CS 4204 Computer Graphics

Curves and Surfaces
(Continue)

Yong Cao
Virginia Tech

Reference: Ed Angle, Interactive Computer Graphics, University of New Mexico, class notes

Objectives

e Bezier curves and surfaces

 B-spline and compare it to the standard
cubic Bezier

ntroduce OpenGL evaluators

_earn to render polynomial curves and
surfaces

Bezier's Idea

* In graphics and CAD, we do not usually
have derivative data

e Bezier suggested using the same 4 data

points as with the cubic interpolating
curve to approximate the derivatives in the

Hermite form

Approximating Derivatives

P1 P2
p, located at u=1/3 p, located at u=2/3

Equations

Interpolating conditions are the same

P(0) =Py = Cy
P(1) = p3= Cy+Cyt+CyrtCy

Approximating derivative conditions

P’(0) = 3(P;-Po) = Co
p’(1) = 3(ps-P,) = ¢, +2¢,+3¢C,

Solve four linear equations for c=Mgp

Bezier Matrix

p(u) =u'™™gp =b(u)'p

blending functions

Blending Functions

Note that all zeros are at O and 1 which forces
the functions to be smooth over (0,1)

Bernstein Polynomials

« The blending functions are a special case of the
Bernstein polynomials

« These polynomials give the blending polynomials for
any degree Bezier form

All zeros at 0 and 1
For any degree they all sumto 1

They are all between 0 and 1 inside (0,1)

Bezier Patches

Using same data array P=[p;] as with interpolating form

Patch lies In
convex hull

B-Splines

« Basis splines: use the data at p=[p;, p;.; P; Pi.;]" to define curve only
between p;; and p;

 Allows us to apply more continuity conditions to each segment

 For cubics, we can have continuity of function, first and second
derivatives at join points

e Costis 3times as much work for curves

« Add one new point each time rather than three

e For surfaces, we do 9 times as much work

Cubic B-spline

p(u) =u'™gp =b(u)'p

Blending Functions

convex hull property

B-Spline Patches

defined over only 1/9 of region

Splines and Basis

* |f we examine the cubic B-spline from the
perspective of each control (data) point, each
Interior point contributes (through the blending

functions) to four segments

« We can rewrite p(u) in terms of the data points
as

defining the basis functions {B;(u)}

Basis Functions

In terms of the blending polynomials

bi{u+ 1) bylu)

NURBS

 Nonuniform Rational B-Spline curves and surfaces add
a fourth variable w to x,y,z

« Can interpret as weight to give more importance to some control data

« Can also interpret as moving to homogeneous coordinate
 Requires a perspective division
 NURBS act correctly for perspective viewing

 Quadrics are a special case of NURBS

What Does OpenGL Support?

 Evaluators: a general mechanism for working with the Bernstein
polynomials

Can use any degree polynomials
Can use in 1-4 dimensions
Automatic generation of normals and texture coordinates
NURBS supported in GLU
e Quadrics

 GLU and GLUT contain polynomial approximations of quadrics

One-Dimensional Evaluators

 Evaluate a Bernstein polynomial of any degree at a set
of specified values

e Can evaluate a variety of variables
Points along a 2, 3 or 4 dimensional curve
Colors
Normals

Texture Coordinates

 We can set up multiple evaluators that are all evaluated
for the same value

Setting Up an Evaluator

what we want to evaluate]
max and min of u

gIMaplf(type,u min,u_max,stride,
order, pointer_to _array)

separation between
1+degree of polynomial data points

pointer to control data

Each type must be enabled by glEnable(type)

Example

Consider an evaluator for a cubic Bezier curve over (0,1)

point data[]={.....- -}, * /3d data /*
giMapl1f(GL_MAP1 VERTEX 3,0.0,1.0,3,4,data);

data are 3D vertices

data are arranged as X,y,z,X,Y,Z
three floats between data points in array

glEnable(GL_MAP1 _VERTEX_ 3);

Evaluating

e The function glEvalCoordlf(u) causes all
enabled evaluators to be evaluated for the
specified u

« Can replace glVertex, glNormal, glTexCoord

 The values of u need not be equally
spaced

Example

e Consider the previous evaluator that was set up
for a cubic Bezier over (0,1)

e Suppose that we want to approximate the curve
with a 100 point polyline

glBegin(GL_LINE _STRIP)
for(1=0; 1<100; i1++)
glEvalCoordlf((float) 1/100.0);
glENd();

Equally Spaced Points

Rather than use a loop, we can set up an
equally spaced mesh (grid) and then
evaluate it with one function call

gIMapGrid(100, 0.0, 1.0);

sets up 100 equally-spaced points on (0,1)

glEvalMesh1(GL_LINE, O, 99);

renders lines between adjacent evaluated
points from point O to point 99

Bezier Surfaces

 Similar procedure to 1D but use 2D evaluators in u and v

o Set up with

gIMap2f(type, u min, umax, u stride, u order, v _min,
v_max, Vv_stride, v _order, pointer_ to data)

 Evaluate with glEvalCoord2f(u,Vv)

Example

bicubic over (0,1) x (0,1)

point data[4][4]={ }s
gIMap2f(GL_MAP1 VERTEX 3, 0.0, 1.0, 3, 4,
0.0, 1.0, 12, 4, data);

Note that in v direction data points
are separated by 12 floats since array
data is stored by rows

Rendering with Lines

must draw Iin both directions

for(J=0;jJ<100;j++) {
glBegin(GL_LINE_STRIP);
for(1=0;1<100;1++)
glEvalCoord2f((float) 1/100.0, (float) j/100.0);
glEnd();
glBegin(GL_LINE_STRIP);
for(1=0;1<100;1++)
glEvalCoord2f((float) jJ/100.0, (float) 1/100.0);
glEndQ);
+

Rendering with Quadrilaterals

We can form a quad mesh and render with lines

for(J=0; jJ<99; j++) {
glBegin(GL_QUAD STRIP);
for(1=0; 1<100; 1++) {
glEvalCoord2f ((float) 1/100.0,
(float) j/100.0);
glEvalCoord2f ((float)(1+1)/100.0,
(float)j/100.0);

+
glEnd():
by

Uniform Meshes

« We can form a 2D mesh (grid) in a similar manner to 1D
for uniform spacing

gIMapGrid2(u_num, u _min, u max, v_num, v_min, V_max)

Can evaluate as before with lines or if want filled
polygons

glEvalMesh2(GL_FILL, u start, u num, v _start, v_num)

Rendering with Lighting

e |If we use filled polygons, we have to shade or
we will see solid color uniform rendering

 Can specify lights and materials but we need
normals

* Let OpenGL find them
glEnable(GL_AUTO _NORMAL);

NURBS

e OpenGL supports NURBS surfaces through the
GLU library

 Why GLU?
Can use evaluators in 4D with standard OpenGL library

However, there are many complexities with NURBS that
need a lot of code

There are five NURBS surface functions plus functions for
trimming curves that can remove pieces of a NURBS
surface

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Quadrics

e Quadrics are in both the GLU and GLUT
libraries

* Both use polygonal approximations where the application
specifies the resolution

* Sphere: lines of longitude and lattitude
 GLU: disks, cylinders, spheres
« Can apply transformations to scale, orient, and position
« GLUT: Platonic solids, torus, Utah teapot, cone

GLUT Objects

glutWireTorus()

glutWireTeapot()

GLUT Platonic Solids

glutWireTetrahedron() glutWireDodecahedron()

glutWireOctahedron() glutWirelcosahedron()

Quadric Objects in GLU

« GLU can automatically generate normals
and texture coordinates

 Quadrics are objects that include properties
such as how we would like the object to be

rendered

partial disk

Defining a Cylinder

GLUquadricOBJ *p;
P = gluNewQuadric(); /*set up object */
gluQuadricDrawStyle(GLU _LINE);/*render style*/
gluCylinder(p, BASE RADIUS, TOP_RADIUS,

BASE HEIGHT, sections, slices);

