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Abstract. Results of Lovész (1972) and Padberg (1974) imply that partitionable
graphs contain all the potential counterexamples to Berge’s famous Strong Perfect
Graph Conjecture. A recursive method of generating partitionable graphs was sug-
gested by Chvétal, Graham, Perold and Whitesides (1979). Results of Seb6 (1996)
entail that Berge’s conjecture holds for all the partitionable graphs obtained by this
method. Here we suggest a more general recursion. Computer experiments show
that it generates all the partitionable graphs with w = 3, < 9 (we conjecture that
the same will hold for bigger a, too) and ’almost all’ for (w,a) = (4,4) and (4,5).
Here a and w are respectively the clique and stability numbers of a partitionable
graph, i.e. numbers of vertices in its maximum clique and stable set. All the par-
titionable graphs generated by our method contain a critical w-clique, that is an
w-clique which intersects only 2w — 2 other w-cliques. This property might imply
that in our class there are no counterexamples to Berge’s conjecture (c.f. Sebd
(1996)), however this question is still open.
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1 Introduction

Given a graph G, we denote by n = n(G) the number of vertices in G, by w = w(G) the
clique number, that is the maximal number of pairwise connected vertices, by a = a(G) the
stability number, that is the maximal number of pairwise non-connected vertices, and by
X = X(G) the chromatic number, that is the minimal number of colors which allow a proper
coloring.

In (1960) Claude Berge introduced the notion of perfect graph. A graph G is called
perfect if x(G') = w(G'") for every induced subgraph G' in G. Naturally, a graph G is called
manimally imperfect if it is a vertex-minimal non-perfect graph, i.e. if G itself is not perfect
but every proper induced subgraph G’ of G is perfect. It is not difficult to see that chordless
odd cycles of length five or more (odd holes) as well as their complements (odd antiholes) are
minimally imperfect. Berge conjectured that there are no other minimally imperfect graphs.
This conjecture is called Strong Perfect Graph Conjecture and it is still open. A weaker
conjecture, that the complement G¢ of a perfect graph G is perfect was also suggested by
Berge (1960) and was proved by Lovasz (1972). (It is known as the Perfect Graph Theorem.)

We would like to recall here two important results from the paper by Lovédsz (1972). The
first one is stating that a graph G is perfect if and only if n(G') < a(G")w(G") for every
induced subgraph G’ in G. Since the equalities a(G) = w(G°) and w(G) = a(G*) obviously
hold for every graph G, the above inequality implies readily the Perfect Graph Theorem.

The second one states that every minimally imperfect graph G is partitionable, i.e.
n(G) = a(G)w(G) + 1, and for every vertex v the induced subgraph G(V \ {v}) can be
partitioned into a(G) cliques of size w(G), as well as into w(G) stable sets of size a(G). If
G is partitionable then clearly x(G) = w(G) + 1, x(G(V \ {v})) = w(G) = w(G(V \ {v})),
and thus the complementary graph G¢ is partitionable, too.

Padberg (1974) derived from Lovész’ result that for any minimally imperfect graph G the
number of w(G)-cliques is n(G) and every vertex belongs to exactly w(G) of the w-cliques.
Their characteristic vectors are linearly independent, i.e. they form a basis in R”. Padberg
also observed the following convenient way to list all n(G) maximum cliques (of size w(G))
in G. Let us fix an arbitrary w-clique C' and for every vertex v € C' consider a partition
of G(V \ {v}) into @ maximum cliques. Such a partition is unique. There are w different
vertices v € C' and there are @ maximum cliques in each partition. All these cliques appear
to be different. Together with the clique C itself we get exactly aw+1 = n maximum cliques
of G. Of course, the analogous construction works for stable sets, too.

Bland, Huang and Trotter (1979) proved that all these properties hold not only for
minimally imperfect but for arbitrary partitionable graphs as well.

Due to Padberg’s construction, it is obvious that in every partitionable graph G every
w-clique C intersects at least 2w — 2 other w-cliques of G. Indeed, let us chose any two
disjoint w-cliques C and C’ in G and consider the clique partitions corresponding to the
vertices of C'. Every w-clique of G (except C') appears in these partitions exactly once,
hence exactly one of these partitions contains C'. Thus, every other partition splits C' in at
least two parts. Thus C' intersects at least 2w — 2 other w-cliques of G.
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Let us call an w-clique critical if it intersects ezactly 2w — 2 other w-cliques. It follows
from the above observations that the 2w — 2 cliques intersecting a critical clique C can be
combined into w — 1 pairs such that each of these pairs induces a partition of the vertices of
C into two nonempty parts.

An edge e € E(G) of a partitionable graph G is called critical if a(G — e) = a(G) + 1,
or in other words, if there exist two maximum stable sets S and S’ which have a(G) — 1
vertices in common and the two vertices in their symmetric difference are connected by the
edge e.

Critical cliques and critical edges were studied by Sebd (1996). He proved that every
critical w-clique C' of an (o, w)-partitionable graph contains exactly w — 1 critical edges
which form a spanning tree T'= T'(C) on the vertices V(T') = C. Furthermore (see Lemma
3.1 of Seb6 (1996)), the following claims are equivalent:

(i) C is a critical clique;
(ii) Critical edges in C form a spanning tree of C;

(iii) The induced subgraph G(V \ C) is uniquely colorable.

(A graph is uniquely colorable if it has a unique partition into x(G) stable sets.)

We can observe a further connection between a critical clique C' and tree 7" formed by the
critical edges in C'. Obviously, the removal of any edge e € F(T') splits T into two connected
components, hence splitting the vertices of C into two parts. The 2w — 2 sets obtained in
this way, corresponding to the w — 1 edges of T', are exactly the 2w — 2 intersections of clique
C with the other w-cliques of G.

These observations suggest the following reduction. Given a partitionable (o, w)-graph
G which contains a critical clique C, let us consider the tree T formed by the critical edges
in C. Let us now consider any pair of disjoint w-cliques C' and C", corresponding to an
edge e of T', i.e. for which the intersections C N C’ and C'N C" are nonempty and form a
partition of C. Let us now change the graph by changing the list of its maximum cliques
in the following way. Remove the cliques C’, C" and instead of these two add only one new
w-clique (C"\ C) U (C" \ C). Let us repeat the same for all the w — 1 pairs of w-cliques,
corresponding to the edges of T'. Finally, let us remove the clique C' itself from the list. We
shall show that this procedure always results in a new partitionable (o« — 1, w)-graph G'.

Let us remark that in the procedure above we specified the changes of the family of
w-cliques of the graph G only, rather than the changes with the graph itself. In particular,
we paid no attention to updating the edge set, or updating the maximum stable sets of the
graph. In Section 2 we shall show that such an approach is correct and the “partitionability”
of the family of the w-cliques in fact implies the “partitionability” of a-stable sets.

It is a natural idea to inverse the above reduction. For this we need first to generalize
slightly the properties (i)-(ii). In Section 3 we shall prove that if S is a family of 2w — 2
subsets of a finite set C of size w satisfying that S € Siff S = C\ S € S, and for every point
v € C there is a subfamily P, C S which forms a partition of C'\ {v}, then there exists a
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unique spanning tree 7" on the vertex set C, such that the 2w — 2 sets of S are exactly the
vertex sets of the connected components, which one can obtain by the successive removal of
w — 1 edges of T'.

Using this characterization, in Section 4 we shall describe a constructive method to obtain
a new partitionable (a+1,w)-graph G’ from a given partitionable («, w)-graph G. Unlike the
reduction, the recursion is not always applicable. In Section 4 we obtain conditions necessary
and sufficient for such a procedure to work. In Section 5 we specify these conditions for the
case of webs and demonstrate that it is always possible “to substitute a spider in a web”,
that is given an (a,w)-graph G which is a web and a tree T which is a spider, the recursion
is always applicable.

But how many partitionable graphs have critical cliques? We conjecture that in case
w = 3 they all have. Computations confirm this conjecture for a < 10. We prove that this
conjecture is equivalent to the following one: every partitionable («, 3)-graph contains an
induced gem: (a,b), (b,c),(c,d),(d,e),(a,c),(c,e),(b,d). However, it is not even known if
every (o, 3)-graph contains an induced diamond: (a,b), (b, c), (¢,d), (a, c), (b, d).

In case w = 4 there are partitionable graphs without critical cliques. There exist 5
partitionable (3, 4)-graphs and all 5 have critical cliques, there exist 132 partitionable (4, 4)-
graphs and 126 have critical cliques, there exist 8340 partitionable (5,4)-graphs and only
6909 have critical cliques.

Let us remark that our recursion generalizes an analogous one suggested by Chvatal,
Graham, Perold and Whitesides (1979). We get their recursion as a special case when tree T'
is a simple path and w — 1 maximum cliques in GG, which define the recursion, form a chain on
2w — 2 vertices, i.e. satisfy that Cy = {vg, Vgy1, .., Vpyw 1}, for k =1,...,w—1. In particular,
every two successive w-cliques in this chain have w — 1 vertices in common. For example,
let w = 3. In this case there exists only one tree with 2 edges: this is the simple path
P3, but still we can chose two 3-cliques C', Cs in three different ways, such that cardinality
of the intersection |C; N Cs| is 2,1 or 0. Chvatal, Graham, Perold and Whitesides (1979)
demonstrated that in the first case, |C1 N Csy| = 2, only 4 out of 5 partitionable (4,3)-graphs
can be recursively generated. Our computation shows that the fifth one can be generated
if we allow |C; N C3| = 1, and all three ways, |C; N Cy| equals 2,1 and 0, are necessary to
generate all (7, 3)-graphs.

Every partitionable graph generated by our recursion has a critical clique. Sebd (1996)
proved that no partitionable graph can be a counterexample to Berge’s conjecture if this
graph and its complement both contain critical cliques. This result is an argument that in
our class there is no counterexample either, however this question is still open.

2 Axiomatics of partitionability

In their definition of partitionable graphs Bland, Huang and Trotter (1979) demand parti-
tionability for both families of maximum cliques C and maximum stable sets §. But in fact,
it is sufficient to demand partitionability for only one of these two families and which then
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will imply the partitionability of the other one. This idea is not new, and some results in
this direction can be found in literature. For completeness, we devout a special section to
this problem, as well as to some other axiomatics which also imply the numerous properties
of the PGs. In fact, this section plays a very important role in our paper, because the trans-
formations, which we will introduce, are based on transformations of the family of w-cliques
only. The justification of this approach is based on the following subsection.

2.1 A one-axiom definition

Let us consider a finite set V' of n elements, and a family C of its subsets.

Definition 1 The family C will be called partitionable if |[C| < |V| = n and for every v € V
the set V\{v} is a union of some pairwise disjoint sets from C, i.e. if there exists a subfamily
P, C C for every v € V such that

VA {v} = U C and CNC'" =0 for C,C" € P,, wheneverC # C'. (A)

CEP’U

Let B = {0,1}, and let us consider the characteristic vectors x¢ € BY of the sets C € C,
the vector of all ones e € BV, and the unit vectors e, € BY for v € V. With this notation
we can rewrite (A) as

Vo € V3P, C C such that ba" " =e —e, = Y~ x. (A*)

CGPT’

Obviously, the vectors e — e,, v € V, form a basis in RV . If the family C is partitionable
then by (A) every such vector is a linear combination (with (0,1)-coefficients) of some of the
vectors x¢, C € C, implying that these vectors form a generator of RV. Since |C| < |V] is
also assumed, it follows that

=1Vl (1)
The vectors x°, ¢ € C, form a basis of R (2)
The partition P, C C is unique for every v € V. (3)

Let us now fix a set C' € C and let us sum up the equations of (A*) for v € C'. We obtain
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d(ee)=|Clex“=>" Y x¢

veC veC C'ePy

from which we can express e as

1 c c
e—ﬁ<x +ZZX). (4)

veC C'eP,y,

Since the vectors on the right hand side of (4) are from a basis of RV according to (2),
the expression in (4) must be the unique representation of e in the basis {x¢|C € C}. Since
C ¢ P, for any v € C by definition, we obtain that the coefficient of x® in the unique
representation of e must be equal to ‘17‘, for all C € C. On the other hand, looking at (4)
for a fixed set C € C, we can observe that for any other set C' € C, the coefficient of the

¢ on the right hand side is an integer multiple of ‘1?‘, i.e. it can be equal to —-only

1’|

if all sets appear exactly once on the right hand side of (4), and if all sets C' € C have the
same size. Let us denote this common size of the sets in C by w. It follows then that all the
partitions P,, v € V, are of the same size, which we shall denote by a.

Thus, we can draw the following chain of conclusions:

vector x

Cl=wforall C €C, and |P,| =« for all v € V. (5)
The families P, for v € C € C are pairwise disjoint. (6)
n=aw+1. (7)

Every point v € V belongs to exactly w of the sets C' € C. (8)

For every C € C
the subfamilies P,, v € C together with C (9)

form a partition of C.

We can also rewrite (9) as
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VC,C" € C,C #C', Fv e C\ C such that C' € P,. (9)

. From this, by a simple counting argument we can conclude that

Every set C € C belongs to exactly a of the partitions P,,v € V. (10)

To verify (10), let us introduce the notation

Sc = {1) € V|C € Pv} (11)

for C € C. Clearly, C N Sc = 0, by the definition. On the other hand, the set C' must belong
to exactly one of the partitions P,, v € C' for any other set C' € C, C' # C by (9), implying
thus

CNSe=0and [C'NSe|=1forall C,C" € C,C +#C". (12)

Since a partition P, for any v € C contains a pairwise disjoint sets C' # C, |S¢| > «
is implied by (12). By counting the pairs C € P, first by v € V, and second by C € C, we
obtain

D IPS =150l

veV ceC

from this, using (5) and the lower bound on |S¢|, we get

na = Z |Py| = Z 1Sc| > na,

veV ceC

which implies the equality

Sc| =aforall C €C, (13)

proving hence (10).

Remark 1 Formula (11) is especially important for our approach. Given a partitionable
family C, we introduce a family S by formula (11), and then prove that this new family
is partitionable, too. While Bland, Huang and Trotter (1979) introduce families C and S
together and then define partitionability in terms of both.
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We are now ready to show that a partitionable family C is exactly the family of w-cliques
in a corresponding (a,w)-partitionable graph. We can verify this, based on the results of
Bland, Huang and Trotter (1979), and on the properties above, by showing that the family
S = {S¢|C € C} forms a partitionable family of a-sets. For this we claim that the subfamily

Q,={Sc/CecC,C>v}

is a partition of V' \ {v}, for every v € V.
Let us note first that if v € Sc N S, then by (11) both sets C and C’ belong to the
partition P,, and hence either C = C’, or C N C' = (). Thus, we get

Sc N Scr = 0 whenever CNC' # () and C # C'. (14)

This implies immediately that the sets S¢ € O, are pairwise disjoint. Since v € S¢ for
Sc € Q, by definition, and since |Q,| = w by (8), the subfamily Q, forms a partition of a
subset of V' \ {v} of size wae = n — 1, i.e. it forms a partition of V' \ {v}.

We can now define a partitionable graph G = G(C,S) on the vertex set V(G) = V| in
which the sets C' € C are the w-cliques, and the sets S € S are the a-stable sets. In other
words, for u,v € V, u # v, let us say that (u,v) € E(G) if there is a set C' € C such that
{u,v} C C, and let us define (u,v) ¢ E(G) if there is a set S € S containing both u and
v. We do not get any contradiction in this way, since [C N S| < 1forallC €C and S €S
according to (12). However, the graph G(C,S) is not well defined yet, because there can be
pairs of vertices which do not belong neither to w-cliques nor to a-stable sets. Such pairs of
vertices are called indifferent edges. An arbitrary subset of indifferent edges can be included
in G(C,S). Thus in fact, G(C,S) is not one graph but a family of (partitionable) graphs.
Each of these graphs has exactly n cliques C € C of cardinality w and exactly n stable sets
S € S of cardinality a. If w = n — 1 then there cannot exist cliques of cardinality w + 1, and
similarly, if & # n — 1 then there are no stable sets of cardinality o + 1.

Remark 2 In principle, partitionable families could have parameters (a,w) = (1,n — 1) or
(a,w) = (n—1,1). However, when dealing with partitionable graphs the standard assumption
18 that o > 1 and w > 1.

2.2 Geometrical axioms

The following nice geometrical approach to partitionability was suggested by Temkin (private
communications). Given a set V = {vy, ..., v, } and two families of its subsets C = {C4, ..., Cp,}
and S = {51, ..., S, } such that C1NS; = 0, ..., C,,NS,, = 0, let us introduce a projective biplane
whose n points are vy, ..., v, and n lines are L, = C1y U Sy, ..., L, = C,, U S,. The difference
between the standard finite projective plane and biplane is as follows. The incidence function
F(L;,v;) for a standard plane takes two values: F(L;,v;) = 1if v; € L; and F(L;,v;) = 0 if
v; ¢ L;, while for a biplane it takes three values: F'(L;,v;) =1 if v; € C;, F(L;,v;) = —1if
v € S;, and F(Li,’l)j) =0 if Vj ¢ L;.
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Also the intersection of lines is understood in a rather unusual way. Given two lines
L; =C;US; and L; = C; U S;, their intersection is L; N L; = (C; N S;) U (C; N S;), that is
only those points which belong to both lines and whose incidence functions with respect to
these two lines have opposite signs are included, while the points from (C; N C;) U (S; N S;)
do not count. After these two radical innovations a finite projective biplane is defined by
the following two more or less standard axioms.

Every two different lines L; = C; U S; and L; = C; U S;
intersect in exactly two different points vy, and vy, (G1)
such that v, € C;NS; and v, € C; N S;;

Every two different points v, and v,,
are connected by exactly two different lines (G2)
L; =C;US; and L; = C; U S; such that v, € C; NS; and v, € C; N S,

Let us prove that axioms ((G1), (G2)) and (A1) are equivalent. First, given a set V =
{v1,...,u,} and a partitionable (i.e. satisfying (A1)) family C = {C1, ..., C,}, let us generate
the family S = {5, ..., Sp}, according to (10), consider the corresponding biplane and prove
that ((G1), (G2)) hold. Formula (G1) results directly from (11). To prove (G2) let us fix
any two different points vy, v, € V and consider all the w sets C}, j € J(v;) which contain
Um, see (9). According to (10), the corresponding w sets S;, j € J(vy) are pairwise disjoint
and each one contains a points, according to (12). Hence, together they contain n — 1 points
and must form a partition P(v,,), that is exactly one of these sets, let us say Sj,, contains
vg. Thus, there exists a unique j, € [n| such that v,, € Cj, and v € Sj,. In the same way
we prove that there exists a unique i such that v, € S;, and v;, € C;,. Thus, (G2) holds.

Now let us derive (Al) from ((G1), (G2)). That is given a biplane, let us prove that
family C = {C4, ..., C,,} must be partitionable. For this let us fix an arbitrary point v € V
and consider all the lines L; = C; U S; j € J(v) such that v € S;. Then (14) means exactly
that C;, j € J(v) form a partition of P(v).

2.3 DMatrix axioms

The following matrix approach to partitionability was suggested by Chvatal, Graham, Perold
and Whitesides (1979). Let us consider equation

XY =J-1 (M)

in n x n (0,1)-matrices where I is the identity matrix, J is the matrix whose all n? entries
are 1’s, and X,Y are unknown.



RRR 10-99 PAGE 9

Again, given aset V = {vy, ..., v, } and two arbitrary families of its subsets C = {C}, ..., Cp,}
and § = {51, ..., Sp}, let us introduce X as (0,1) n x n incidence matrix of V' (columns) and
C (rows), and Y as (0,1) n x n incidence matrix of V' (rows) and S (columns). And vice
versa, to any two (0,1) n x n matrices X and Y we can assign a set V and two families C
and S of its subsets such that the same incidence relations takes place. Thus we get two
mutually inverse one-to-one mappings. Let us prove that axioms (M) for X,Y and (A) for
V,C are equivalent. Firstly, (M) is an obvious consequence of (12) because for (0,1) vectors
the intersection and the scalar product mean just the same. Secondly, (M) implies partition-
ability of the corresponding set-family C. Indeed, from one hand, the rows of matrix J — I
are by the definition vectors e — ¢;;7 = 1,...,n. ;From the other hand, rows of the matrix
product XY are linear combinations of the rows of X, and all the coefficients takes only
values 0 and 1. Thus these linear combinations are just sums. But a sum of characteristic
vectors is e — e; if and only if the corresponding sets from C form a partition P(v;).

Let us recall that partitionability of C implies the partitionability of S. Thus XY = J 1
iff YX = J—1. Then let us note that matrix J—1I is symmetric. This implies XY = J—1T iff
YtX! = J—1I, where t means matrix transposition. Thus the following four matrix products:
XY, YX YIX! X'V can be equal to J — I only simultaneously. If pair of matrices (X,Y)
generates a partitionable graph G then pair (Y, X) generates the complementary graph G¢,
while pair (X'Y'?) generates dual partitionable graph G?. Obviously, G* = G,

3 Tree-covering families

Let us consider a set C of size w, and let A be a family of subsets of C' (more precisely,
a multi-family, i.e. sets in A may have a multiplicity > 1.) Let us call A a tree-covering
family, if

Ac A= A=C\Ac A, (C1)

and if for every point v € C there is a subfamily R, C A which form a partition of C'\ {v},
ie. if

Vv veC 3 R,CAsuchthat C\{v} = |4 A4, (C2)

AER,y

where |+ denotes “disjoint union”.

We shall show first that a tree-covering family must have at least 2w — 2 elements. Using
the characteristic vectors x4 € B¢, A € A, the vector of all ones e € B®, and the unit
vectors e, € BY for v € C, conditions (C1) and (C2) can be restated as
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|

vAe A JA €A suchthat x*+x*'=e (C1¥)

YVweC 3R, C A such that Z x?=e e, (C2*)

AER,y

Lemma 1 Let A be a tree-covering family on a finite set C of size w, and let k denote the
number of different sets in A. Then k > 2w — 2.

Proof. Let us observe first that k is even, since the different sets of A can be divided into
complementary pair by (C1). Let us denote by A4;, A; these complementary pairs, i =1, ..., %.

Let us next observe that by (C2*) all vectors of the form e—e, for v € C can be expressed
as linear combinations of the vectors x4, A € A. Since {e — e,/v € C} forms a basis of
R®, the set {xAi,xZi
subfamily, B = {x%|i = 1,...,2} U {x*'} consisting of the first complementary pair, and
one of the characteristic vectors for all other complementary pairs. According to (C1*), we

1 =1,..., g} must be a generator set of R®. Let us now consider a

can obtain all other characteristic vectors by x4 = (x*1 4+ x41) — x* for 7 > 1, and hence
B is a generating set of RY, too, implying |B| > w. Since |B| =1+ %, the statement of the
lemma follows immediately. O

Let us call a tree-covering family A on a finite set C of size w critical, if it has the smallest
possible size, i.e. if

A = 2w — 2. (C3)

An immediate corollary of Lemma 1 is that all sets of a critical tree-covering family
must have a multiplicity of 1. Thus, since in the sequel we shall talk about critical tree-
covering families, we do not have to pay special attention to distinguishing families from
multi-families.

Let us see first examples for critical tree-covering families: Let us consider an arbitrary
spanning tree 7" on the vertex set V(T') = C. The removal of an edge (u,v) € E(T) divides
the set of vertices into two connected components. Let us denote the component containing
v but not u by A,, and let A,, be the other component. Finally, let us define a family
Ar = {Ayy, Apu|(u,v) € E(T)}. Clearly, Ar has 2w — 2 elements, and A, = A,,, i.e. both
conditions (C1) and (C3) hold. Furthermore, one can see that for every vertex u € C the
subfamily R, = {Ay,|(u,v) € E(T)} forms a partition of the vertex set C'\ {u}, since T is
a spanning tree on C'. Thus A7 is a critical tree-covering family for every spanning tree T

We shall show next that in fact all critical tree-covering families arise in this way.
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Theorem 1 If A is a critical tree-covering family on a finite set C, then there exists a
spanning tree T' on C such that A = Ar.

To prove this theorem, we shall need a series of simple lemmas first.

Let us consider a critical tree-covering family A on the set C' (|C| = w) as in the theorem.

Lemma 2 If
e= Z o x? (16)
AcA
for some monnegative real coefficients ay > 0 for A € A, then there exists a complementary

pair of sets, A€ A and A € A, for which both coefficients oy and a5 are positive.

Proof. Let us assume indirectly that min(a4,az) = 0 for all A € A, and let us choose a
subfamily B C A by defining

B={Alas >0} U{Alas =0z =0and v € A}

where v € (' is a fixed element. Clearly, in this way we chose into B exactly one set from each
complementary pairs in A. The subfamily B also contains all sets to which the corresponding
vector on the right hand side of (16) has a positive coefficient. Using then (C1*) and (16), we
can conclude that the vectors x*, A € B must form a generating set, just like in the proof of
Lemma 1. This is a contradiction with the fact that |[B| = w — 1 for a critical tree-covering
family, and hence the lemma follows. O]

For a critical tree-covering family A on the set C, let us choose a subfamily R, for every
v € C for which condition (C2) holds.

Lemma 3 For every set A € A there exists a unique vertex v € C such that A € R,,.

Proof. By summing up the equations (C2*), we get

Z Z x? = (w—1e. (17)

veC AER,

Let us denote by m# the number of points v € C for which A € R, and let v € C be a fixed
vertex. With this notation (17) can be rewritten as

(w—1)e= Z mAx4

AcA

= Z min(m?*, m?) (XA +XZ) + Z (mA — mA)+XA-

AcAveEA AcA
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where (a —b), =a—bifa > b, and (a — b), = 0 otherwise. Using (C1*), we obtain finally

(w—1)— Z min(mA,mA)] e= Z (mA - mz)+xA. (18)

AEAvEA AcA

The right hand side above is a nonnegative combination of nonnegative vectors, hence w—1 >

> Ac avea min(m®, m*) follows. If the left hand side of (18) were in fact non zero, we could
obtain from (18) the vector e as a nonnegative combination of the vectors x4, A € A.

According to Lemma 2 this would imply that for at least one set S € S both (m* — m*),
and (m? — m#), are positive, which is impossible, since for any two reals a and b, either

(a—b), =0or (b—a)y =0 (or both). This contradiction shows that

w—1= Z min(m?*, m?*). (19)

AcAveEA

Thus all the nonnegative coefficients on the right hand side of (18) must also be equal to
zero, i.e. mA = m# for all A € A follows. B

Let us observe next that m? > 0 for all A € A, since otherwise we have m4 = m4 =0
for some sets A € A, implying that the family A’ = A\ {4, A} is again a tree-covering
family of size |A| — 2 < 2w — 2, a contradiction to Lemma 1.

Since in the summation of the right hand side of (19) we have w — 1 terms, and since
each of those is a nonnegative integer according to the above, we can conclude from (19)
that m4 = 1 for all A € A, hence proving the lemma. O

The above lemma shows also that in a critical tree-covering family A on C for every
vertex v € C there is a unique subfamily R, C A which forms a partition of the vertices
C\ {v}.

Let us now consider a graph T on the vertex set V(T') = C' with an edge set defined by
E(T) = {(u,v)|u,v € C, 3A € A such that A € R, and A € R,}.

Since a critical tree-covering family A consists of w — 1 complementary pairs, it follows by
Lemma 3 that the graph 7" has exactly w—1 edges, one corresponding to each complementary
pair of sets of A. For an edge (u,v) € E(T) let us denote the corresponding complementary
sets of A by Ay, and A,, = A, such that v € A,, and u € Ay,.

It is easy to see that Lemma 3 and the above definitions readily imply

Corollary 1 There are no loops in T, and we have A = { Ay, Apu|(u,v) € E(T)}. O
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Lemma 4 For every v € C we have R, = {Au|(u,v) € E(T)}.

Proof. The relation R, O {Au.|(u,v) € E(T)} follows directly from the definition of the
edges of T'.
For the converse relation, let A € R, be arbitrary. Then A € A by (C1), and thus by

Lemma 3 there exists a unique vertex v € C' for which A €R,. Clearly u # v, since u € A
and A C C\ {v}. Therefore, (u,v) € E(T) and A = A,, follows by the definition of 7. [

Lemma 5 If (u,v) € E(T) and (v,w) € E(T), then Ay, C Ayy.

Proof. According to Lemma 4 we have A,,, € R, and A,, € R,, thus A,, N A,, = 0. Since
Ay = Apu, we get Ay, O Ay, as a consequence. To see that this is a strict containment
relation, it is enough to observe that v € A,,, while v € A,,,. O

Lemma 6 There are no circuits in T.

Proof. Let us assume indirectly that uy, ..., u; are vertices from C forming a cycle, i.e.
(uj,uiy1) € E(T) for i = 1,....k — 1, and (ug,uy) € E(T). Then, by Lemma 5 we would
have Ay u, O Augus O - D Aupus O Auguy, all relations as strict containment, a clear
contradiction, proving the lemma. [

Proof of Theorem 1. The graph T constructed above is a spanning tree on C' by Lemma 6,
and the equality A = Ar follows by Corollary 1 and Lemma 4. O

4 Reduction and recursive generation of partitionable
families.

According to the results of Section 2 we shall be able to represent partitionable (a, w)-graphs
by the (partitionable) family of their w-cliques.

So let us consider a partitionable (@, w)-graph G on the vertex set V' of n elements, and
let C be the (partitionable) family of its w-cliques. Let us denote by S the family of a-stable
sets of GG, in which we have exactly one vis-a-vis set S¢ corresponding to every C' € C, as
defined in (11).

Lemma 7 FEvery clique C € C intersects at least 2w — 2 other cliques from C.
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Proof. Let us denote by Mg = {C € C|C # C and C N C # 0}, and let us start with the
following obvious equality:

> Y -y Yo

CeMcg veV\(CUSe), CeP, veV\(CUSc) CeMenP,

Let us then recall that by (11) we have C € P, iff v € Sg, and for sets C € M we
have Sc N Sz = 0 by (14). Thus, the second summation on the left hand side is equal to
|Se \ C| which is o — 1 for all C € Mg, by (12) and (13). Let us also observe that the

second summation on the right hand side of the above equation yields always at least 2,
since C' € P, only for v € S¢ by (11). Thus, we can rewrite the above equality as

Mclla—1)= > Y 122V \(CUSe)| =2(a—1)(w-1),

veV\(CUSc) CeMenP,

from which we obtain
M| > 2(w — 1),
since o > 1 is assumed. O

An w-clique C € C is called critical if it intersects exactly 2w — 2 other w-cliques of C.
Clearly, this can happen only if

IMc NPyl =2 (20)

for all v € V' \ (C' U S¢), according to the above proof of Lemma 7. This implies that for
a critical clique C, the sets in M can be combined into w — 1 pairs C!,C?, such that
C Cc C'uC?, and C! and C? belong to the same P, partition for some v € V' \ (C U S¢).
Let us denote by E an index set of w — 1 elements, and let us write M as

Me ={C;,CCle € E},
reflecting such a pairing of the elements of M. With this notation we have
CCClUuC?and C!NC?>=0forallec E. (21)
Furthermore, (20) implies that

Vv € V\ (CU Sc)3e € E such that C1, C2 € P,. (22)

Let us remark that for a critical clique C' the sets of the form C' N C for C € M are all
different, as it is implied by (20).
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4.1 Reduction

Given a partitionable family C of the w-cliques of a partitionable (o, w)-graph G on vertex
set V, and given a critical clique C' € C, we shall construct another family C' on the set
V' =V \ C and show that C’ is partitionable, too, i.e. that C' is the family of w-cliques of a
partitionable (o — 1,w)-graph G’ on the vertex set V.
Let us consider the family
Mo ={C;,Clle € E}
as above, and for every e € E let us define a set
Ce = (CcuCH\C, (23)

and let us define the new family by

C'=(C\(McU{C}H))U{C!le € E}. (24)

Theorem 2 The reduced family C' is a partitionable family on the set V! =V \ C.

Proof. Clearly, all sets in C' are subsets of V' by the definition, and we have
IC'l=IC|— (IMc|+1)+|E|l=n—Q2w—-1)+(w—1)=n—w=|V\C|=|V]
Thus, to prove the theorem it is enough to show that for every v € V' there exists a partition
P, C C' partitioning the set V' \ {v}.
Let us consider first the family P, C C. If C € P,, then P, N M = (), and thus
P, =P, \{C}

is a desired partition within C'. On the other hand, if C' ¢ P,, then v € V' \ (C U S¢), and
thus by (20) and (22) there exists a unique e € E such that

P, N M¢c = {C!},C?}.
In this case the family
P, = (P \ {Ce,Cc}) U{Ci}

will be a subfamily of C' partitioning the set V' \ {v}. O
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4.2 Recursion

To be able to find a constructive inverse to the above reduction operation, let us first analyze
the structure of the restrictions of the hypergraph C to the sets C' and V' \ C, separately.
Let us observe first that

The family A = {C N C|C € M} is a critical covering family. (R1)

Clearly, conditions (C1) and (C3) hold by (21) and by the criticality of C. To see (C2), let
us define

R, ={CNC|C € McNP,}
for every v € C. Then, R, C A, and its members form a partition of the set C'\ {v} by the

definition, and hence (R1) follows.

Let us remark that according to (R1) and the results in Section 3, A = Az for a (unique)
spanning tree 7' on the vertex set C. On the other hand, Seb8 (1996) showed that in a
critical clique of a partitionable graph, the critical edges from a spanning tree. One can
show easily, using (20) and (22) that these two trees in fact are identical — no surprises.

Let us draw some conclusions about such a tree 7' = T'(C') which can arise as the tree of
the critical edges in a critical clique C'. Let d, denote the degree of vertex v € C' in T', or in
other words, d, = |R,|, for v € C.

Lemma 8 For every critical clique C of an (a,w)-graph G, and for all vertices v € C' we
have

d, < a.

Proof. Let us consider the cliques C € Mo NP, for a vertex v € C. Since all these belong
to the same partition, they are pairwise disjoint, and thus we have

dw= Y 1C<|V\{v} =aw,

CeMenP,

implying hence the statement. 0

In fact, a stronger inequality holds. Let us denote by L(T') the set of all the leaves of
tree T = T(C)

Lemma 9 For every critical cliqgue C' of an (a,w)-graph G we have

L(T)| < a.
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Proof. Since every leaf node v € C of T is incident with exactly one tree edge, there exists a
unique vertex u, ¢ C corresponding to each leaf node V, for which the set C,, = {u, }UC\ {v}
is a clique of G belonging to M, according to our analysis above. Since C, has only one
point, namely u,, outside of C, that vertex hence must belong to the vis-a-vis stable set S¢,
because all cliques (other than C') must intersect Sc. Let us also note that such a vertex
u, is adjacent to all vertices of C other than v. This latter implies, in particular that the
vertices u, and u,, corresponding to two different leaf nodes v and w must be different, since
otherwise {v,u,} C C,, would imply that (v, u,) € E(G), i.e. the set C' U {u,} would be an
(w + 1)-clique of G. Thus, [{u,/v € L(T)}| = |L(T)| and {u,|v € L(T)} C Sc both hold,
implying hence the claim. 0

Let us note next that the family B = {Cl|e € E} is a subfamily of C' of cardinality w — 1
such that

BNP)| <1forallveV' (R2)

which follows immediately from the proof of Theorem 2. 3 3
Let us note also that sets in B are split into two by the sets C'\ C for C' € M such that

Vv € C the set | V'\ U (C'\ C) | is partitioned by C'. (R3)
CePynMc

Indeed, the sets in P, N C’' for v € C provide such a partition.

Remark 3 Condition (R1) can be restated, due to the results in Section 3, as A = Ar for
some spanning tree T on the vertex set C.

Remark 4 Condition (R2) can also be stated in a more convenient way, by (11), saying
that the vis-a-vis stable sets Sci for e € E are pairwise disjoint.

In particular, (R2) holds if all w — 1 sets {Clle € E(T)} have a vertex in common,
according to (14). In this case the resulting partitionable graph has a small transversal. It
follows from Theorems 2 and 3 by Sebd (1996).

Remark 5 Condition (R3) holds automatically if vertex v € C is a leaf of T. This condition
can be translated in terms of the vis-a-vis sets Sc, as well as (R2). Also both these conditions
can be translated in terms of the dual partitionable graph G

We are now ready to show that the above conditions (R1), (R2) and (R3) are essentially
the necessary and sufficient conditions one needs to inverse the reduction.

However, we should strengthen (R3) slightly. Let us now assume that we are given
a partitionable family C’' of w-sets on the vertex set V', corresponding to a partitionable
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(a,w)-graph G'. Let C be a set of size w, disjoint from V', and let T' be a spanning tree on
C with edge set E = E(T). Let us denote by T, and T,, the vertex sets of the connected
components obtained by removing the edge (u,v) € E(T) from the tree T, such that v € T,
and u € T,,. Let finally 7, denote the set of neighbors of v in T, i.e. 7, = {ul|(u,v) € E(T)}.

Let us further assume that there is a subfamily B = {C! |(u,v) € E(T)} C C' satisfying
condition (R2), the cliques of which can be split into two parts C!, = By, U By, for (u,v) €
E(T) in such a way that By, N By, = 0, |Byy| = |Tu| (and thus |B,,| = |Ty.|), and such
that

the sets B,, for u € 7, are pairwise disjoint, and

wed H, C C"\ B partitioning V' \ |J,cr. Buv- (R3)
Let us then define
C=(C"\ B)U{Tu U Byy, Ty U Byy|(u,v) € E(T)} U{C}. (25)

Theorem 3 The family C is a partitionable family of w-cliques of a partitionable (a+1,w)-
graph G on the vertex set V.=V' U C. Furthermore, C € C is a critical clique, for which if
we apply the reduction, we obtain C' back.

Proof. Clearly, C is a family of size
Cl=I[C'|=1B|+2E(T)|+1=C"|+w=|V'][+|C|=|V]

Thus, to prove the first half of the theorem, we need to show that for every v € V there
exists a subfamily of C partitioning the set V' \ {v}.
Let us consider first points v € V'. If P, N B = (), then

P, =P, U{C}

is an appropriate partitioning subfamily of C. If P! N B # () then, by our assumptions, there
is a unique set C), of B which belongs to P,. In this case the family

Py = (P, \ {Ch}) U{Tuo U Bou, Tow U Bun }

is a subfamily of C partitioning the set V' \ {v}.
Let us finally consider the points v € C, and define

Py = Hy U{Byp UTyulu € 7,}.

Clearly P, C C by our definition, and the sets in H, cover with no overlap the points
V'\ Uyer, Buw by (R3*), while the sets By, U T, for u € 7, cover, without any overlap by
(R3*), the rest of V' and C'\ {v}. Thus, P, is a partition of V' \ {v} for every v € C.

Since the only sets of C intersecting C in a nontrivial way, are those of the form B,, UT,,
and By, UT,, for (u,v) € E(T), there are exactly 2w — 2 such sets, and hence C is a critical
clique of the family C. It is now a straightforward verification that the conditions (R1), (R2)
and (R3*) hold, and the reduction starting with C and C' € C will yield C'. O
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5 Substituting spiders in webs

;From practical point of view, condition (R1) is well characterized in Section 3, hence equiv-
alently we always can start with a spanning tree on the w-set C. However, finding w — 1
cliques in C’ satisfying (R2), and finding a split of each of these cliques so that (R3*) satisfied,
is far not trivial.

Given a partitionable (a,w)-graph G' = (V' E'), and a disjoint w-set C, let us try to
construct a partitionable (a + 1, w)-graph on the vertex set V' U C, following the recursion
described in the previous section. As we have shown, we must choose first a spanning tree
T with V(T') = C, and use the critical family defined by its edges in our construction. (And
therefore condition (R1) will automatically be satisfied.)

An immediate question arise: can we pick any spanning tree 7" on the set C'?7 Applying
Lemmas 8 and 9 we can conclude that the maximum degree of the vertices in 7" and even
the number of leaves certainly cannot exceed o+ 1. We also know that a simple path can
surely arise, since this is the case with a web, in which all cliques are critical.

In this section we show that in fact there is an infinite family of trees (larger than
the family of paths but still very restricted) which can arise as spanning trees in critical
cliques, by applying the recursive construction described in the previous section. For this
we shall consider (a, w)-webs and apply the recursion to them starting with a special family
of spanning trees.

The (a,w)-web, is the graph G' = (V', E'), in which the vertices can be identified with
the integers modulo n = aw + 1, i.e. V' = Z,, and in which the w-cliques correspond to
consecutive (modulo n) sequences of integers in Z,,.

Let us introduce the notations Q@ = {0,1,....,.w — 1} = Z,, A = {1,...,a} = Z,, and
let us have the convention that arithmetical operations with elements of Z, will always be
meant modulo n. Furthermore, for a subset S C 7Z, and an integer a € Z, let us define
a+ S ={a+ili € S}. The family of w-cliques of the (o, w)-web G’ then can, more precisely,
be described as

C' = {C’Z' =i+ Qli € Zn} (26)
while its a-stable sets are
S = {SZ' =i+ wxAli € Z,}. (27)

With these definitions, C! and S; are vis-a-vis for all ¢ € Z,,.

Let us next define a spider. A spider is a rooted tree, in which only the root vertex can
have degree higher than 2. In particular, a path is a spider, whichever its vertex as chosen
as the root. The paths, connecting vertices of degree 1 (leaves) of a spider to its root are
called its legs.

Theorem 4 Let us consider an (a,w)-web G' = (V' E') (onn = aw + 1 vertices), and a
spanning spider T = (C, E) rooted at v € C, where C is an w-set, disjoint from V', and
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let us assume that for the degree of the root vertex of T we have d, < a4+ 1. Then, the
recursion of the previous section can be applied, and an (o + 1,w)-partitionable graph G can
be constructed on the vertex set V' U C, such that C' becomes a critical clique of G, and T
will be the tree of its critical edges.

Proof. Let us first identify the vertices of G' with Z,, as above, and let us introduce co-
ordinates for the vertices of T'. Let us number the legs first from 1 to d,, and then let us
associate the pair (k,i) to the vertex v € C, if v belongs to the k-th leg, and is the i-th
vertex counted from the leaf on that leg, i.e. (k,1), for k =1,...,d, are the leaves of T'. Let
us note that formally all the pairs (k,ny+1) for k = 1,2, ..., d, are corresponding to the root
of the tree, where n; denotes the number of vertices on the k-th leg (not counting the root).
With these notations, we have

dr
Z np=w—1 (28)
k=1

and that
C={r}u{(k, )1 <i<ng, 1<k<d,}. (29)
To simplify notations, let us also introduce subintervals of Z,, by defining
[a,0) ={a+j|lj=0,1,...,(b—a) mod n}.

For instance for n = 11 we have [4,8) = {4,5,6, 7} and [10,2) = {10,0, 1}.

To describe our construction, we need to specify w — 1 cliques of G’ corresponding to the
edges of T', and an appropriate split of each of them into two subsets.

With our notation, all the edges of T are of the form [(k,1), (k, 7 + 1)] for some indices
1<k<d,and 1 <i<ng+1. In particular, the edge [(k, ng), (k, ngx + 1)] is the edge of the
k-th leg, incident with the root. Then the sets corresponding to the partitions of C' induced
by these edges are

Tikiy ki) = LI # kFU{(k, )7 > i+ 1}, while
Tk i)k = {(k, 9)17 < i},
fori=1,..,n, and k =1, ..., d,. Clearly, |Ty,it1),,57| = ¢ and |Tix,i),(k,i+1y| = w — ¢ for all

1<i<niand 1<k <d,.
Let us now define the associated w-cliques of G’ by

(30)

Cliay (kiv) = kw — (na + - mp 1 +14), (b + Dw — (01 + -+ ng 1 +14)) (31)

= Cllcwf(n1+---nk,1+i)

using our notation of (26), for i =1,2,...,n; and for k = 1,...,d,. Let us split each of these
cliques into two subintervals given by

B[(k,i),(k,i+1)] = [k:w — (n1 + - -nk,l), (l{i + 1)(4) — (n1 + N+ ’l)) and

) 32
Bi(k,it1),k,i) = [kw — (ng + - ng_1 + 1), kw — (ng + -+ ng_q)), (32)
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We claim that with these definitions, the clique family C, given as in (25), will indeed
define an (a + 1,w)-partitionable graph on the vertex set V' U C. In order to see this,
according to Theorem 3, we have to verify that conditions (R1), (R2) and (R3*) are all
satisfied by our construction.

The first condition (R1), as we noted earlier, follows directly from the fact that 7" is a
spanning tree, and the splits Tj(x ), (x,i+1)] and Tj(x,i+1),(x,s) are defined by the edges of this
tree. Hence, by Theorem 1, they form indeed a critical tree-covering family on C.

To verify condition (R2), we have to show that the cliques C’,’Mf(nﬁ__nkil“) for 1 =
1,2,...,n and for k = 1, ..., d, all belong to different partitions P, of the (a,w)-web G'. To
this end, let us observe first that, due to the special structure of a web, two cliques C; and
C; (i < j), as defined by (26), belong to the same partition if and only if j —i > w and
j—1t=0o0r1 moduw, ie. if they do not overlap, and one of the gaps between these two
subintervals of the circular 7Z,, can be tiled by w-intervals. Let us now consider two cliques of
the form C’,’wf(nﬁmnkiﬁi) and Cllc’wf(n1+---nk/71+i’)’ as in (31). Let us observe that if k = &/,
then these cliques overlap, and thus cannot belong to the same partition, while for & > k'
we have

(kw — (n1 + - Np +Z)) — (k:'w — (n1 + N +’ll))
= (l{ifkl)w* (nkz +---nk,1+i—z").

Since ny —4' > 0,4 > 1 and k& > k', the sum ny + ---ni_; + 7 — ¢ is always positive, and it
takes its maximum, if ¥’ = 1, k = d,, i = ng, and i’ = 1, when it is w — 2, by (28). Thus

I1<np+-mp1+i—0<m+-+ng —1=w-—2

follows, implying that the quantity ((k — & )w — (ng +---ng_1 +i —14')), is never 0 or 1
modulo w.

To verify (R3*) let us note first that the sets, By, for u € 7,, as defined in (32) are
pairwise disjoint, and consecutive, i.e. form an interval of length

> Buwl =Y (w— |Tol) = dw — [V'\ {0} = (d, — Dw+1,

uel'y, u€ely,

for all v € C, and hence the complementary set V' \ |J,. Buy, has its cardinality as a
multiple of w (since n = aw +1). Thus it can be tiled by w-cliques of the web G'. Therefore,
to verify (R3*), we need to show first that the above hold with the definitions in (32), and
second that to tile the sets V' \ | B, for v € C' by w-cliques of G' one does not need
the cliques defined in (31).

To see the first part is easy just by looking at the definitions (32). Namely, for leaf
vertices there is nothing to check. For the root of 7" we have the sets

uely,

B[(kynk)y(k7"k+1)} = [kw — (n1 -+ .- lefl), (k + 1)w — (n1 -+ .- NEp—1 + nk)) (33)
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for Kk =1,2,...,d,, and these obviously are consecutive, in this order, with no overlap. For
an interior vertex (k, ) of a leg (i.e. with 1 < ¢ < ng) we have the two sets

B[(k,i-l—l),(k,i)} = [k:a) — (n1 —+ - Ng_1 + ’l), kw — (n1 —+ - nk,l)) and

, 34
Biri 1),k = [kw — (m +--ng 1), (k+ 1w —(n1+--mp 1 +i— 1)) (34)

and again these sets are always consecutive without any overlap.

For the second part, let us first have a look again at the sets (33), and let us observe
that the complement of their union can be partitioned by the cliques H, = {Cédr+j)w+1‘j =
0,1,..,a — d,}. Since for the cliques of the form C’,’Wf(
1<k <d, (see (31)), we have

) for 1 < ¢ < ny for

n1+eng oy

w—1<kw—(ni+--np1+1) <(d—1w+1

therefore, H, indeed does not contain any of these. For the two sets finally in (34), we can
see that their complement is partitioned by the cliques

Hiki) = {Cthtj)w—(nitmp 1+i-)ld =1, .., — 1}

and again these are all different from those in (31). O

As an illustration, let us consider the (2,5)-web (anti-hole) on 11 vertices, and the spider
on figure 1. In this example we have a = 2, w = 5, (and hence n = 11), and, as shown in

(1,2) = (2<>3) =(3,2)

2,1)(©)

ny = 1 N = 2 ng — 1
Figure 1: A coordinatized spider on 5 vertices.

figure 1, r = (1,2) = (2,3) = (3,2), a = (1,1), b= (2,2), ¢ = (2,1), and d = (3,1). Then
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the sets by (31) and (32) are as follows

Cl, =[4,9) B.,=[4,5) By =[5,9)
Ch, =[7,1) By =1[7,9) By, = [9,1)
Clh =1[0,5) B,a=[0,1) By, = [1,5)
Ci.=18,2) By =[8,9) By = [9,2)

The eight sets [4,5)U{r,b,c,d}, [5,9)U{a}, [7,9)U{r,a,d}, [9,1)U{b,c}, [0,1)U{r, a,b,c},
[1,5)u{d}, [8,9) U{r,a,b,d}, and [9,2) U{c} together with C' = {r,a,b, c,d} and the seven
of the original cliques of the (2,5)-web, namely [1,6), [2,7), [3,8), [5,10), [6,0), [9,3) and
[10,4) form the clique family of a (3, 5)-partitionable graph on the 16 vertices of Zq; U C.

Remark 6 FEven though for w = 3 all spiders are a simple path of two edges, still, depending
on where the root is, we get different results. E.g. starting from the (2,3)-web, and the spider
{r,a,b} forming a 2 edge path with the root at the end, we obtain a (3,3)-web. While if we
use the spider {a,r,b} forming a 2 edge path again, but now having the root in the middle,
we get a non-web (3, 3)-partitionable graph, appearing in [2].

Remark 7 By the above result, we can generate an (o + 1,w)-partitionable graph from an
(o, w)-web for every labeled spider on w points with d, < « + 1. (Though, some of these
graphs might be isomorphic.)

Remark 8 Obviously, |L(T)| > d, for every vertexr v € T, and there exists a vertex v in
T such that |L(T)| = d, if and only if T is a spider. Thus for spiders and only for them
inequalities of Lemmas 8 and 9 are equivalent.

6 (a,3)-partitionable families and other experimental
results.

For w = 3 we have the following characterization of critical cliques:

Lemma 10 A clique is critical if and only if it is in the middle of a gem.

Proof. There is a unique tree with 3 vertices, let us say b, ¢, d. There is a unique tree-covering
family: (b,c),(d), (b), (c,d). Thus there should be cliques (a,b,c) and (c,d,e). Vertices a
and e are different, otherwise we would get a K4. Vertices a, b, ¢, d, e form a gem with critical
clique (b, ¢, d) in the middle. O

We conjecture that for w = 3 every partitionable graph has a critical clique. The following
experimental results support this conjecture. We have verified, that for w = 3 there exists a
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gem (and therefore a critical clique) in all partitionable graphs up to o = 9. The existence
of a diamond was verified for partitionable graphs up to a = 10.

In Table 1 we list some additional experimental results. We have generated all the
partitionable graphs for w =3 and a« = 2,...7 and for w =4 and a« = 4 and 5. For w =3
all graphs have critical cliques, while for w = 4 this is no longer true.

The column “ST” counts the number of graphs which have a small transversal, that is
a subset of the vertices of size a + w — 1 that intersects all w-cliques and all a-stable sets.
The column “Cj” lists the number of partitionable graphs without C5. Both these values
turn out to be very useful parameters in case one is interested to generate all partitionable
graphs that are reasonable candidates to be counterexamples to the Strong Perfect Graph
Conjecture. It is well known that such graphs have neither a small transversal nor a Cs.

Table 1: The number of partitionable graphs without indifferent edges. (Numbers in bold
were not known before )

# of graphs without | # of graphs constructable by

n | w | a| # total | crit. clique | ST | C5 | CGPW | our construction
101313 2 0 00 2 2
13134 5 0 0|1 4 5
16|35 21 0 0 18 21
19136 154 0 0| 7 138 154

22| 3| 7| 1488 0 0 | 22| 1332 1488

1714 | 4 132 6 1 1 22 126

2114 |5 8340 1431 0 4 1189 6909

2514 1|6 ? ? 0 ? ? ?

Remark 9 Our computations show that a counterezample to the Strong Perfect Graph Con-
jecture must have at least 26 vertices. This slightly improves the previous bound 25 given
by Gurvich and Udalov (1992). These two bounds are obtained due to a computer analysis
of the (4,6)- and (4,5)-graphs, respectively. It was shown that all these graphs have small
transversals and thus cannot be counterexamples to the Berge Conjecture. To reach the next
bound 29 the case of (5,5)-graphs has to be considered.

References

[1] R.G. Bland, H.-C. Huang and L.E. Trotter Jr. Graphical properties related to minimally
imperfection, Discrete Mathematics 27 (1979) pp. 11-22.



RRR 10-99 PAGE 25

[2] V. Chvétal, R.L. Graham, A.F. Perold and S.H. Whitesides. Combinatorial designs
related to the perfect graph conjecture, Discrete Mathematics 26 (1979) pp. 83-92.

[3] V. Gurvich and V. Udalov. Berge Strong Perfect Graph Conjecture holds for the graphs
with less than 25 vertices. Manuscript (1992), 23 p.

[4] L. Lovasz. A characterization of perfect graphs, J. Combinatorial Theory, Ser.B 13
(1972) pp. 95-98.

(5] M.W. Padberg. Perfect zero-one matrices, Math. Programming 6 (1974) pp. 180-196.

6] A. Sebs. On critical edges in minimally imperfect graphs. J. Combinatorial Theory,
ser.B 67 (1996) pp. 62-85.



