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Abstract: Nanotechnology is a new and developing branch that has revolutionized the world by its
applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles
play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles
by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an
important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabri-
cation of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism
and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the
biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to
synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise
nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of Ag-
NPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is
responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends
upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by
different species of Fusaria can be used in medicine and agriculture.

Keywords: Fusarium; synthesis; nanoparticles; mechanism; medicine; agriculture; nanofactory; toxicity

1. Introduction

Nanotechnology is an emerging branch of science having enormous applications
in almost all fields related to human life. It is mainly concerned with the synthesis and
applications of materials having a size in the range of 1 to 100 nanometers [1]. Nanomate-
rials possess exceptionally novel properties such as a high surface-area-to-volume ratio,
high reactivity, enhanced catalytic and biological properties. All these unique properties
make the nanomaterials appropriate for a variety of applications including in biomedicine
and agriculture [2–4]. To date, a variety of nanomaterials have been developed and many
more are currently under investigation to be applied in biomedicine with the emphasis on
various life-threatening diseases including cancer. Therefore, some precious metals (like
silver, gold and platinum) and some magnetic oxides (i.e., magnetite Fe3O4) nanoparticles
received much attention [5]. Similarly, various nanoparticles have been reported to have

J. Fungi 2021, 7, 139. https://doi.org/10.3390/jof7020139 https://www.mdpi.com/journal/jof

https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0003-0291-0422
https://orcid.org/0000-0001-9154-8191
https://orcid.org/0000-0002-1966-999X
https://orcid.org/0000-0002-4042-4022
https://orcid.org/0000-0002-2122-4543
https://doi.org/10.3390/jof7020139
https://doi.org/10.3390/jof7020139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jof7020139
https://www.mdpi.com/journal/jof
https://www.mdpi.com/2309-608X/7/2/139?type=check_update&version=4


J. Fungi 2021, 7, 139 2 of 22

many beneficial applications in agriculture which mainly include plant growth promotion,
usage as nanofertilizer, and nanopesticides [6].

It is well demonstrated that various nanoparticles can be synthesized using physical,
chemical, and biological methods [7]. The conventional physical and chemical methods
used for the synthesis of nanoparticles usually involve the usage of toxic chemicals and also
generate waste, which can cause environmental pollution [8,9]. However, the synthesis of
biogenic nanoparticles using different biological agents such as plants, microbes, and their
products has gained considerable attention worldwide due to the rapid synthesis and their
eco-friendly nature compared to physical and chemical methods.

Among the biological agents, fungi have been preferably used for the synthesis of a
variety of nanoparticles. Synthesis of nanoparticles using fungi is referred as mycosynthe-
sis [10–13] and is being dealt with under myconanotechnology [14]. Gade et al. [15] stated
the advantages of using filamentous fungi over other biological agents (e.g., bacteria) for
the synthesis of nanoparticles. These mainly include high tolerance towards heavy metals,
it is easy to culture fungi at mass level, synthesis of nanoparticles is extracellular which
reduces the cost of down streaming, etc.

To date, several fungi have been successfully exploited for the biological synthesis
of nanoparticles, but from the available literature, it is evident that different species of
Fusarium are the prime choice for scientists. Various species of Fusarium such as Fusarium
oxysporum, Fusarium semitectum, Fusarium acuminatum, Fusarium solani, Fusarium culmorum,
etc. and their different strains [16–21] have been used for the synthesis of nanoparticles
like silver, gold, platinum, silica, palladium, etc. Several other fungal species could also be
employed in nanoparticle synthesis as described in Mahmoud et al. [22], Elamawi et al. [23],
Noor et al. [24], and many more. Considering these facts, in the present review, we have
discussed the importance of Fusarium for biosynthesis of nanoparticles. Moreover, various
other key aspects such as the mechanism of nanoparticle synthesis from Fusarium and their
applications in biomedicine and agriculture and toxicity have also been discussed.

1.1. Diversity of Fusarium spp. for the Synthesis of Different Nanopartilces

Fungi play a very important role in solving major global problems for sustainable
development as compared to other biological systems. They enhance resource efficiency,
converting waste to valuable food and feed ingredients, making crop plants more robust to
survive in climate change conditions, and functioning as host organisms for the production
of new biological drugs [25]. Fungi are the most promising hotspots for finding new drug
candidates, metabolites, and antimicrobials [8]. They are also responsible for the shift
from chemical processes to biological processing, achieved by fungal enzymes instead of
chemical processes in industries, such as textiles, leather, paper, and pulp, which have sig-
nificantly helped to make the process eco-friendly by reducing the negative impact on the
environment [16,26]. The fungal system has been found to be a versatile biological system
with the ability to synthesize metal nanoparticles intracellularly as well as extracellularly.
Moreover, they are preferred over other biological systems because of their ubiquitous
distribution in nature, and therefore, many fungi have been explored for the production of
various metal nanoparticles of different shapes and size. Out of diverse fungal genera used
for the synthesis of nanoparticles, the genus Fusarium has been the choice of many investi-
gators [13,16]. The advantages of using Fusarium spp. for the synthesis of nanoparticles are
enlisted in Figure 1.
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Figure 1. The advantages of using Fusarium spp. for the synthesis nanoparticles (NPs).

There are several reports on the synthesis of metal nanoparticles by different Fusarium
spp. The exhaustive list of different Fusarium spp. involved with synthesis of different
metal nanoparticles is given in Table 1.

Table 1. List of Fusarium spp. synthesizing metal Nanoparticles.

Fusarium spp. Type of Nanoparticles Reference

Fusarium acuminatum Silver, Ingle et al. [10]

Fusarium solani Silver Ingle et al. [11]

Fusarium semitectum Silver Basavaraja et al. [19]

Fusarium acuminatum Gold Tidke et al. [27]
Fusarium culmorum Silver Bawaskar et al. [28]

Fusarium chlamydosporum NG30 Silver Khalil et al. [29]
Fusarium equiseti, Fusarium tricinctum Silver Gaikwad et al. [30]

Fusarium proliferatum Silver Gaikwad et al. [30]

Fusarium keratoplasticum A1-3 Zinc oxide
Silver

Mohamed et al. [31]
Mohamed et al. [32]

Fusarium monoliforme Silver Gaikwad et al. [30]

Fusarium oxysporum

Silver,
Gold,

Lead and Cadmium Carbonate,
Strontium Carbonate, Cadmium Sulfide,

Silica and Titania,
Silica, Barium Titanate,

Zirconia
Platinum
Magnetite

CdSe Quantum dot
CdTe Quantum dot

Titanium oxide
Chitosan

Zinc Sulfide

Birla et al. [33]
Bansod et al. [34]
Sanyal et al. [35]

Rautaray et al. [36]
Ahmad et al. [37]
Bansal et al. [38]
Bansal et al. [39]
Bansal et al. [40]

Gupta and Chundawat [41]
Bharde et al. [42]
Kumar et al. [43]

Senapati et al. [44]
Ganpathy and Siva [45]
Boruah and Dutta [46]

Mirzadeh et al. [47]
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Table 1. Cont.

Fusarium spp. Type of Nanoparticles Reference

Fusarium oxysporum f. sp. cubense JT1 Gold Thakker et al. [48]
Fusarium oxysporum 405 Silver Rajput et al. [49]

Fusarium oxysporum f. sp. lycopersici Platinum
Cadmium Sulphide

Riddin et al. [50]
Cardenas et al. [51]

Fusarium oxysporum PTCC 5115 Silver Karbasian et al. [52]
Fusarium graminearum Silver Ajah et al. [53]

Fusarium scirpi Silver Rodríguez-Serrano et al. [54]

Fusarium semitectum
Gold and Gold-silver alloy

Silver
Selenium

Sawle et al. [55]
Madakka et al. [56]

Abbas and Baker [57]
Fusarium semitectum (KSU-4) Silver Mahmoud et al. [58]

Fusarium solani Zirconium Oxide Kavitha et al. [59]
Fusarium solani ATLOY–8 Gold Clarance et al. [60]

Fusarium verticillioides Silver Mekkawy Mekkawy et al. [61]

1.2. F. oxysporum as a Novel Organism for Synthesis of Nanoparticles

Several fungi have been used for the biosynthesis of various nanoparticles as they
exhibit many advantages over other biosystems. After directing to the mycosynthesis of
nanoparticles especially from Fusarium, nanoparticles with better size and monodispersity
could be achieved. Additionally, the extracellular production of enzymes has an added
benefit in the downstream handling of biomass [62] as compared to other biosystems like
bacteria and plants. Consequently, using these expedient properties of Fusarium, it could
be comprehensively used for the rapid and eco-friendly biosynthesis of nanoparticles [53].
Gaikwad and colleagues [30] have screened eleven different Fusarium species isolated from
various infected plant materials for the synthesis of silver nanoparticles (AgNPs). All the
screened species revealed the ability for synthesis of AgNPs. Based on transmission electron
microscopic (TEM) analysis, six Fusarium species—viz. F. graminearum, F. solani, F. oxysporum,
F. culmorum, F. scirpi, F. tricinctum—synthesized smaller-sized particles, which signifies
their prominence in AgNPs synthesis (Figure 2). Moreover, AgNPs synthesis from F. scirpi,
F. graminearum, F. tricinctum was reported for the first time.

Khalil and coworkers [29] successfully synthesized and characterized AgNPs from
F. chlamydosporum NG30 and P. chrysogenum NG85 which showed promising antifungal
activity. The cellular mechanism of nanoparticle synthesis is yet to be completely under-
stood; therefore, researchers have been trying to understand the mechanism at the cellular
and molecular level [63]. They have reported the synthesis of gold nanoparticles (AuNPs)
using F. oxysporum f. sp. cubense JT1 in 60 min. Naimi-Shamel et al. [64] also proved
that F. oxysporum has benefits like fast growth rate, low-cost biomass management, safety
and easy processing for synthesis of AuNPs. AuNPs synthesized from F. oxysporum are
found to have a high tendency of conjugation with β-Lactam antibiotics, and this affinity
makes them a better detoxification agent as well in various areas including medicine [65].
An endophytic strain of F. solani isolated from Chonemorpha fragrans plant was used to syn-
thesise nanoparticles with anticancer activity [60]. El-Sayed and El-Sayed [66] synthesized
silver, copper and zinc biocidal nanoparticles from F. solani to combat multidrug-resistant
pathogens. F. oxysporum-mediated AgNPs surface coated with different proteins and
biomolecules act as a potential antimicrobial agent and proved by protein–ligand inter-
action in silico studies [66]. In another study by Birla et al., F. oxysporum produced more
protein at an optimized temperature between 60◦ and 80 ◦C which showed the progressive
increase in the rate of nanoparticle synthesis [33].
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Figure 2. TEM micrographs presenting sphere-shaped AgNPs synthesized by various Fusarium species. (A) F. gramine-
arum; (B) F. solani; (C) F. oxysporum; (D) F. culmorum; (E) F. scirpi; (F) F. tricinctum. (Reproduced with permission from 
Gaikwad et al. [30]). 

Figure 2. TEM micrographs presenting sphere-shaped AgNPs synthesized by various Fusarium species. (A) F. graminearum;
(B) F. solani; (C) F. oxysporum; (D) F. culmorum; (E) F. scirpi; (F) F. tricinctum. (Reproduced with permission from Gaikwad
et al. [30]).

2. Mechanism of Nanoparticle Synthesis from Fusarium

As discussed earlier, members of the genus Fusarium can synthesize metal nanopar-
ticles both intracellularly and extracellularly. As far as the mechanism of extracellular
mycosynthesis is concerned, it is proposed that metabolites such as enzymes, proteins,
polysaccharides, flavonoids, alkaloids, phenolic and organic acids, etc. secreted by fungus-
like Fusarium for their survival when exposed to different environmental stresses are mostly
responsible for the reduction of metals ions to metallic nanoparticles through the catalytic
effect [67]. Moreover, the same metabolites act as reducing and stabilizing agents which are
further responsible for the growth and stabilization of biogenic metal nanoparticles [13,22].
Figure 3 represents the schematic illustration of the general mechanism involved in the
synthesis, growth, and stabilization of metal nanoparticles using fungus such as Fusarium.

One of the hypothetical mechanisms proposed is that NADH-dependent nitrate
reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous
silver ions into AgNPs [16]. A similar mechanism has been proposed by Ingle et al. [10] in
case of synthesis of AgNPs from F. acuminatum, and they also pointed the involvement of
cofactor NADH and nitrate reductase enzyme in the biosynthesis of AgNPs because they
reported the presence of nitrate reductase in fungal cell-free extract using specific substrate
utilizing discs for nitrate purchased from Hi-Media Pvt. Ltd. Mumbai, India.
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Figure 3. General mechanism involved in the synthesis, growth, and stabilization of metal nanoparti-
cles using fungus.

In addition, Duran et al. [68] and Kumar et al. [69] proposed almost similar mecha-
nisms for the biosynthesis of AgNPs from F. oxysporum. In the former study, the authors
reported the role of anthraquinone and the NADPH-nitrate reductase in the biosynthesis
of AgNPs, and it was hypothesized that the electron required to fulfill the deficiency of
aqueous silver ions (Ag+) and convert it into Ag neutral (Ag0 i.e., AgNPs) was donated
by both quinone and NADPH. However, in the later study, it was demonstrated that the
reduction of NADPH to NADP+ and the hydroxyquinoline possibly acts as an electron
shuttle transferring the electron generated during the reduction of nitrate to Ag+ ions,
converting them to Ag0 (Figure 4).

There are reports suggesting various hydroquinones to act as electron shuttles re-
ducing the metal ions. F. oxysporum f. sp. cubense JT1 demonstrated to have the capacity
to reduce the gold ions to AuNPs [48]. Moreover, as per Ahmad et al. [16], the capac-
ity of reducing metal ions is species-specific. The reductase specific to F. oxysporum and
F. moniliforme were not able to synthesize AgNPs intracellularly and extracellularly. In ad-
dition to extracellular mechanisms, there are few mechanisms proposed for intracellular
mycosynthesis of metal nanoparticles. In the case of Fusarium-mediated intracellular my-
cosynthesis, metal nanoparticles usually formed below the cell surface and this may be due
to the reduction of metal ions by metabolites (i.e., enzyme) present in the cell membrane.
Generally, a two-step mechanism has been proposed for intracellular mycosynthesis of
nanoparticles. In the first step, aqueous metal ions are attached to the fungal cell surface by
the electrostatic interaction between lysine residues and metal ions (M+). However, in the
second step, the actual mycosynthesis of nanoparticles occurs by the enzymatic reduction
of metal ions (M0), which leads to the aggregation and formation of nanoparticles [49]
(Figure 5).
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Moreover, various other studies performed on mycosynthesis proposed the role
of different other enzymes and proteins. However, among all these mechanisms for
extracellular mycosynthesis, the hypothetical mechanism involving the role of NADH-
dependent nitrate reductase enzyme has been widely accepted.

2.1. Biomedical Applications of Nanoparticles Synthesized Using Fusarium Spp.

Biomedical application is an expanding field of research with tremendous prospects
for the improvement of the diagnosis and treatment of human diseases [70]. The dispersed
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nanoparticles are usually employed in nanobiomedicine as fluorescent biological labels [71],
as well as drug and gene delivery agents [72].

The biologically synthesized AgNPs could have many applications in areas such as
non-linear optics, spectrally selective coating for solar energy absorption and intercala-
tion materials for electrical batteries, as optical receptors, catalysis in chemical reactions,
bio labelling [73], and as antibacterial agents [74–76]. The biomedical applications of
Fusarium-mediated synthesized nanoparticles are shown in Figure 6.
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2.1.1. Antibacterial Activity of Nanoparticles

Gupta and Chundawat [41] used Fusarium oxysporum for the production of platinum
nanoparticles. The zones of inhibition against microbes were studied by the agar well
diffusion and agar dilution methods. It helps to know the minimum inhibitory concen-
tration of platinum NPs. The minimum inhibitory concentration of platinum NPs was
found to be 62.5 µg ml−1 for E. coli, which is relatively better than that of commercially
available drug ampicillin. Also, the antioxidant activity was studied by the α, α-diphenyl-
β-picrylhydrazyl (DPPH) method and platinum nanoparticles showed 79% scavenging
activity. Duran and his co-workers [68] synthesised AgNPs by Fusarium oxysporum and
integrated into the textile fabric for the inhibition of bacterial contamination such as
Staphylococcus aureus.

The uropathogenic Escherichia coli (UPEC) form biofilms. The prevalence of urinary
tract infections (UTIs) is due to the inaccessibility of the antibiotics into the highly complex
structure of the biofilm. However, with the appearance of antibiotic multi-resistant UPEC
strains, alternatives to the treatment of UTIs are fewer. AgNPs are an effective treatment
of UPEC infections due to its physicochemical properties that confer them antibacterial
activity against biofilm structured cells [54].

2.1.2. Antiviral Activity of Nanoparticles

The interaction between AgNPs and viruses is attracting pronounced interest due
to the potential antiviral activity of these particles. Elechiguerra et al. [77] reported that
the smaller AgNPs are capable of reducing viral infectivity by inhibiting attachment to
the host cells. It has been established that AgNPs undergo a size-dependent interaction
with herpes simplex virus types 1 and 2, and with human parainfluenza virus type 3. Also,
the authors confirmed that smaller nanoparticles were able to decrease the infectivity of the
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viruses [78]. Gaikwad et al. [30] synthesized AgNPs using Fusarium oxysporum and other
fungi, which showed potential for reducing the replication of HSV-1, HSV-2, and HPIV-3
in cell cultures. The AgNPs formed by F. oxysporum were the most effective and presented
low cytotoxicity [9].

2.1.3. Anticancer Activity of Nanoparticles

Husseiny et al. [79] reported the antibacterial and antitumor potential of AgNPs
synthesized from Fusarium oxysporum. The nanoparticles were effective to inhibit E. coli
and S. aureus, and also a tumor cell line. A low IC50 value (121.23 µg cm−3) for MCF-7
cells (human breast adenocarcinoma) was gained following exposure of the cells to the
nanoparticles, indicating high cytotoxicity and the potential for tumor control. The effect
was recognized by the involvement of the AgNPs in the disruption of the mitochondrial
respiratory chain, which led to the production of reactive oxygen species and hindered the
production of adenosine triphosphate (ATP), consequently damaging the nucleic acids.

Clarance et al. [60] explored the anticancer potential of the AuNPs obtained by the
green synthesis method using an endophytic strain Fusarium solani ATLOY—8 isolated
from Chonemorpha fragrans. The AuNPs were tested for their cytotoxicity on cervical cancer
cells (He La) and human breast cancer cells (MCF-7); the NPs exhibited dose-dependent
cytotoxic effects. The results delivered an apparent and versatile biomedical application
for a safer chemotherapeutic agent with little systemic toxicity.

2.1.4. Antifungal Activity of NPs

Bansod et al. [34] reported bioconjugate-nano-PCR as a rapid and specific method
for the identification of Candida species in less time. The DNA sample of Candida albicans
was conjugated with AuNPs and AgNPs synthesized from F. oxysporum. The use of this
nanoparticle-altered template enhances the sensitivity and specificity of the traditional
PCR assay. It is helpful in molecular diagnostics and therapeutics. It is demonstrated as an
effective method for the identification of Candida sp. with a low concentration of DNA and
less time. In another study, it was demonstrated that AgNPs synthesized by F. oxysporum
were inhibitory to pathogenic fungi such as Candida and Cryptococcus [76].

Horky et al. [80] summarized the current findings of mycotoxins and their elimina-
tion by nanoparticles. They concluded that nanomaterials have interesting adsorption
properties, which make them promising for mycotoxin elimination.

2.1.5. Antiparasitic Activity Against Vectors

Some studies showed that AgNPs synthesized from different fungal species can be
employed in pest control [81]. In a study, Dhanasekaran and Thangaraj [82] evaluated the
larvicidal activity of biogenically synthesized AgNPs against the larvae of Culex mosquito
vector, which causes filariasis. The authors reported that 5 mg/L AgNPs were responsible
for 100% mortality of the Culex larvae. This research has opened a new area of research
that the biogenically synthesized AgNPs can be used for the control of mosquito vectors
causing diseases like filaria, malaria. dengue, etc.

3. Applications in Agriculture

Agriculture plays a major role in the economy as it is the backbone of most develop-
ing countries. The worldwide population is growing day-by-day very rapidly and it is
predicted that it will reach about eight billion by 2025 and 9.6 billion by 2050. It is widely
recognized that global agricultural productivity must increase to feed a rapidly growing
world population [83–85]. For the improvement in crop productivity, nanotechnology
provides new agrochemical agents and new delivery mechanisms, and it promises to
reduce pesticide use as NPs could be used in the variable applications concerned with
agriculture. The applications of nanotechnology (as shown in Figure 7) can boost agri-
cultural production, which includes the nano-formulations of agrochemicals to use as
pesticides and fertilizers for crop improvement, nano-biosensors in crop protection for the
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identification of diseases and residues of agrochemicals, and nano-devices for the genetic
manipulation of plants, etc. In agriculture, nanobiotechnology is used to improve the
food production, with corresponding or even higher values of nutrition, quality and safety.
Efficient application of pesticides, fertilizers, herbicides and plant growth regulators is
the very critical way to get better crop production [86,87]. Nanocarriers could be used to
achieve the controlled release of herbicides, pesticides, and other plant growth regulators.
For example, poly (epsilon-caprolactone) nanocapsules have been recently developed as a
herbicide carrier for atrazine [88]. The mustard plants (Brassica juncea) when treated with
atrazine-loaded poly (epsilon-caprolactone) nanocapsules more significantly boosted the
herbicidal activity than that of commercial atrazine, demonstrating a drastic decline in net
photosynthetic rates. Moreover, the stomatal conductance and oxidative stress increased
considerably, which ultimately reduced the weight and growth of the plants [88]. Likewise,
other nanocarriers such as silica nanoparticles [89] as well as polymeric nanoparticles [43]
have also been developed for delivering the pesticides in a prescribed manner. Nanocar-
riers could be employed to perfectly achieve the delivery as well as the slow release of
these species, which is known as “precision farming”. This helps to improve the crop yield
without damaging the soil and water [90].

Figure 7. Applications of Nanotechnology in agri-food, veterinary medicine, and environment.

Most significantly, the application of nanoencapsulation could lower down the her-
bicide dosage leading to a safer environment. In addition to nanocarriers, NP-mediated
gene transfer in plants was employed for the development of insect-resistant crop vari-
eties. The detailed account for the gene or DNA transfer could be established in earlier
available reviews [91,92]. Al-Askar et al. [75] demonstrated that AgNPs biosynthesized
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by F. solani isolated from wheat were shown to be effective for the treatment of wheat,
barley, and maize seeds contaminated by different species of phytopathogenic fungi. More-
over, metal oxide nanomaterials such as CuO, TiO2, and ZnO are extensively studied for
plant protection from pathogen infections because of their intrinsic toxicity. For example,
ZnONPs efficiently inhibited fungal growth such as F. graminearum [93], Aspergillus flavus,
Aspergillus fumigatus, Aspergillus niger, F. culmorum and F. oxysporum [94]. The use of CuNPs
as an antimicrobial agent against plant pathogens has been reported in several publica-
tions [95,96]. Mineral fertilizers used conventionally undergo substantially high losses
besides lower uptake efficiencies of the nutrients. Those economic losses will be overcome
by the development of nanofertilizers, which could be the novel solution. Nanofertilizers
can reduce the nutrient loss as well as increasing nutrient adaptation by soil microbes and
crops [97]. Nanofertilizers are mainly the micro-nutrients at nanoscale for Mn, Cu, Fe, Zn,
Mo, N, and B, and are commercialized and available under different brand names in the
market such as Nano-Ag Answer®, NanoPro™, NanoRise™, NanoGro™, NanoPhos™,
NanoK™, NanoPack™, NanoStress™, NanoZn™, pH5®, etc. [87]. The use of other nano-
materials as an alternative for the typical conventional crop fertilizers, such as carbon
nano-onions [98] and chitosan nanoparticles [99], was noted to boost the crop growth and
quality. Shende et al. [100] reported the plant growth-promoting activity of biogenic CuNPs
on pigeon pea (Cajanus cajan L.) crops that suggested the use of these nanoparticles as a
nanofertilizer for the development of sustainable agriculture. It is estimated that the novel
nanofertilizers will encourage and makeover current fertilizer production industries in the
next decade [87].

Because of several advantageous characteristics of nanomaterials, nanosensors, par-
ticularly wireless nanosensors, have also been developed to monitor nutrient efficiency
in crop plants, crop diseases, and growth, along with the environmental conditions in
the field. Particularly, engineered nanosensors are capable of detecting chemicals like
pesticides, herbicides, and pathogens at trace amounts in food and agricultural systems.
Such an in situ and real-time monitoring system facilitates the remediation of probable
crop losses as well as perking up the crop production, accompanied by the suitable appli-
cation of nanopesticides, nanoherbicides, and nanofertilizers. Abbacia et al. [101] reported
that the copper-doped montmorillonite will possibly be used for on-line monitoring of
propineb fungicide in an aquatic environment i.e., in both fresh and salty water, with a
low detection limit of about 1 mM [101]. In another study, it was demonstrated that the
nanomaterials such as graphene could be developed for the detection of the pathogen in
wastewater [102] and purification of drinking water can be carried out [103], signifying its
potential application in aquaculture. Moreover, various other nanomaterials like carbon
nanotube [104], CuNPs [105], AgNPs [106], and AuNPs [107] can be used as nanosensors
designed for the real-time monitoring of crop health and growth along with the environ-
mental conditions in the field. Table 2 showed different Fusarium isolates used in the green
synthesis of nanoparticles.

Table 2. Fusarium isolates used in the green synthesis of different NPs.

Name of Fungi Synthesised NPs Localization Size (in nm) and Shape References

Fusarium oxysporum Ag Extracellular

10–20 and Spherical Birla et al. [33]
25–50 and almost spherical Korbekandi et al. [108]

- Ishida et al. [76]
5–13 and Spherical Husseiny et al. [79]
23 and Spherical Hamedi et al. [109]

Fusarium verticillioides Ag Extracellular - Mekkawy et al. [61]
Fusarium semitectum Au - 25 and Spherical Sawle et al. [54]
Fusarium oxysporum Au - 2–50 and Spherical, monodispered Zhang et al. [110]
Fusarium oxysporum Au-Ag bimetallic Extracellular 8–14 and Quasi-spherical Senapati et al. [111]
Fusarium semitectum Au-Ag alloy - 25 and Spherical Sawle et al. [55]
Fusarium oxysporum Fe3O4 Extracellular 20–50 and Irregular, quasi-spherical Bharde et al. [42]
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Table 2. Cont.

Name of Fungi Synthesised NPs Localization Size (in nm) and Shape References

Fusarium oxysporum Pt - 70–180 and Rectangular, triangular,
spherical and aggregates Govender et al. [112]

Fusarium oxysporum f.
sp. lycopersici Pt Extra-and intracellular 10–100 and Hexagonal, pentagonal,

circular, squares, rectangles Riddin et al. [50]

Fusarium spp. Zn Intracellular 100–200 and Irregular, some
spherical Velmurugan et al. [113]

4. Toxicity of Fusarium Nanoparticles

Nanoparticles are unique materials as they have property combinations compared
with conventional materials [114]. There is a wide range of applications of NPs such
as in human health appliances, industrial, medical and biomedical fields, engineering,
electronics, and environmental applications [115]. Among all nanomaterials, AgNPs are
the most widely used in medicine, medicinal devices, pharmacology, biotechnology, elec-
tronics, engineering, energy, magnetic fields, and also in environmental remediation [116].
Their highly effective antibacterial activity has found applications in industrial sectors
including textiles, food, consumer products, medicine, etc. [117].

The unique physical, chemical and biological (e.g., antimicrobial, anticancer, antipara-
sitic) properties of nanoparticles differ largely from corresponding bulk materials and make
them a high-demand material in different sectors. However, the widespread and increased
use of nanoparticles may pose a risk to both the environment and living organisms by
increasing the level of toxicity [118]. To date, several studies have used different model
cell lines to exhibit the cytotoxicity of nanoparticles from Fusarium species, mainly AgNPs,
and their underlying molecular mechanisms [31,60,65,119]. Biogenic nanoparticles are
capped with natural molecules like proteins [120–122]. This capping is defined as corona.
This nanoparticle corona significantly affects the biological response [123]. Based on the
surface affinity and exchange rate, the corona can be divided into two forms: hard corona
and soft corona. The soft corona proteins are ’vehicles’ for the silver ions, whereas the hard
coronas are rigid for the trespass into the cellular system [124]. The functional groups of the
corona play a key role in the formation of the nanoparticle–protein corona [125]. These func-
tional groups along with the protein charges also regulate the cytotoxic properties of the
nanoparticle corona [123,125]. The surface charge of nanoparticles plays an important role
in their bactericidal activity against both Gram-positive and Gram-negative bacteria, as
exemplified by AgNPs [126]. It was confirmed using transmission electron microscopy
(TEM) that AgNPs can penetrate cellular compartments such as endosomes, lysosomes,
and mitochondria [127]. Several reports indicate that the proteins contained in the nanopar-
ticle corona interact with the cells and not the nanoparticles themselves [128,129]. Thus,
the corona formation and composition have important implications for both toxicity [130]
and internalization [131].

To sum up, particle size [132], particle shape [133], particle surface properties [134],
biological fluid properties, and composition affect the corona structure and thus the adverse
effects on human health and the environment [131,135].

4.1. Effect of Size and Shape of Nanoparticles on Cytotoxicity

It is claimed that apart from the size, the shape of nanoparticles affects their toxicity to
cells. Mohamed et al. [31] investigated the cytotoxicity of the two different shapes of zinc
oxide nanoparticles (ZnONPs) biosynthesized from Fusarium keratoplasticum (A1-3) and
Aspergillus niger (G3-1). These nanoparticles displayed a similar size (10–42 and 8–38 nm)
but different shapes, namely hexagonal and nanorods, respectively. It was reported that a
safe dose of these nanoparticles for applications in animal cells should be lower than 20.1
and 57.6 ppm, respectively. Therefore, the rod ZnONPs were more applicable to safety at
high concentrations in contrast to hexagonal ZnONPs [31]. Soleimani and co-authors [136]
studied biological activity of different shapes (cube, sphere, rice and rod) of AgNPs synthe-
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sized using chitosan in acetic acid solution and 0.2 M of AgNO3 (cubes) and F. oxysporum,
starch and 0.08 M of AgNO3 at pH 6.8 (spheric) or 1.0 M of AgNO3 at pH 3.0 (nanorice),
and finally, F. oxysporum, starch and 1.2 M AgNO3 at pH 3.0 and 30 ◦C for 3 days (blunt
ends rods) or with 10-days incubation (sharp-ends rods). They found that silver nanostruc-
tures with different shapes are not inherently toxic to human cells at concentrations lower
than 10 µg ml−1, whereas for higher concentrations cell viability decreased in a shape and
dose-dependent manner. Nanocubes, nanorice and sharp-nanorods were found to be more
toxic than spheres and blunt-nanorods. The former significantly decreased cell viability at
concentrations 25 µg mL−1 or higher, and the latter at concentrations of 50 and 75 µg mL−1.
Moreover, they showed that cubic nanoparticles inhibited the growth of all tested bacteria
(Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) at the
lowest-used concentrations (10 ppm). The toxic effect of nanostructures against bacterial
cells increased in order spheres, blunt-rods, nanorice, sharp-rods, and nanocubes [136].
It was concluded that due to stronger vertex in sharp ends of silver nanostructures, some ge-
ometries of AgNPs, especially cubic structures, have more interaction with the bacterial
cell membrane, resulting in stronger biological activity [136]

4.2. Mechanisms of Nanoparticle Cytotoxicity

The increased use of AgNPs also increases the concentration of silver ions in soil and
water that can adversely affect human and animal health or the environment [137,138].

Little is known about the diversified mechanisms of the action of nanoparticle cytotoxi-
city, as well as their short- or long-term exposure outcomes on human physiology [139,140].
Many authors claim that the silver ions released from AgNPs through the surface oxidation
are the main mechanism that induces cytotoxicity, genotoxicity, immunological responses
in biological systems and even cell death [141–145].

Several recent studies revealed that cytotoxicity of AgNPs occur due to the minimum
release of silver ions [146–148]. Sambale et al. [149] showed that the mechanism of cell
death is different when cells are cultivated with silver particles or ions. Cells treated with
particles suffered apoptosis while those cultivated with ions die due to necrosis. They also
reported that AgNPs that translocate into cytoplasm through diffusion or channel proteins
are oxidized by cytoplasmic enzymes, thereby releasing silver ions. These ions may interact
with thiol groups of mitochondrial membrane proteins, causing mitochondrial dysfunction
and generating reactive oxygen species (ROS) production [149].

4.3. Effect of Nanoparticles on Cell Membranes

Nanosilver can interact with cellular membranes and cause toxicity. In particular,
nanosilver can interact with the bacterial membrane and this is considered the main mecha-
nism for the antimicrobial toxicity of nanosilver. The AgNPs damaged and destroyed
bacterial cells by penetrating and accumulating in the bacterial membrane [150–152].
Khan et al. [153] studied the interaction of nanosilver with five types of bacteria. They found
that the adsorption of nanosilver on the bacterial surface or interaction with extracellular
proteins is dependent on pH, zeta potential, and NaCl concentration. Baruwati et al. [154]
studied “green” synthesized nanosilver from Chinese green tea (Camellia sinensis) and
found that exposure to these particles alters the membrane permeability of barrier cells
(intestinal, brain endothelial) and stimulates oxidative stress pathways in neurons [154].

Metal nanoparticles (copper, silver and zinc oxide) from Fusarium solani KJ 623702
were tested against multidrug-resistant bacteria (P. aeruginosa and S. aureus), E. coli, Klebsiella
pneumoniae and Entreococcus sp. and mycotoxigenic Aspergillus awamori, A. fumigatus and
F. oxysporum. The antimicrobial activity of metal nanoparticles increased as follows: CuNPs,
ZnONPs, and AgNPs. Besides the internalization of AgNPs with the cell wall resulting
in the presence of pits, the fragmentation, complete disappearance of cellular contents,
disorganization and leakage of internal components were observed after treatment of
microorganisms with mycogenic AgNPs. Authors claimed that AgNPs attach to the
microbial cell membrane and alter its structure, transport activity, penetrability, prompt
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neutralization of the surface electric charge and produce cracks and pits through which
internal cell contents are effluxed [44].

Moreover, AgNPs synthesized using F. oxysporum filtrate containing reductase en-
zymes and quinones showed a toxic effect on the human liver cell line (Huh-7). The IC50
values were found to be 11.12 µM for propidium iodide assay which is an intercalating
fluorescent dye and does not permeant to live cells [155]. Similarly, cell viability (hamster
lung fibroblasts, V79) after the treatment with AgNPs synthesized from F. oxysporum was
studied using neutral red uptake (NRU) assay [156]. These small (around 8 nm) nanoparti-
cles showed a non-cytotoxic effect on fibroblasts at concentrations until 16 µM. The IC50 of
mycogenic AgNPs was recorded at a concentration of 22 µM [156].

Vijayan et al. [157] estimated the release of haemoglobin from red blood cells due
to the disruption of the cell membrane by the AgNPs from F. oxysporum. The percent-
age of haemolysis increased from 3.8 to 32.0 with an increase in AgNPs concentration
from 25 to 150 µg ml−1 (at 25 µg ml−1 interval unit). The authors concluded that these
biogenic AgNPs are safe to use as a drug because at safe concentrations they showed
antibacterial effect against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and
Salmonella typhi [157].

4.4. Effect of Nanoparticles on Mitochondria and/or Metabolic Activity

Nanoparticles by mitochondrial membrane damage disturb respiratory chain activ-
ity and ATP synthesis may generate ROS production, leading to oxidative stress and
eventually apoptosis [158,159]. Many authors reported the effect of metal (Ag and Au)
and non-metal (selenium) nanoparticles from Fusarium species on the viability of human
or animal cells on the basement of activity of cell/mitochondrial enzymes using mainly
spectrophotometrical MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay [155,156,160,161].

The toxicity of AuNPs produced by F. oxysporum with sizes of around 20 to 50 nm was
measured by MTT assay [161]. The biologically produced AuNPs had a dose-dependent
toxic effect on the human fibroblast cell line (CIRC-HLF). The IC50 value of the NPs was
determined as 2.5 mg mL−1 [161]. The AuNPs from Fusarium solani ATLOY-8 strain were
studied against cancer cell lines, namely HeLa na MCF-7 (breast cancer cells) and the
human embryonic kidney (HEK) cell line using MTT assay. The anticancer potential of
NPs against both cancer cell lines (IC50 values of 1.3 and 0.8 mg mL−1, respectively) and
their insignificant activity on the HEK cell line was reported [60].

AgNPs from Fusarium oxysporum were studied on mouse fibroblasts (3T3), hamster lung fi-
broblasts (V79 line), and human liver (Huh-7) cells using MTT and calcein assays [155,156,161].
AgNPs showed dose-dependent toxic effects on the mouse fibroblast. IC50 of mycogenic
nanoparticles using MTT assay were found to be 0.312 mg mL−1 (= 1.187 ppm mL1). The ap-
plied concentrations of the silver NPs equal to 0.625 mg mL−1 (2.375 ppm mL−1) was
determined as the toxic dose [60]. Marcato and coauthors [156] reported that AgNPs syn-
thesized using Fusarium oxysporum showed a non-cytotoxic effect toward the V79 fibroblast
cell line until 16 µM, evaluated by MTT assays with an IC50 of 22 µM; this was similar in
NRU assay. AgNPs synthesized using F. oxysporum filtrate demonstrated a comparable
dose-response relationship and similar IC50 values of 10.61 µM for MTT and 9.10 µM for
calcein assay [155]. Small AgNPs (5–13 nm) produced by F. oxysporum were also found to
be toxic to the human breast carcinoma cell line (MCF-7). The IC50 value of these NPs was
found to be 121.23 µg mL−1 [78].

Another species of the genus Fusarium, namely F. semitectum, was used for the synthesis
of selenium nanoparticles (SeNPs) which were tested for their anticancer potential on Caco-
2 human colon cancer, A431 skin cancer, and SNU16 stomach gastric cancer cell lines, as well
as toward THLE2 normal liver and Vero normal kidney cell lines [57]. These biogenic
SeNPs showed anticancer potential toward colon, skin, and stomach gastric cancer cells
(IC50 of 10.24, 13.27 and 20.44 µg mL−1, respectively), no cytotoxic effects on normal liver
cells, and weak toxicity on normal kidney cells [57].
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4.5. Effect of Nanoparticles on Cell Proteins

Many authors have reported that silver ions and AgNPs can interact with various
chemical groups, including sulfide and chloride [162,163]. Thiol molecules are found
to be conjugated to several membrane proteins in the cell membrane, cytoplasm and
mitochondria, which may serve as targets for AgNPs or Ag+ ions [164]. AgNPs also bind
to thiol groups in enzymes, such as NADH dehydrogenase, and disrupt the respiratory
chain, finally generating ROS. As shown in studies by Soleimani et al. [136] the cubic
AgNPs from F. oxysporum at a concentration of 30 ppm not only caused a toxic effect
in MCF-7 cells and inhibited growth of the Gram-positive and Gram-negative bacteria,
but also completely degraded proteins (albumin), whereas other shaped nanoparticles
(rods, rice and spheres) had no denaturing effect on protein structure. They concluded that
cubic nanosilver displays stronger biological activity when compared to rod and spherical
AgNPs [136].

4.6. Effect of Nanoparticles on Cell Nucleic Acids

AgNPs, especially those smaller than 10 nm, have been shown to diffuse through the
nuclear pores into the nucleus, causing DNA damage, chromosomal aberrations, and cell
cycle arrest, resulting in genotoxicity in human cell lines (e.g., fibroblasts and glioblastoma
cells) [162,163].

Clarance et al. [60] studied the effect of mycogenic AuNPs on cancer cells using dual
AO/EtBr (acridin orange/ethidium bromide) staining. The cell line appeared as a dense
red colour after treatment with nanogold, which was mainly due to apoptotic cell death.
The DAPI staining revealed nuclear fragmentation and condensation in MCF-7 cells treated
with AuNPs. It is well-proven that when cells undergo an apoptotic death, their DNA
becomes dense, fragmented and with condensed chromatin [165,166].

It was also reported that the interaction of AgNPs synthesized from Fusarium mangiferae
with DNA in Staphylococcus aureus cells resulted in an enormous reduction or degradation
of both chromosomal and plasmid DNA in bacterial cells when compared with untreated
cells. This gel electrophoresis study of AgNPs-treated nucleic acids also revealed that the
RNA smearing was immensely decreased. These results suggest that AgNPs may prevent
DNA replication via binding, and lead to cell death [167].

Spherical AgNPs synthesized by using aqueous extracts of green Calligonum comosum
stem and Fusarium sp. (mean size of 105.8 and 228.4 nm, respectively) were tested for
genotoxicity in bacterial cells (S. aureus). The agarose gel electrophoresis and (UV)–Vis
spectrophotometer were used to evaluate the antimicrobial activity of AgNPs by their
influence on DNA. A low concentration of DNA was observed in bacterial cells treated
with plant-synthesized and mycosynthesized AgNPs when compared to untreated cells.
Based on the obtained results, it was concluded that the smaller-sized nanoparticles diffuse
more easily than the larger ones, which partially explained the higher toxicity of plant-
synthesized than myco-synthesized nanoparticles on S. aureus cells. The destruction of the
membrane integrity or inhibition of DNA replication were proposed by authors as AgNPs
mechanisms of antibacterial action [58].

4.7. Other Nanoparticle Activity

Salaheldin et al. [119] reported that AgNPs synthesized by F. oxysporum caused remark-
able vacuolation in the human breast carcinoma cell line (MCF-7), thus indicating potent
cytotoxic activity. Al-Sharqi [168] tested these mycogenic AgNPs on mice for 21 days and
showed dilation in the collecting tubule and dilation in the renal corpuscle with haemor-
rhage in the interstitial space between the tubules. Based on performed studies, the authors
conclude that AgNPs can enter and translocate within the cell, and that the size of the
AgNPs varies with its toxic effects on the cell and the cell organelles. Therefore, it was
assumed that all nanoparticles are toxic and most likely only free nanoparticles that can
penetrate small organelles such as mitochondria may trigger adverse health effects [168].
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5. Conclusions

The potential of applications of nanotechnology particularly as nanomedicine and
in agriculture has generated revolution. The bioinspired synthesis of nanoparticles using
fungi is a novel and emerging field of green and sustainable nanotechnology. Among these,
Fusarium spp. are the most studied fungi for the biosynthesis of nanoparticles. The process
is green, eco-friendly, and economically viable. The applications of different nanoparticles
as antimicrobials, and antiparasitic and anticancer agents have attracted the interest of
the researchers globally. Moreover, these biogenic nanoparticles, synthesized by Fusaria,
have huge potential in agriculture for plant growth promotion, as nanofertilisers and as
fungicidal agents of the new generation. However, the mechanism of the synthesis of
nanoparticles remains unclear and warrants further studies to unravel the mechanism.
Looking at the potential applications of Fusarium-mediated nanoparticles, the toxicity is a
major issue that depends upon shape, size, surface charge, and the dose of nanoparticles
used. Thus, it can be recommended that Fusarium is a promising and novel fungus for the
biosynthesis of nanoparticles and its potential biomedical and agricultural applications.
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