
CS 4204 Computer Graphics

C d S fC d S fCurves and SurfacesCurves and Surfaces
(Continue)(Continue)()()

Yong CaoYong CaoYong CaoYong Cao
Virginia TechVirginia Tech

Reference: Ed Angle, Interactive Computer Graphics, University of New Mexico, class notes

Obj tiObjectives

•• BezierBezier curves andcurves and surfacessurfaces•• Bezier Bezier curves and curves and surfacessurfaces
•• BB--splinespline and compare it to the standard and compare it to the standard

cubic cubic BezierBezier
•• Introduce OpenGL evaluatorsIntroduce OpenGL evaluatorsIntroduce OpenGL evaluatorsIntroduce OpenGL evaluators
•• Learn to render polynomial curves and Learn to render polynomial curves and

ffsurfacessurfaces

B i ’ IdBezier’s Idea

•• In graphics and CAD we do not usuallyIn graphics and CAD we do not usually•• In graphics and CAD, we do not usually In graphics and CAD, we do not usually
have derivative datahave derivative data

•• Bezier suggested using the same 4 data Bezier suggested using the same 4 data
points as with the cubic interpolating points as with the cubic interpolating
curve to approximate the derivatives in the curve to approximate the derivatives in the
HermiteHermite form form

A i ti D i tiApproximating Derivatives
p p2p1

p2

p1 located at u=1/3 p2 located at u=2/3

3/1
pp)0('p 01−≈

3/1
pp)1('p 23−≈

3/1
)(p

3/1
)(p

p0
p3

slope p’(0) slope p’(1)

up0 3u

E tiEquations
Interpolating conditions are the same

p(0) = p0 = c0
p(1) = p3 = c0+c1+c2+c3

Interpolating conditions are the same

p’(0) = 3(p1- p0) = c0

Approximating derivative conditions

p (0) 3(p1 p0) c0
p’(1) = 3(p3- p2) = c1+2c2+3c3

Solve four linear equations for c=MBp

B i M t iBezier Matrix

⎤⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡
−

=
0033
0001

M
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ −−
−

=

1331
0363MB

p(u) = uTMBp = b(u)Tpp() Bp () p

blending functions

Bl di F tiBlending Functions

⎥
⎥
⎤

⎢
⎢
⎡ −u

2

3

)1(3
)1(

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

−
−

=
uu

uuu

3

2)1(2
)1(3)(b

⎥⎦⎢⎣ u

Note that all zeros are at 0 and 1 which forces
the functions to be smooth over (0,1)

B t i P l i lBernstein Polynomials
•• The blending functions are a special case of theThe blending functions are a special case of theThe blending functions are a special case of the The blending functions are a special case of the

Bernstein polynomialsBernstein polynomials

!d

Th l i l i th bl di l i l fTh l i l i th bl di l i l f

)1(
)!(!

!)(kd uu
kdk

dub kdk −
−

= −

•• These polynomials give the blending polynomials for These polynomials give the blending polynomials for
any degree Bezier formany degree Bezier form

•• All zeros at 0 and 1All zeros at 0 and 1•• All zeros at 0 and 1All zeros at 0 and 1

•• For any degree they all sum to 1For any degree they all sum to 1

•• They are all between 0 and 1 inside (0 1)They are all between 0 and 1 inside (0 1)•• They are all between 0 and 1 inside (0,1) They are all between 0 and 1 inside (0,1)

B i P t hBezier Patches

U i d t P [] ith i t l ti fUsing same data array P=[pij] as with interpolating form

vpvbubvup TT MPM==∑∑)()()(
3 3

vupvbubvup BBijj
i j

i MPM==∑∑
= =

)()(),(
0 0

Patch lies in
convex hull

B S liB-Splines
•• BBasisasis splinessplines: use the data at: use the data at p=[pp=[pii 22 ppii 11 ppii ppii 11]]T T to define curve onlyto define curve onlyBBasis asis splinessplines: use the data at : use the data at p [pp [pii--22 ppii--11 ppii ppii--11]] to define curve only to define curve only

between between ppii--11 and and ppii

•• Allows us to apply more continuity conditions to each segmentAllows us to apply more continuity conditions to each segment

•• For For cubicscubics, we can have continuity of function, first and second , we can have continuity of function, first and second
derivatives at join pointsderivatives at join points

•• Cost is 3 times as much work for curvesCost is 3 times as much work for curves

•• Add one new point each time rather than threeAdd one new point each time rather than three

•• For surfaces,For surfaces, we do 9 times as much work we do 9 times as much work

C bi B liCubic B-spline

p(u) = uTMSp = b(u)Tp

⎥
⎤

⎢
⎡ 0141

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

−
−

=
0363
0303

MS

⎥
⎦

⎢
⎣ −− 1331

Bl di F tiBlending Functions

⎤⎡ 3

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

+−
−

= uu
u

u
22

32

3

364
)1(

1)(b

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−++

u
uuu

3

22 33316
)(

convex hull property

B S li P t hB-Spline Patches
3 3

vupvbubvup T
SS

T
ijj

i j
i MPM==∑∑

= =

)()(),(
3

0

3

0

defined over only 1/9 of region

S li d B iSplines and Basis
•• If we examine the cubic BIf we examine the cubic B--splinespline from thefrom theIf we examine the cubic BIf we examine the cubic B splinespline from the from the

perspective of each control (data) point, each perspective of each control (data) point, each
interior point contributes (through the blending interior point contributes (through the blending
f ti) t f tf ti) t f tfunctions) to four segmentsfunctions) to four segments

•• We can rewrite p(u) in terms of the data points We can rewrite p(u) in terms of the data points
asasasas

puBup ii)()(∑=
defining the basis functions defining the basis functions {B{Bii(u)}(u)}

B i F tiBasis Functions
In terms of the blending polynomials

12
2

)2(
0

0 −<≤−
−<

⎪
⎪
⎧

+ iui
iu

ub

1
1

12

)(
)1(
)2(

)(
2

1

0

+<≤
<≤−
<≤

⎪

⎪
⎪

⎨
+
+

= iui
iui

iui

ub
ub
ub

uBi

2
21

0
)1(3

+≥
+<≤+

⎪
⎪
⎪

⎩

−
iu

iuiub

NURBSNURBS
•• NNononuuniformniform RRationalational BB--SSplinepline curves and surfaces addcurves and surfaces addNNononuuniformniform RRational ational BB--SSplinepline curves and surfaces add curves and surfaces add

a fourth variable w to a fourth variable w to x,y,zx,y,z
•• Can interpret as weight to give more importance to some control dataCan interpret as weight to give more importance to some control datap g g pp g g p

•• Can also interpret as moving to homogeneous coordinateCan also interpret as moving to homogeneous coordinate

•• Requires a perspective divisionRequires a perspective divisionRequires a perspective divisionRequires a perspective division
•• NURBS act correctly for perspective viewingNURBS act correctly for perspective viewing

•• Quadrics are a special case of NURBSQuadrics are a special case of NURBS•• Quadrics are a special case of NURBSQuadrics are a special case of NURBS

What Does OpenGL Support?What Does OpenGL Support?

•• Evaluators: a general mechanism for working with the BernsteinEvaluators: a general mechanism for working with the BernsteinEvaluators: a general mechanism for working with the Bernstein Evaluators: a general mechanism for working with the Bernstein
polynomialspolynomials

•• Can use any degree polynomialsCan use any degree polynomials

•• Can use in 1Can use in 1--4 dimensions4 dimensions

•• Automatic generation of Automatic generation of normalsnormals and texture coordinatesand texture coordinates

•• NURBS supported in GLUNURBS supported in GLU

•• QuadricsQuadrics

•• GLU and GLUT contain polynomial approximations of quadricsGLU and GLUT contain polynomial approximations of quadrics

One-Dimensional EvaluatorsOne-Dimensional Evaluators

•• Evaluate a Bernstein polynomial of any degree at a setEvaluate a Bernstein polynomial of any degree at a setEvaluate a Bernstein polynomial of any degree at a set Evaluate a Bernstein polynomial of any degree at a set
of specified valuesof specified values

•• Can evaluate a variety of variablesCan evaluate a variety of variablesCan evaluate a variety of variablesCan evaluate a variety of variables
•• Points along a 2, 3 or 4 dimensional curvePoints along a 2, 3 or 4 dimensional curve

•• ColorsColorsColorsColors

•• NormalsNormals

•• Texture CoordinatesTexture CoordinatesTexture CoordinatesTexture Coordinates

•• We can set up multiple evaluators that are all evaluated We can set up multiple evaluators that are all evaluated
for the same valuefor the same valuefor the same valuefor the same value

S tti U E l tSetting Up an Evaluator
what we want to evaluate

l 1f(t i t id

what we want to evaluate max and min of u

glMap1f(type,u_min,u_max,stride,
order, pointer_to_array)

separation between
1+degree of polynomial

pointer to control data

separation between
data points

Each type must be enabled by glEnable(type)

E lExample

Consider an evaluator for a cubic Bezier curve over (0,1)

point data[]={…………..}; * /3d data /*point data[] {…………..}; /3d data /
glMap1f(GL_MAP1_VERTEX_3,0.0,1.0,3,4,data);

data are 3D vertices cubic

data are arranged asdata are arranged as x,y,z,x,y,z……
three floats between data points in array

glEnable(GL MAP1 VERTEX 3);glEnable(GL_MAP1_VERTEX_3);

E l tiEvaluating

• The function glE alCoord1f() causes all• The function glEvalCoord1f(u) causes all
enabled evaluators to be evaluated for the

ifi dspecified u
• Can replace glVertex, glNormal, glTexCoord

• The values of u need not be equally
spacedspaced

E lExample

• Consider the previous evaluator that was set up
for a cubic Bezier over (0,1)

• Suppose that we want to approximate the curve
with a 100 point polyline

glBegin(GL_LINE_STRIP)
for(i=0; i<100; i++)
glEvalCoord1f((float) i/100.0);

glEnd();

E ll S d P i tEqually Spaced Points
Rather than use a loop, we can set up anRather than use a loop, we can set up an

equally spaced mesh (grid) and then
evaluate it with one function call

glMapGrid(100, 0.0, 1.0);

sets up 100 equally-spaced points on (0,1)

glEvalMesh1(GL LINE 0 99);glEvalMesh1(GL_LINE, 0, 99);

renders lines between adjacent evaluated
points from point 0 to point 99points from point 0 to point 99

B i S fBezier Surfaces
•• Similar procedure to 1D but use 2D evaluators inSimilar procedure to 1D but use 2D evaluators in uu andand vvSimilar procedure to 1D but use 2D evaluators in Similar procedure to 1D but use 2D evaluators in uu and and vv

•• Set up withSet up with

glMap2f(type, glMap2f(type, u_minu_min, , umaxumax, , u_strideu_stride, , u_orderu_order, , v_minv_min, ,
v_maxv_max, , v_stridev_stride, , v_orderv_order, , pointer_to_datapointer_to_data))

•• Evaluate with Evaluate with glEvalCoord2f(glEvalCoord2f(u,vu,v))

E lExample

bicubic over (0,1) x (0,1)

i t d t [4][4] { }point data[4][4]={………};
glMap2f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4,

0.0, 1.0, 12, 4, data);

Note that in v direction data points
are separated by 12 floats since array
data is stored by rows

R d i ith LiRendering with Lines

must draw in both directions

for(j=0;j<100;j++) {
glBegin(GL_LINE_STRIP);

for(i=0;i<100;i++)
2 /100 0 /100 0glEvalCoord2f((float) i/100.0, (float) j/100.0);

glEnd();
glBegin(GL_LINE_STRIP);

for(i=0;i<100;i++)for(i=0;i<100;i++)
glEvalCoord2f((float) j/100.0, (float) i/100.0);

glEnd();
}}

R d i ith Q d il t lRendering with Quadrilaterals
We can form a quad mesh and render with lines

for(j=0; j<99; j++) {
l i (G Q S)

We can form a quad mesh and render with lines

glBegin(GL_QUAD_STRIP);
for(i=0; i<100; i++) {

glEvalCoord2f ((float) i/100.0,
(float) j/100 0);(float) j/100.0);

glEvalCoord2f ((float)(i+1)/100.0,
(float)j/100.0);

}}
glEnd():

}

U if M hUniform Meshes
•• We can form a 2D mesh (grid) in a similar manner to 1DWe can form a 2D mesh (grid) in a similar manner to 1DWe can form a 2D mesh (grid) in a similar manner to 1D We can form a 2D mesh (grid) in a similar manner to 1D

for uniform spacingfor uniform spacing
glMapGrid2(glMapGrid2(u numu num, , u minu min, , u maxu max, , v numv num, , v minv min, , v maxv max))g p (g p (__ ,, __ ,, __ ,, __ ,, __ ,, __))

•• Can evaluate as before with lines or if want filledCan evaluate as before with lines or if want filledCan evaluate as before with lines or if want filled Can evaluate as before with lines or if want filled
polygonspolygons

glEvalMesh2(GL FILL, glEvalMesh2(GL FILL, u startu start, , u numu num, , v startv start, , v numv num))g (_ ,g (_ , __ ,, __ ,, __ ,, __))

R d i ith Li htiRendering with Lighting

•• If we use filled polygons we have to shade orIf we use filled polygons we have to shade or•• If we use filled polygons, we have to shade or If we use filled polygons, we have to shade or
we will see solid color uniform renderingwe will see solid color uniform rendering

C if li ht d t i l b t dC if li ht d t i l b t d•• Can specify lights and materials but we need Can specify lights and materials but we need
normalsnormals

•• Let OpenGL find themLet OpenGL find them

glEnableglEnable(GL_AUTO_NORMAL);(GL_AUTO_NORMAL);

NURBSNURBS

•• OpenGL supports NURBS surfaces through theOpenGL supports NURBS surfaces through the•• OpenGL supports NURBS surfaces through the OpenGL supports NURBS surfaces through the
GLU libraryGLU library

Wh GLU?Wh GLU?•• Why GLU?Why GLU?
•• Can use evaluators in 4D with standard OpenGL libraryCan use evaluators in 4D with standard OpenGL library

•• However, there are many complexities with NURBS that However, there are many complexities with NURBS that
need a lot of codeneed a lot of code

•• There are five NURBS surface functions plus functions for There are five NURBS surface functions plus functions for
trimming curves that can remove pieces of a NURBS trimming curves that can remove pieces of a NURBS

ff
3
0Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

surfacesurface

Q d iQuadrics
•• Quadrics are in both the GLU and GLUTQuadrics are in both the GLU and GLUTQuadrics are in both the GLU and GLUT Quadrics are in both the GLU and GLUT

librarieslibraries
•• Both use polygonal approximations where the application Both use polygonal approximations where the application p yg pp ppp yg pp pp

specifies the resolutionspecifies the resolution
•• Sphere: lines of longitude and Sphere: lines of longitude and lattitudelattitude

•• GLU: disks, cylinders, spheresGLU: disks, cylinders, spheres
•• Can apply transformations to scale, orient, and position Can apply transformations to scale, orient, and position

•• GLUT: Platonic solids, torus, Utah teapot, coneGLUT: Platonic solids, torus, Utah teapot, cone

GLUT Obj tGLUT Objects

glutWireCone()
glutWireTorus()

glutWireTeapot()

GLUT Pl t i S lidGLUT Platonic Solids

glutWireTetrahedron() glutWireDodecahedron()

glutWireOctahedron() glutWireIcosahedron()

Q d i Obj t i GLUQuadric Objects in GLU
•• GLU can automatically generate GLU can automatically generate normalsnormalsy gy g

and texture coordinates and texture coordinates
•• Quadrics are objects that include properties Quadrics are objects that include properties

such as how we would like the object to be such as how we would like the object to be
renderedrendered

partial disk
disk sphere

D fi i C li dDefining a Cylinder
GLUquadricOBJGLUquadricOBJ *p;*p;GLUquadricOBJGLUquadricOBJ p;p;

P = P = gluNewQuadricgluNewQuadric(); /*set up object */(); /*set up object */

gluQuadricDrawStylegluQuadricDrawStyle(GLU_LINE);/*render style*/(GLU_LINE);/*render style*/

gluCylindergluCylinder(p, BASE_RADIUS, TOP_RADIUS, (p, BASE_RADIUS, TOP_RADIUS,

BASE_HEIGHT, sections, slices);BASE_HEIGHT, sections, slices);

