and User-Controlled Mapping of Objects: of them in wide-area setting — they involve rather complexma

The programmer can control the creation and mapping of tenance of different binary code, multiple execution esminents,
objects to specific components of virtual architecturespMa etc. CORBA [19] defines a middleware that bridges distridute
ping of objects can be done in relation to the location of othe gpjects across heterogeneous environments. It allowstabie-
objects. E.g a set of objects may be placed physically cose t jects to invoke server objects across the network. All disjeas
each other or even on the same processing node if they heavpng as they expose a well-defined interface in the Interies-

ily interact with each other. If the programmer does not pro- pition Language (IDL) that describes the services they ideto
vide explicit mapping of objects, then JRS offers automatic gther objects, can be invoked anywhere in the network. CORSA
mapping based on periodically monitored system consaint \ye|| as Globus and Legion can be used to build the JavaSynyphon

o Automatic and User-controlled Object Migration : runtime system. However, we decided to use Java/RMI instead
JavaSymphony supports both automatic and user-controlled@SSuming thatit entails less complexity and overhead.
migration of objects through periodically monitoring syist Jini [2] provides a sophisticated technology to intercarine
parameters. generic devices that provide services to other deviceseamsube-

) vices and their services register under a lookup serviceviGs

o Asynchronous Remote and One-sided Method Invoca- 4re |ocated by using the lookup service. Once connectioms ar
tion: Whereas all RMIs under Java are performed syn- made to devices, the lookup service is no longer involveesuit-
chronously in blocking-mode, JavaSymphony in addition jng interactions between clients and servers of servideicduld
supports also asynchronous remote method invocation. Ape ysed to build part of the runtime system of JavaSymphaey (s
handle is returned that can be used in the future to determingsgction 5). However, whereas JRS is currently built on ahin
the availability and access of the method's result. Moreove 4., layer to provide JavaSymphony functionality (sucpmsid-
one-sided method invocation is provided which eliminates ing virtual architectures), we believe that performancebems
the need to return any result or wait for the method to be may arise by using Jini due to larger protocol overheads.
completed. In order to overcome system complexity, several research

¢ Selective Remote Classloadinginstead of replicating all ~ groups introduced Java-based global computing systerhbéima
Java classes to all nodes executing an application, classegfit by Java’s platform independence. These efforts candeedty
may be considered to be loaded only to the nodes that actuallglassified into two categories. The first category concésdran
need them. JavaSymphony supports classloading to specifignproving the implementation of JVM (e.g. Java/RMI or oltjec
architecture components. This feature can reduce the lbvera Sefialization) [27, 26, 21, 20]. The second category extelava
memory requirement of an application. with special distribution primitives and semantics or pd®s class
libraries to alleviate the usage of Java as a distributedraro-
In addition JavaSymphony supports persistent objectsetitat ming language. JavaParty [22] extends Java with a classfigodi
able the programmer to explicitly store and load objectdnd remote. Objects generated for remote classes can be disttib
external storage. Moreover, JavaSymphony does not retjuée- JavaParty greatly simplifies RMI programming at the costef i
tend Java, modify the JVM, compiler or stub compiler. A ptgpz creased complexity of the actual Java code produced. JayaiRa
software infrastructure for JavaSymphony has been impiéete fers transparent object migration. It is claimed that ussrtrolled

dynamic changing of object distribution strategies is éedlwith-
out providing further details of how this is done. JavaPatgo
handles static methods and variables. Both JavaParty dssvel
other systems such as Charlotte [3] support a distributedesh
memory on top of the JVM that inherently does not enable the pr
grammer to control locality of data.

Javelin [5] and Ninflet [25] employ a three-tier architeetur
where the Javelin’s broker, client, and hosts correspotigdNin-
flet system’s dispatcher, Ninflet, and the server. Clienekisg
computing resources by submitting their work in form of agip)
register with a broker and submit their work in the form of gm a
plet. Hosts are donating resources, contact the brokerwanép-
plets. Javelin makes it relatively easy for a user to act aswapait-
ing server by leveraging the existing WEB technology.

Javelin [5], Jada [6] and JavaSpaces [10] can be considsred a

Linda derivatives which provide either none or only very itiea
means (compared to the functionality offered by JavaSymgpho
to control locality.

ObjectSpace Voyager [11] and Aglets [15] are mobile agent
systems that do not target efficient, global computing whieh
quires extensive communication among objects. Typichibse
systems do not provide references to remote objects whiditsli
interaction among objects such as remote method invocation

Ajents [14] has influenced JavaSymphony’s programming
model for remote object creation, asynchronous remote odeth
invocation and class loading. However, Ajents just as mugtro
systems does not allow the programmer to explicitly corahjéct
locality. Ajents also does not support virtual architeegjrone-
sided remote method invocations, selected classloadisigeoific
computing nodes, and access to hardware/software systampa
eters as introduced in JavaSymphony. Ajents, howevenrsofe-
phisticated checkpointing mechanism and allows to migodte
jects while their methods are executing.

Another source of influence for JavaSymphony’s programming

jects without involving the programmer (see Section 5.1pwH
ever, fully automatic systems commonly cause poor perforea
results due to lack of information about the application arsaif-
ficient static and dynamic analysis. JavaSymphony, thexefwo-
vides a semi-automatic mode which leaves the error-proddean
dious low-level details (e.g. creating and handling of réayurox-
ies for Java/RMI) to underlying system whereas the programm
controls the most important strategic decisions whichuidek:

¢ the setup of the virtual distributed architecture by deiarm
ing which processing nodes, clusters, collection of chksste
wide-area computing infrastructure, etc. should be used fo
executing a distributed/parallel program. System coirgga
can be specified in order to include only those comput-
ing resources that satisfy the needs of an application {hard
ware/software requirements) and honors the policy of a com-
puting site (e.g. only use idle workstations).

the mapping of data in relation to other data. E.g a set of
objects may be placed physically close to each other or even
on the same processing node if they heavily interact witlheac
other,

the mapping of data (objects) onto specific processing nodes
based on system constraints (e.g. nodes with a minimum
amount of memory available or a maximum of CPU load)

placement of code (Java byte-code) on specific computing
nodes which reduces the overall memory requirement of an
application, and

JavaSymphony introduces the conceptiphamic virtual dis-
tributed architecture¢called virtual architectures in the remainder
of this paper) which enables the programmer to define a sireict
of a heterogeneous (in terms of type, speed, or configujatiet
work of computing resources and to support mapping, loaaiizal
ing, and migration of objects and code placement. Everyairt

model is the OpusJava [17, 16] system. OpusJavais a Javd basgrchitecture (see Figure 1) defines a domain which is suthetivi

framework for distributed high performance computing thed-
vides a high level component infrastructure and facilgeeseam-
less integration of HPF [13] modules into distributed eoriments
via its interface to the HPF based coordination languagesQia].
Although the main focus of OpusJava s the interoperalilityigh
level parallel languages, such as HPF and Java, it may beassed
pure Java framework that provides similar means for rembjead
creation, synchronous and asynchronous method invogatitsh
object migration as JavaSymphony. However, OpusJava aaly p
vides basic support for a user driven mapping of objects aes$ d
not have an elaborated concept of virtual architectures. avee
currently investigating a possible combination of Javafiony
and OpusJava, in particular we intend to employ the elabdrart
chitectural features of JavaSymphony, such as virtualitectares
and on-line status information, within the OpusJava fraoréw

3 Dynamic Virtual Distributed Architectures

Most programmers are well aware of how a distributed applica
tion should be structured, where to place objects, whichabjin-
teract with each other, and how to exploit locality. JavaBkony
supports automatic mapping, load balancing, and migratfab-

into nodes, clusters, and sites. At the lowest level computbdes
can be selected which commonly corresponds to arbitraryd?Cs
workstations. Several nodes can be combined to foratuater
which usually correspond to a local PC/workstation clusi¢the
next higher level aite can be defined which connects a set of ge-
ographically distributed clusters for instance via WANsdgvarea
networks). At the highest level several sites can be contbioe
form adomainwhich may define a large computational grid that
can be distributed across several continents. Note thay eosle
belongs to a unique (cluster,site,domain) triple. Siryilagvery
cluster belongs to a unique pair (site,domain) and eveeytsita
specific domain. Virtual architectures can be dynamicaated
and modified which will be described in the next section. Ever
component (node, cluster, site, and domain) of a virtuahigec-
ture is controlled by a manager which is not seen by the applic
tion programmer but used to implement JRS. More details ebou
the implementation of virtual architectures are given ict®s 5.

4 JavaSymphony Programming Model

In this section we describe the JavaSymphony programming
model. Commonly, every JavaSymphony application first must

- cluster

domain

site domain

Rl

site

cIusterE: - cluster

node

domain
manager
site
manager

cluster
manager

> O O

Figure 1. Example of a JavaSymphony Virtual Architecture Damain

register with the JavaSymphony runtime system (JRS). Hifiere
virtual architectures can be defined. In order to reduce rine i
pact of Java class loading, all required classes are stordedvia
archive files and loaded onto arbitrary nodes of a definedalirt
architecture. Objects can be created, mapped, and mighatikd

balancing, to honor computing site policies, etc. The baiia

is to include only nodes in a virtual architecture which olbiegr-
defined constraints defined over static and dynamic systeanpa
eters. Static parameters are not changed during executian o
application program which includes name of a machine, dpera

on a local as well as on a remote computing node. JavaSymphoning system, cpu type, peak performance parameters, etcarbign

supports three kinds of method invocations which includgs s
chronous, asynchronous, and one-sided invocations. I¥irsad
application should un-register from JRS.

4.1 Register/Un-register Application

Every JavaSymphony application first needs to registerthigh
underlying JRS which is then aware that this applicatiorcteas-
ing its services.

/I register application with JRS
JSRegistration reg = new JSRegistration();

I/l un-register application
reg.unregister();

parameters can change while the application program iasixec
which comprises system load, idle times, available menmanpm-
ber of context switches or system calls, etc.

JavaSymphony allows to create an object of a class
JSConstraintswhich holds a set of constraints. Constraints
are added to this object by invoking calls to methegtCon-
straints(systenparameter,relationabperator,numbestring).

Each method invocation adds a constraint with the followpady

tern:
systenmparameter relationabperator numbestring

where relationabperator corresponds to arbitrary relational
operators and numbstring refers to floating point/integer num-
bers or strings. For instance, consider the following Jsmgshony
code excerpt:

JSConstraints constr = new JSConstraints();

An application should un-register from JRS as soon as none ofonstr.setConstraints(JSConstants. NODENAME,”! =","milena”);

the objects generated under JRS are still needed. Unaipst
enables JRS to reduce the underlying book-keeping overdead
allows the garbage collector to deallocate memory.

4.2 Generate Dynamic Virtual Distributed Archi-
tectures

In order to specify locality, JavaSymphony provides dyrami
virtual architectures. The programmer can define arbitrapplo-
gies comprising nodes, clusters, sites and a domain bas#éton
concept introduced in Section 3. Architecture constradmésin-
troduced in order to specify system constraints, to corltatl

constr.setConstraints(JSConstants.CPLEYS LOAD,” <=",10);
constr.setConstraints(JSConstants.IDLE,*=",50);
constr.setConstraints(JSConstants.AVAILMEM,” >=",50);
constr.setConstraints(JSConstants. SWARBSPACE_RATIO,” >=",0.3);

A set of constraints is collected in objextinstr The constraints
specify that a computing node with the name “milena” canrmot b
included in a virtual architecture (yet to be requested f@RRE).

The system executes less than 10 % in system mode, is idle for
more than 50 %, has at least 50 MBytes of unused memory, and
the ratio of used to available swap space is less than 0.3raDve
the programmer can define constraints defined over approsiyna

40 different system parameters.

The programmer can request a virtual architecture from 3RS b Domain d1 = c1.getDomain();

generating nodes, clusters, and sites that form a domain.

Nodes

/I release node n2 from cluster c2
c2.freeNode(n2);

/I release node-2 from cluster c2
c2.freeNode(2);

/I release cluster c2

Nodes can be created and released by the programmer as foR2.freeCluster();

lows:

I/l request arbitrary node
Node n1 = new Node();

/I request node with name "rachel”
Node n2 = new Node("rachel”);

/I request node for which constraints hold
Node n3 = new Node(constr);

// determine the associated cluster, site, and domain of n1
Cluster c1 = nl.getCluster();
Site s1 = nl.getSite();
Domain d1 = nl1.getDomain();

nl.freeNode(); / release node nl from application

Method nrNodescan be invoked for every cluster object in
order to determine the current number of nodes included én th
cluster. The nodes of a cluster are numbered from O to
c.nrNodes() - 1 MethodsgetNodesgetSite and getDomainare
used to access individual nodes, the site, and the domaiolo$a
ter. Nodes of a cluster can also be released by invoking rdetho
freeNode The entire cluster can be released through method
freeCluster

Sites

Sites can be generated and modified similar as done for cduste
In the following code excerpt a site s1 with 3 clusters is gatesl.
If constraints are used then they must hold for all nodesarstte.
A site can also be defined based on already existing clusters b

Noden1 is requested without specifying any constraints. In generating an instance of claSteand calling methodaddClus-
this case JRS will allocate a node with low system load and rea ter.

sonable resources (e.g. memory) available. The progranvanes
n2to be the node with name “rachel”’. For nod@all constraints

collected in objectonstr- as defined previously - must hold. Ac-

cording to Section 3 every node is associated with a unicquste,

int[] SiteNodes ={2,4,5};
I request for site with 3 clusters with 2, 4
/l and 5 nodes, respectively

site, and domain which can be determined by invoking methodsSite s1 = new Site(SiteNodes [,constr]);

getClustergetSite andgetDomain respectively. A node can also

be released from a given application by using metiiedNode

Clusters

/I define individual site which contains cluster c1 and c2
Site s2 = new Site();
s2.addCluster(cl); s2.addCluster(c2);

/I determine current number of clusters and nodes in the site

A cluster can be requested by indicating the number of nodess1 nrClusters();

to be included in the cluster. Optionally, a set of constsagan be
specified which must be satisfied by every node in the clugter.

sl.nrNodes();
/I access cluster-1 in site

the following example a clusterd with 5 nodes is requested. Note ~ Cluster c1 = s1.getCluster(1);

that "[...]" expresses optionality in all code skeletonslué paper.

A cluster can also be defined by adding individual nodes e&ch o

which may honor a specific set of constraints. For instarloster
c2is defined by adding noded, n2, andn3— which are instances
of classNode-to it.

Node n1, n2, n3;
/I allocate cluster with 5 nodes
Cluster c1 = new Cluster(5[,constr]);

// define individual cluster which contains nodes n1, n2, and3
Cluster c2 = new Cluster();
c2.addNode(nl1); c2.addNode(n2); c2.addNode(n3);

/I determine current number of nodes in cluster
cl.nrNodes();

/I access node-3 in cluster
Node n3 = c1.getNode(3);

[/l determine site of cluster
Site s1 = c1.getSite();

/I determine domain of cluster

/I access node-1 in cluster-2 of site s1: alternative-1
Node nl1 = sl.getCluster(2).getNode(1);

/I access node-1 in cluster-2 of site s1: alternative-2
Node nl1 = s1.getNode(2,1);

/I determine domain of site
Domain d1 = s1.getDomain();

I release node-1 from cluster-2 of site s1: alternative-1
sl.freeNode(2,1);

/I release node-1 from cluster-2 of site s1: alternative-2
sl.getCluster(2).freeNode(1);

/I release cluster 1 of site s1
sl.freeCluster(1);

/I release cluster c2 of site s1
sl.freeCluster(c2);

I/ release site s1
sl.freeSite();

The number of clusters and nodes in a site can be obtained by
using methodsirClustersandnrNodes Clusters can be accessed
by invoking methodyetCluster(int ClusterID)There are two alter-
natives to reference the nodes of a site. Firstly, metieitlode(int

ClusterID, int NodelDwhich accesses node with NodelD in clus- 4.3 Class Loading
ter with ClusterID. NodelD (ClusterID) must be in the range b
tween 0 anairNodes-XnrClusters1). Secondly, methogetClus- JavaSymphony enables the programmer to generate objects
ter can be used to access a specific cluster of a site which can bgoth locally and remotely. As JavaSymphony is built on top of
further referenced by using the previously defined clustethrod the Java RMI mechanism, we require all objects that can be cre
getNode The domain of a site can be accessed by using methodated remotely to be serializable. Before an object can bergen
getDomain Partially or fully releasing a site is supported similarly - ated, the class file of this object commonly must be locatérbei
as done for clusters. locally in the CLASSPATH or at an arbitrary URL. JavaSympjon
assumes that all Java class files are available at the nodegwen
virtual architecture before objects are generated. Thisces the
amount of data transferred when objects are created. Fopthit
pose, JavaSymphony enables to build a codebase which is then
Domains are build similar to clusters and sites by incorfiega transferred (by using methatbdebase.logdas Java archive file
multidimensional arrays. In the following code excerpt anddn to arbitrary components of a virtual architecture. Javafiyomy,
with 2 sites is allocated. therefore, not only supports the programmer to control daka
jects) locality but also program locality. Only those compats of
a virtual architecture may store a class file that need it.

Domains

int[J[] DomainNodes = {{1,3,5},{6,4} };
Il request for domain with 2 sites
/I site-1 with 3 clusters with 1, 3, and 5 nodes, respectively
1/ site-2 with 2 clusters with 6 and 4 nodes, respectively
Domain d1 = new Domain(DomainNodes [,constr]);

Node node; Cluster cluster; Site site; Domain domain;

/I initialize a codebase
JSCodebase codebase = new JSCodebase();

/I define individual domain which contains site s1 and s2 I hi | file is added to th deb
Domain d2 = new Domain(); a Java archive or class file is added to the codebase

: . : . codebase.add(“../classes.jar");
d2.addSite(s1); d2.addSite(s2); codebase.add("../testclasses.class”);
// determine current number of sites, clusters and nodes

/l'in the domain
d1.nrSites();
d1.nrClusters();
d1.nrNodes();
/] access site-2 in domain
Site s2 = d1.getSite(2);
/I access node-3 in cluster-2 of site-1 in domain : alternate-1 .
Node nl1 = d1.getSite(1).getCluster(2).getNode(3); codebase.load(node); . .
[/l access node-3 in cluster-2 of site-1 in domain : alternate-2 /f load codebase to a.II nodes of a cluster, site, or domain.
Node n1 = s1.getNode(1,2,3); codebase.load(c!uster),
codebase.load(site);
I release node-3 from cluster-2 of site-1: alternative-1 codebase.load(domain);
d1.freeNode(1,2,3); i free codeba§e
I release node-3 from cluster-2 of site s1: alternative-2 codebase.free();
d1.getSite(1).getCluster(2).freeNode(3);
I release cluster-2 of site-1: alternative-1

/I Java archive or class file is fetched from URL

/I and added to the codebase
URL classURL =
new URL(“http;//www.par.univie.ac.at/JS/test/file.cless”);
codebase.add(classURL);

/l'load codebase to a node of a virtual architecture

A methodfree() can be invoked on a codebase object which

d1.freeCluster(,2); frees the codebase and associated memory.

I release cluster-2 of site-1: alternative-2
d1.getSite(1).freeCluster(2); - 4.4 Create, Map, and Free Objects

I release site-1 of domain d1
d1.freeSite(1); . . .

J/ release site s1 of domain di Assuming that class files are available on every component of
d1.freeSite(s1); a virtual architecture where needed, objects can now beeartdey

I/ release domain d1 generating instances of class JSOBj which is part of theShawa
d1.freeDomain(); phony class library. The first parameter of thewcommand for

objectincludes the class name for which an object has to berge
The first site has 3 clusters with 1, 3, and 5 nodes, respéctive ated. Optionally, a second parameter indicates where teefilte
The second site has 2 clusters with 6 and 4 nodes, respgctivel object which can be local on the node where the program iggbein
Constraints can be optionally specified which must hold for a executed, on a specific node of a domain, or on a node of a specifi
nodes in the domain. Individual domains based on alreadst-exi cluster, site, or domain. In the latter case JRS choosesawitil
ing sites can be allocated by using metlaattiSite Domains can the smallest system load and reasonable resources aeailbisé
also change dynamically by using methd@®NodefreeCluster same accounts if no mapping parameter is indicated. A preetkfi
freeSite andfreeDomain The current number of nodes, clusters, classJSas part of the JavaSymphony class library offers various
and sites in the domain can be determined by invoking methodsstatic methods which includes among others a meteitocalN-
nrNodesnrClusters andnrSites respectively. odeto determine the local node. A set of constraints (see Sectio

4.2) can be provided as a third parameter when generating-an o JSObj obj = new JSOBj(“classname”);

ject to restrict the virtual architecture components onchiihe
object can be generated and to improve load balancing o€tshje

/I get node on which this application is being executed
Node local = JS.getLocalNode(); JSConstraints constr;
Node node; Cluster cluster; Site site; Domain domain;

/I generate an object of class “classame” at

/l a node decided by JRS or restricted to constraints
JSODbj obj1 = new JSObj(“classhame” [, constr]);

/I generate object on the local node
JSODbj obj1 = new JSOB;j(“classhame”,local);

I/l generate object on a specific node
JSODbj obj1 = new JSOB;j(“classhame”,node);

/I generate object on an arbitrary node of a cluster, site,
/I or domain decided by JRS or restricted to contraints
JSODbj obj1 = new JSOBj(“classname” [,cluster|site|domain ,constr]);

/l generate obj1 on the same node
I/l where obj2 has been generated
JSODbj obj1 = new JSOB;j(“classhame” ,0bj2.getNode());
/l generate obj1 on the same cluster, site,
/I or domain where obj2 has been generated
JSODbj obj1 = new JSOB;j(“classhame”,obj2.getCluster() [,constr]);
JSODbj obj1 = new JSOB;(“classhame”,obj2.getSite() [,constr]);
JSODbj obj1 = new JSOB;j(“classhame”,obj2.getDomain() [,constr]);
I/ free object
objl.free();

Moreover, the programmer has a choice to map an objecton the
same node, cluster, site or domain where some other nodealgire

resides. If obj1 should be generated on a cluster, site, maitoon
which obj2 resides, then JRS or a user-provided set of cainsir
decides on which node within this cluster, site, or domabjlo
actually will be generated.

Object[] params = {new Param1(), new Param2(};
ResultClass result = (ResultClass)obj.sinvoke("methagame”,params);

Asynchronous Method Invocation

Asynchronous method invocations (by using predefined
methodainvokeof an object) are commonly employed to paral-
lelize computations. Again an array of objects is used tal ioé
method parameters. The method call, however, does not blaick
immediately returns a handle. Execution continues at tienga
site. If a pre-defined methadgandle.isReadyeturns TRUE then
the result is available, FALSE otherwise. If the callingesitants
to block until the result has arrived — for instance, becanasather
useful computations can be done — then methaddle.getResult
can be called. Note that this method returns the result blojec
type Object. It must be explicitly casted to the actual clafsthe
result.
/I invoke remote method with parameters; a handle is returne
/I to refer to the method’s result in the future

Object[] params = {new Param1(), new Param2(};

ResultHandle handle = obj.ainvoke("methodname”,params);

I verify whether result is available

if (handle.isReady()){
I/l wait for result to arrive in blocking mode
ResultClass result = (ResultClass)handle.getResult();

}

I/l wait for result to arrive in blocking mode
Il without checking for available result
ResultClass result = (ResultClass)handle.getResult();

One-sided Method Invocation

A one-sided method invocation (by using predefined method

Finally, an object if no longer needed should be released byCinvokeof an object) is used in case that it is not necessary to wait

the programmer through invoking methérée which reduces the
overall book-keeping effort and enables the garbage doli¢o
deallocate the memory for this object.

45 Method Invocation

for the completion of a remote method invocation and no tésul
returned. This method invocation can improve the perforceasf

the application because there is no need to transfer backudt re
from a node that hosts the remote object. Moreover, onedside
method invocation reduces some book-keeping overhead®f JR

Object[] params = {new Param1(), new Param2(};
obj.oinvoke(“method”,params);

Java/RMI imposes blocking remote method invocation which
prohibits overlapping of waiting time — for results of reraot
method invocations to arrive — with some useful local coraput
tions. In addition to synchronous (blocking) RMI, JavaSyopy
also offers asynchronous (hon-blocking) and one-sided @ivth-
blocking without results).

4.6 Dynamically Migrate Objects

Objects can be migrated during execution of an application.
JRS, however, verifies before object migration, whether ahy
its methods are currently being executed. If so, then nigrat
is delayed until all unfinished method invocations have deteg

Synchronous method invocation (by using predefined methodexecution, otherwise the object can be immediately migrate
sinvokeof an object) blocks the calling site for as long as the result JavaSymphony offers two forms of object migration: autamat
arrives. Parameters are passed as an array of objects. ydavaS Mmigration which is controlled by JRS or explicit migratiorhioh
phony always returns a method invocation result of clase@bj is controlled by the programmer.
which must be explicitly casted to the actual class of theltei
the following code excerpt a method with hame "methaime”
with parameter$arami()and Param2()is invoked based on ob-
jectobij.

Synchronous Method Invocation

Automatic object migration can be enabled through the JS-
Shell (see Section 5). In the automatic mode JRS periogieaH
amines whether the creation constraints of a virtual aechitre

provided by the programmer still hold. If no programmer con- JSObj obj; String str;

straints have been provided, then a set of system constradnat

fined by the JS-Shell must hold. In both cases if the consgrain /I save object on external storage
of certain virtual architecture components do not hold thenob- St = Obi-store(string’]);

jects on these components will be migrated to another coemgton I/ load obiject from external storage

for which the constraints hold. JSObj obj = (JSObj)IS.load([“string”]);

Explicit migration can be encoded by the JavaSymphony ap-)]]
plication programmer. For this purpose JavaSymphony alitaw Objects are loaded by invoking methdaad from classJS
access system parameters for virtual architectures. Sysaeam- (Part of JavaSymphony class library) with a string paramtttat
eters for clusters, sites, and domains are averaged ab®s®h- uniquely identifies a previously stored object under JR&3gm-

tained nodes. MethogetSysPararnan be called for every archi- Phony persistent objects can be easily implemented thralis
tecture component to examine the system parameter of @ttere Object serialization mechanism.

Moreover, through methodonstrHoldit can be verified whether

a set of constraints currently hold for a given architectmmpo- 5 JavaSymphony Runtime System (JRS)

nent. These are the same parameters that are also useditd rest

requests for virtual architectures according to Secti@ &or in- . o

stance, in the following code excerpt it is examined whether The JavaSymphony Runtime System (JRS) is implemented
noden1on which an specific object resides has less than 50 % idle@S an agent based system (see Figure 2) that consists of a net-
time. If so, then this object can be migrated by using metmad ~ WOrk agent system (NAS), an object agent system (OAS), and

grate If migrateis called without any parameters then JRS decidestn® JavaSymphony Administration Shell (JS-Shell). Theascsh
where to migrate the node. which JRS is installed are configured by using the JS-Shéle T

set of nodes can be changed by adding or removing nodes dynam-
ically during execution of JavaSymphony applications (S5By
using JS-Shell. On every node a single network agent (NA) is
placed which monitors the system behavior. The JS-Shettaisn

the network agents by using the Java/RMI mechanism.

JSConstraints constr;
Node node; Cluster cluster; Site site; Domain domain;
JSODbj obj;

Node n1 = object.getNode();
/I node on which object resides has less than 50 % idle time Every NA is associated with an object agent (OA) that proside
/I set of constraints constr hold for node n1 an interface to JSAs. The object agentis subdivided intoaarts.

if (n1.getSysParam(JSConstants.IDLEX 50) | Firstly, a public object agent (PubOA) which is integrateihw

nl.constrHold(constr)) { . . - .
J/ migrate object to a node destined by JRS the NA in a single JVM, and secondly, an application objeetrdg

obj.migrate(); (AppOA) which is created for every JSA. AppOAs and ?]SAS on
/I migrate object to a node according to a set of constraints the one hand, and PubOAs and NAs on the other hand interact by
obj.migrate(constr); local (direct) method invocation. Whereas between AppOA an
/' migrate object to a specific node PubOA on the same node and on different nodes, the Java RMI
obj.migrate(node); mechanism is used.

/I migrate object to a node of a cluster, site, or domain
/ to be destined by JRS or optionally based on constraints
obj.migrate(cluster|site|domain [,constr]); 5.1 The Network Agent System

The network agent system [7] is responsible to monitor tise sy
Methodmigratecan be invoked with a node as parameter that tem pehavior. It provides a limited fault tolerance meckanin
defines where to migrate the object. If a cluster, site or donisa case that some node does not respond anymore, and determines

within the given domain componentthe object should be migta shell, the OAS, and the JSA programmer (see Section 4.6).
If constraints are indicated then a node found by JRS thabison

the constraints is chosen as the target node for object tigra Every component (node, cluster, site, and domain) of aalirtu
architecture is controlled by a manager which is transpacethe
4.7 Persistent Objects application programmer. Both NAS and JS-Shell can detegmin

whether a node becomes a cluster, site, or domain manager (se
Figure 1). Note that virtual architectures are stored withe JVM

that holds both PubOA and NA. Therefore, both NA and PubOA
have access to information about virtual architectures fitdes

in a cluster are controlled by a cluster manager which byfitse

is a node of the cluster. Similar accounts for sites. Onlyus-l

ter manager can be a site manager and only a site manager can
be a domain manager. This also means that a cluster, site-or do
main manager are at the same time part of a cluster. In additio

to management tasks every manager node can also be used as a

JavaSymphony provides facilities to make objects persite
saving and loading them to/from external storage. An olject
only be stored/loaded when none of its methods are currertly
ecuting which is verified by JRS. A unique string can be predid
for storing the object. If no string is specified then JRS géher-
ate and return a unique string for the object just storede@itse
JRS returns the string provided by the programmer.

JSA JavaSymphony application

Jv™M JVM JvM JVM
ISA ISA . JSA JSA AppOA application object agent
PubOA public object agent
\7777777?77::177%7777 777777 7777%77*:::***;***** NA network agent
:) AppOA AppOA AppOA AppOA JS-Shell JavaSymphony shell
1Objec =

| PUbOA PUbOA
|
Tif 777777 I e - 1
Network I
1Agent NA o B NA :
1System | L —

JS-Shell I
I(NAS) |

|

—— remote method invokation via JAVA/RMI

Figure 2. JavaSymphony Runtime System Architecture (JRS) &sed on object agent and network agent system.

computing node for JSAs. Moreover, managers determinesyst Managers periodically examine their virtual architectocan-

performance parameters of their architecture componehf@n ponents as well as the manager of the next lower and higher hie

ward them to other managers or nodes in the system. The systerarchy (for instance, a site manager examines its assoahtstbr

parameters provided by JRS are determined by invokingxee managers and domain manager) for system failures. If aicerta

method of thejava.lang.Runtimeslass [23] with various system node does not respond within a predefined time period (change

performance commands. able under JS-Shell) then this node is said to have causédrefa
The resources are periodically monitored at every node ko co and will be released by JRS according to the following sifiguli

lect up-to-date values of processor and network parameteich fault tolerance mechanism:

includes static and dynamic system parameters. Statiargara

ters remain unchanged during execution of an applicatiogram ¢ If a non-manager or backup-manager (see below) node of a
which comprises node name, IP address, architecture tgps, t cluster failed, then the manager of this cluster simplyasés
memory size, operating system, peak performance paraspeter this node.

Dynamic parameters may change while a program is executing o |f a manager node failed then a backup manager within the
which includes CPU load, idle times, available memory sizen- same hierarchy releases the manager and takes over as the
ber of processes and threads, number of context switchegser s new manager of this virtual architecture component. The
tem calls, network latency, network bandwidth, etc. Over&lS backup manager then informs the JS-Shell, all of its asso-
supports close to 40 different system parameters. Moreoven- ciated lower-level and higher-level managers, and nodes in
itoring is employed to examine the resources for systeraries its component about the failure. For instance, a backup site

_ manager would inform all of its cluster managers, the nodes
The nodes forward the observed system parameters to theiras of its cluster, and the domain manager about the failure. Fi-

sociated cluster manager which averages these valuessaitos nally, as the backup manager becomes the new manager, a
cluster nodes and stores them locally. The cluster manager f second backup manager (pre-defined by the JS-Shell) is acti-
wards these data to the site manager which collects all data f vated.

its clusters and finally sends averages values to the domam m

ager. Every manager locally stores system data for all @hitec- Upon failure of a node, the JS-shell and the associated PubOA

ture components (e.g. a site manager is at the same timetarclus of this node are informed either by the manager (if a non-rgana
manager) and forwards them to the next higher level in thieafr node fails) or backup-manager (if a manager node fails) et
architecture hierarchy. The performance measurementaliete failure through the Java/RMI mechanism. Note that curyethid
tion periods can be controlled under the JS-Shell. Storagear object agent system does not exploit information abouesy$ail-

these data is kept reasonably small as only the least rgcast- ures provided by the NAS. Future work will address the issiue o
sured data are kept. Currently we do not maintain a history ofallowing the object agent system to at least partially recéom
measurements, although, it would be easy to support it. certain system failures.

Network agents are implemented as a set of threads within areside on arbitrary nodes. Methods are always executed &idhl
single JVM. For more details the reader may refer to [7]. AppOA or at remote PubOAs where the object has been generated
and the corresponding results are sent back to the local App®
AppOA that invokes a method on a remote object always directl
4. update object tables interacts with the AppOA or PubOA that holds the object.

3. confirm migration

4. update object tables

OAS
n3

OAS

nl

Object migration commonly involves an AppCGi# associated
with a JSA on a nodel, a PubOApalthat holds the object in-
stance on node2, and a PubO/a2 on noder3 to which the
object should be migrated. The following protocol (see FégB)
is executed for an object migration fropalto pa2

1. aorequestpalandpa2to migrate object fronpalto pa2

1. request for migration

IOAS

n2

2. paltransfers object tpa2

4. update object tables 3. pa2confirms migration tmoandpal

4. ao, pal, andpa2update their object tables.

The object migration protocol is very similar if the objeststored
or migrated to the local AppOA. This protocol ensures thatAlp-
pOA from which the object originates (site of associated JSA
always aware about the location of the object. If a remotehotbt
invocation fails due to object migration, the new objecltan is
accessed from the AppOA from which the object originatess Th

)) . . is done automatically by the OAS (see Figure 4).
The object agent system (OAS) directly interacts with

JavaSymphony applications. OAS supports the administradf
objects which includes creation, mapping, migration, lbathnc-
ing, and deletion of objects. Furthermore, OAS is respdasib
manage RMIs, transfer method parameters, to execute thethe m
ods at the object’s location, and to return the correspandisult
to the call site.

Figure 3. Object migration under the JavaSym-
phony Object Agent System.

5.2 The Object Agent System

Every JSA has a specific AppOA associated that stores the fol-
lowing information for every generated object of this JSAthe
local-objects-table

O
1. RMI with incorrect
object location

e unique object handle

OAS

n2

¢ location of PUbOA where object instance is generated and
stored

e result objects for invoked methods of this object

¢ flag that specifies whether any method of the object is cur-

rently being executed Figure 4. RMI on migrated object under the

JavaSymphony Object Agent System.

For every generated object, AppOA returns a handle to JS&. Th

actual object instance is generated by the local AppOA omrete An AppOA requests a virtual architecture from the local NA
PubOA which can be user-defined (see Section 4.4) through mapvia the PubOA of the same node. The PubOA stores all virtual ar
ping objects onto specific components of a virtual archibect If chitectures generated by any JSA on the local node whichdies!

no mapping is specified then the AppOA invokes the PubOA to de-the following information: virtual architecture identifiion and
termine a node that must honor a set of constraints (e.g. witde specification, identification of associated JSA and AppQOdy-c
smallest system load) defined under JS-Shell. Note if arcolrje straints that must hold by this architecture as indicateihdicre-
stance of a JSA is generated locally, then it is always storéue ation, etc. The PubOA periodically examines whether the- con
local-objects-tableof the associated AppOA. An object which is straints of the stored virtual architectures are still fldéi through
generated on a remote nodes stored — with similar information ~ accessing system parameters via its local NA. A list of athar

as mentioned above — in themote-objects-tablef the PUbOA tecture components that no longer fulfill these constrasngent to
onn. Every PubOA that possesses a handle to an object has fulthe corresponding AppOA. The AppOA is then trying to migrate
access to the object’s data and methods. Object handlesare a(according to the object migration protocol mentioned a)al

sociated with information about the location of the objeud ¢he
AppOA from which the object originates. Object handles {firs
order objects) can be passed to methods of other objectatnat

10

objects originating from its JSA that are on this list to atle
chitecture components which fulfill the original consttain To
maintain all mapping constraints (for instance, if sevetsjbcts

have been mapped on the same node for locality reasonsjéds t For our experiment we implemented a 2-dimensional matrix
to migrate all objects of an overloaded node to some othee nod multiplication (4 *+ B = (') using a master-slave parallelization
for which a given set of architecture constraints hold. Tarrzan strategy as shown in Figure 6. For the sake of demonstratgpn F
locality JRS tries to migrate objects of one node to anotlogien ure 6 shows only the most important excerpt of our applicatio
within the same cluster of the original node. If the consitado We omitted in particular exception handling and any kind pf e
not hold for any node in the cluster of the original node then a ror checking. Clasgwuxis an auxiliary class with several methods
other cluster within the same site of the original node edmnext, for initializing arrays and setting up slave tasks. Clitsgrix pro-
and so forth. Automatic migration can cause performanceadeg vides methods for initializing arrayd, B, andC, and merging
dation if a large number of objects is transferred. Theefdris results in matrix C. Atthe beginning, the application régjis with
possible to enable/disable automatic migration under#giell. the JRS. A cluster wittnr_nodesnodes is requested from JRS. A
codebase with all important byte-code is transferred tayenede
Both AppOA and PubOA are implemented as a collection of of the cluster. MatrixB is replicated on the entire cluster by using
threads under JDK 1.2.1. AppOA consists of several thrediishw ~ a one-sided invocation of methauit. Sets of rows (defined by
includes: one thread for interaction with the associatedl, #Be variablerows per_task of matrix A define a task to be executed by
thread for every asynchronous method invocation in ordewen- an individual node. The number of rows does not change during
come blocking Java/RMI, and one thread for interaction it execution of the application. In each iteration of the WHilogp
local and all remote PubOAs. On the PubOA there is one threadevery node of the cluster is examined whether it is waitingsfo
running for every local AppOA, one thread for all remote Apf) task or whether it is still executing a task. If a node is wajtior a
one thread for all remote PubOAs, and one thread for the Maal task then a new task is assigned to it via asynchronous itieoca
of methodmultiply. If a node is still executing a task, then it is
verified whether a result is already available. If so, thenrésult
is merged with matrix C and the node is marked as being ready
for a new task. The WHILE-loop is exited if all tasks have been
A preliminary version of JavaSymphony has been implementedprocessed and the results are returned. After the parabgibm
which includes all functionality described in this papeceptfor ~ multiplication finished, the application un-registersirdRS.
object migration and persistent objects. In this sectiomescribe Figure 5 shows the time required to complete a matrix mul-
an experiment that has been conducted on a non-dedicamdhet tiplication of two N*N matrices on the indicated heterogens
geneous cluster of 13 Sun workstations comprising Spaiosga ~ Workstation cluster for varying workstation (node) nunhéxote
4/110, Sparcstations 10/40, Sparcstation 5/70, Sun Ultth20, that the times plotted for the one-node-experiments arecas a
Sun Ultras 10/300, and Sun Ultras 10/440. All Sun Ultra weaks ~ sequential matrix multiplication that does not use JavaSyony
tions are connected based on 100 Mbits/sec bandwidth, abere at all. We ran each experiment (defined by a specific N and a set
communication among all other workstations rely on 10 Mbigs ~ of nodes) twice for two different system loads based on ideht
bandwidth. All workstations run Sun Solaris 7. These warkst set of nodes. The first set of experiments (see solid lineugiac
tions are used by individual people for their regular worle Wsed ~ time functions in Figure 5) was conducted during the day when
Sun’s JDK 1.2.1 with a JIT compiler and native threads as ke p ~ Workstations have been used by individual people for theine
form JVM. day work (e.g. program development, e-mailing, etc.). Tée s
ond set of experiments (see dashed line execution timeifunsct
in Figure 5) has been done at night with very little systendlliva-
plied by individual users. If we compare both experimertgnt

6 Experiments

400 ‘ it can be clearly seen, that the overall performance exgaditom
| N=400, 1st run|| the workstation cluster is considerably better at nightretedmost
N=400, 2nd rui . . .
— N=500, 1st run linear speed-up is achieved for up to 6 nodes. Beyond 6 nbées t
9 3001 — — N=500, 2nd runy scaling behavior deteriorates. The execution times foettyeeri-
e —— N=600, 1st run . .
S — — N=600, 2nd run ments conducted during the day scales up to 2 nodes. Adding up
[| a . . .
2 to 10 nodes reduces the execution time. For all experimests,
2 Lol i ing more than 10 nodes increases the execution time of thexmat
< multiplication which is mostly due to a larger number of RMIs
& Note for the reviewer: We plan to add more experiments if the
100~ N paper is accepted.
7 Conclusions and Future Work
| | |
O0 5 10 15 20 .) .
Number of nodes .]ayaSymphony prowde_s a programming paradigm and soft-
ware infrastructure to alleviate distributed and paratledgram-
Figure 5. JavaSymphony matrix multiplication ming that effectively exploits heterogeneous resourceging
performance for different problem sizes and sys- from small-scale cluster computing to large-scale widesaneta-
tem loads. computing. In contrast to most existing work, JavaSymptainy

11

public class MatrixMultiply {
public static void main (String args[]) {

/I register JavaSymphony application
JSRegistration reg = new JSRegistration();

/I allocate cluster
Cluster c1 = new Cluster(nr_-nodes);

/I define codebase and load on cluster c1
JSCodebase cb = new JSCodebase();
ch.add(“../matrix-test/classes.jar”);
codebase.load(cl);

/I allocate and initialize matrices A, B, and C for matrix multiplication: A*B =C
float [] A = new floatf[dimAl*dimA2];
float [] B = new float[dimA2*dimB2];
float [] C = new float[dimA1*dimB2];
Matrix.initMatrix(A,B,C);

/I copy matrix B to all cluster nodes

Object[] paramB = {dimA2,dimB2,B};

for (i=0;i < cl.nrNodes(); i++){
JSObj DistrMpy[i] = new JSObj(“Matrix”,c1.getNode(i));
DistrMpyf[i].oinvoke(“init”,paramB);

/I determine nr of tasks to be processed by cluster nodes
nr_tasks = dimAl/rowsper_task;
if (dimA1 % rows _per_task != 0) nr_tasks++;
next_task = 0;
Aux.initArray(nodeBusy,-1); // init nodeBusy with "-1” fo r every cluster node

/I distribute tasks (set of rows of matrix A) to nodes of cluser
while (nexttask < nr _tasks){
for (i=0;i < cl.nrNodes(); i++){
if (nodeBusyl[i] >= 0) { // node is executing task
if (hdI[i].isReady()) { // result is available
Matrix.mergeResult((ResultData)hdl[i].getResult());// merge result in matrix C
nodeBusy[i] = -1; // set node to be free again

if (nodeBusy[i] < 0) { // node is free to work on next task

Object[] paramA = {Aux.setupTask(nexttask,rowsper_task,dimAl,matrixA) };
ResultHandle hdl[i] = DistrMpy][i].ainvoke(“multiply”,p aramA);

nodeBusy[i] = nexttask; // set node to be busy again

next task++;

}
}

... 1/ do something with the result

reg.unregister(); // unregister JavaSymphony applicatio

}

Figure 6. Code skeleton of master/slave JavaSymphony matrimultiplication (A*B=C)

12

lows the programmer to explicitly control locality of dataciload
balancing. Moreover, JavaSymphony supports sophistcege

mote method invocation mechanisms, persistent objectggha h

level API to access hardware/software system parametetisex
lective remote classloading. Preliminary experimentsehshown
that our software infrastructure achieves reasonableopadnce
on a heterogeneous cluster of workstations.

We are currently in the process to evaluate JavaSymphohy wit

larger applications. Moreover, we are extending JavaSympto
handle static methods and variables, and to enable recoféng
OAS from certain system failures. Finally, we continue tpmve
our techniques for automatic mapping and migration of dsjec

ACKNOWLEDGMENTS

The author is very grateful to Erwin Laure from the Institdite
Software Science, University of Vienna, for many fruitfusdus-
sions on the design and implementation of JavaSymphonyaand f [16]
proof-reading this paper. Furthermore, the author thankddfer
and A. Kulin for implementing the network agent system and G.
Aschenbrenner and T. Pfeiffer for implementing the objeptra
system.

References

(1]
(2]

K. Arnold and J. GoslingThe Java Programming Language
Addison-Wesley, Reading, MA, USA, second edition, 1998.
K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and
J. Waldo. The Jini specificationAddison-Wesley, Reading,
MA, USA, 1999.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Char-

[4]

5]

[6]

[7]

(8]

lotte: metacomputing on the Web. In K. Yetongnon and
S. Hariri, editors,Proceedings of the ISCA International
Conference. Parallel and Distributed Computing Systems,
Dijon, France, 25-27 September, 199®lume 1, pages 2—

[

[

1

[
[

[1

[
[
[
[

[

9]

10]

11]
2]

13]
14]

5]

17]
18]
19]

20]

21]

??, Raleigh, NC, USA, 1996. International Society of Com- [22]

puters and Their Applications (ISCA).

H. Casanova and J. Dongarra. NetSolve: A network-emhble
server for solving computational science probleriifie In-
ternational Journal of Supercomputer Applications andliig
Performance Computind.1(3):212-223, Fall 1997.

B. O. Christiansen, P. Cappello, M. F. lonescu, M. O. Near
K. E. Schauser, and D. Wu. Javelin: Internet-based paral-
lel computing using JavaConcurrency: Practice and Ex-
perience 9(11):1139-1160, Nov. 1997. Special Issue: Java
for computational science and engineering — simulation and
modeling II.

P. Ciancarini and D. Rossi. Jada - Coordination and Com-
munication for Java Agents. In J. Vitek and C. Tschudin,
editors,Mobile Object Systems: Towards the Programmable
Internet volume 1222 of ecture Notes in Computer Science
pages 213-228. Springer-Verlag: Heidelberg, Germany, Apr
1997.

T. Fahringer, L. Hofer, and A. Kulin. The JavaSymphony
Network Agent System (in german). Technical Report
TR2000-09, Institute for Software Science, University &f V
enna, May 2000.

M. P. I. Forum. Document for a Standard Message Passing
Interface draft edition, Nov. 1993.

13

A

[

[2

[2

25]

6]

7]

I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing

11@):115—128, Summer 1997. o
E. Freeman, S. Hupfer, and K. ArnoldavaSpaces princi-

ples, patterns, and practicdddison-Wesley, Reading, MA,

USA, 1999. |
G. Glass. ObjectSpace voyager — the agent ORB for Java.

Lecture Notes in Computer Sciend868:38—??, 1998.
A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and

P. F. Reynolds, Jr. Legion: The next logical step toward a na-
tionwide virtual computer. Technical Report CS-94-21, De-
partment of Computer Science, University of Virginia, June

08 1994. Mon, 28 Aug 1995 21:06:39 GMT.)
High Performance Fortran Language Specification \dersi

2.0, January 1997.) .
M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an eomvi

ment for parallel, distributed and mobile java applicatiolm
Proceedings of ACM 1999 Java Grande Confererpeges

15-25, San Francisco, CA, June 1999. .
D. B. Lange and M. OshimaProgramming and Deploying

Mobile Agents with Java AgletsAddison-Wesley, Reading,

MA, USA, Sept. 1998. . .
E. Laure. Distributed High Performance Computing with

OpusJava. In E. H. D’'Hollander, J. R. Joubert, F. J. Pe-
ters, and H. Sips, editorBarallel Computing: Fundamentals
& Applications, Proceedings of the International Confezen
ParCo0’99, 17-20 August 1999, Delft, The Netherlamges

590-597. Imperial College Press, Apr. 2000. = .)
E. Laure. OpusJava: A Java Framework for DistributegtHi

Performance Computingzuture Generation Computer Sys-

tems in print 2001.)
E. Laure, P. Mehrotra, and H. Zima. Opus: Heterogeneous

Computing With Data Parallel TasksRarallel Processing

Letters 9(2):275-289, June 1999.)
D. S. Linthicum. CORBA 2.070pen Computingl2(2):68—

??,Feb.1995.)
C. Nester, M. Philippsen, and B. Haumacher. A more effi-

cient rmi. InProceedings of the ACM Java Grande Confer-
ence, San Francisco, CApages 152-159, New York, NY,

June 1999. ACM Press. -)
M. Philippsen and B. Haumacher. More efficient objeci-se

alization. Lecture Notes in Computer Sciend&86:718-?7,

1999.
M. Philippsen and M. Zenger. JavaParty — transparent re

mote objects in Jav&oncurrency: Practice and Experience
9(11):1225-1242, Nov. 1997. Special Issue: Java for compu-
tational science and engineering — simulation and modeling

Il.
Sun Microsystems. Java class packages.]
V. S. Sunderam. PVM: A framework for parallel dis-

tributed computing.Concurrency: practice and experience

2(4):315-339 (or 315-34077?), Dec. 1990. .
H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Bato

and U. Nagashima. Ninflet: a migratable parallel objects
framework using Java. In ACM, editokCM 1998 Workshop
on Java for High-Performance Network Computimgges

??-??, New York, NY 10036, USA, 1998. ACM Press.
R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmanm an

R. Veldema. Wide-area parallel computing in java.Piro-
ceedings of the ACM Java Grande Confereridew York,

NY, June 1999. ACM Press. o
A. Wollrath, J. Waldo, and R. Riggs. Java-centric dlstted

computing: Providing a homogeneous view of a heteroge-
neous group of machinedEEE Micro, 17(3):44-??, May/
June 1997.

