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Recursive generation of partitionablegraphs

E. Boros V. Gurvich S. Hougardy
Abstract. Results of Lov�asz (1972) and Padberg (1974) imply that partitionablegraphs contain all the potential counterexamples to Berge's famous Strong PerfectGraph Conjecture. A recursive method of generating partitionable graphs was sug-gested by Chv�atal, Graham, Perold and Whitesides (1979). Results of Seb}o (1996)entail that Berge's conjecture holds for all the partitionable graphs obtained by thismethod. Here we suggest a more general recursion. Computer experiments showthat it generates all the partitionable graphs with ! = 3; � � 9 (we conjecture thatthe same will hold for bigger �, too) and 'almost all' for (!; �) = (4; 4) and (4; 5).Here � and ! are respectively the clique and stability numbers of a partitionablegraph, i.e. numbers of vertices in its maximum clique and stable set. All the par-titionable graphs generated by our method contain a critical !-clique, that is an!-clique which intersects only 2! � 2 other !-cliques. This property might implythat in our class there are no counterexamples to Berge's conjecture (c.f. Seb}o(1996)), however this question is still open.
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RRR 10-99 Page 11 IntroductionGiven a graph G, we denote by n = n(G) the number of vertices in G, by ! = !(G) theclique number, that is the maximal number of pairwise connected vertices, by � = �(G) thestability number, that is the maximal number of pairwise non-connected vertices, and by� = �(G) the chromatic number, that is the minimal number of colors which allow a propercoloring.In (1960) Claude Berge introduced the notion of perfect graph. A graph G is calledperfect if �(G0) = !(G0) for every induced subgraph G0 in G. Naturally, a graph G is calledminimally imperfect if it is a vertex-minimal non-perfect graph, i.e. if G itself is not perfectbut every proper induced subgraph G0 of G is perfect. It is not di�cult to see that chordlessodd cycles of length �ve or more (odd holes) as well as their complements (odd antiholes) areminimally imperfect. Berge conjectured that there are no other minimally imperfect graphs.This conjecture is called Strong Perfect Graph Conjecture and it is still open. A weakerconjecture, that the complement Gc of a perfect graph G is perfect was also suggested byBerge (1960) and was proved by Lov�asz (1972). (It is known as the Perfect Graph Theorem.)We would like to recall here two important results from the paper by Lov�asz (1972). The�rst one is stating that a graph G is perfect if and only if n(G0) � �(G0)!(G0) for everyinduced subgraph G0 in G. Since the equalities �(G) = !(Gc) and !(G) = �(Gc) obviouslyhold for every graph G, the above inequality implies readily the Perfect Graph Theorem.The second one states that every minimally imperfect graph G is partitionable, i.e.n(G) = �(G)!(G) + 1, and for every vertex v the induced subgraph G(V n fvg) can bepartitioned into �(G) cliques of size !(G), as well as into !(G) stable sets of size �(G). IfG is partitionable then clearly �(G) = !(G) + 1, �(G(V n fvg)) = !(G) = !(G(V n fvg)),and thus the complementary graph Gc is partitionable, too.Padberg (1974) derived from Lov�asz' result that for any minimally imperfect graph G thenumber of !(G)-cliques is n(G) and every vertex belongs to exactly !(G) of the !-cliques.Their characteristic vectors are linearly independent, i.e. they form a basis in Rn . Padbergalso observed the following convenient way to list all n(G) maximum cliques (of size !(G))in G. Let us �x an arbitrary !-clique C and for every vertex v 2 C consider a partitionof G(V n fvg) into � maximum cliques. Such a partition is unique. There are ! di�erentvertices v 2 C and there are � maximum cliques in each partition. All these cliques appearto be di�erent. Together with the clique C itself we get exactly �!+1 = n maximum cliquesof G. Of course, the analogous construction works for stable sets, too.Bland, Huang and Trotter (1979) proved that all these properties hold not only forminimally imperfect but for arbitrary partitionable graphs as well.Due to Padberg's construction, it is obvious that in every partitionable graph G every!-clique C intersects at least 2! � 2 other !-cliques of G. Indeed, let us chose any twodisjoint !-cliques C and C 0 in G and consider the clique partitions corresponding to thevertices of C 0. Every !-clique of G (except C 0) appears in these partitions exactly once,hence exactly one of these partitions contains C. Thus, every other partition splits C in atleast two parts. Thus C intersects at least 2! � 2 other !-cliques of G.



Page 2 RRR 10-99Let us call an !-clique critical if it intersects exactly 2! � 2 other !-cliques. It followsfrom the above observations that the 2! � 2 cliques intersecting a critical clique C can becombined into !� 1 pairs such that each of these pairs induces a partition of the vertices ofC into two nonempty parts.An edge e 2 E(G) of a partitionable graph G is called critical if �(G � e) = �(G) + 1,or in other words, if there exist two maximum stable sets S and S 0 which have �(G) � 1vertices in common and the two vertices in their symmetric di�erence are connected by theedge e.Critical cliques and critical edges were studied by Seb}o (1996). He proved that everycritical !-clique C of an (�; !)-partitionable graph contains exactly ! � 1 critical edgeswhich form a spanning tree T = T (C) on the vertices V (T ) = C. Furthermore (see Lemma3.1 of Seb}o (1996)), the following claims are equivalent:(i) C is a critical clique;(ii) Critical edges in C form a spanning tree of C;(iii) The induced subgraph G(V n C) is uniquely colorable.(A graph is uniquely colorable if it has a unique partition into �(G) stable sets.)We can observe a further connection between a critical clique C and tree T formed by thecritical edges in C. Obviously, the removal of any edge e 2 E(T ) splits T into two connectedcomponents, hence splitting the vertices of C into two parts. The 2! � 2 sets obtained inthis way, corresponding to the !�1 edges of T , are exactly the 2!�2 intersections of cliqueC with the other !-cliques of G.These observations suggest the following reduction. Given a partitionable (�; !)-graphG which contains a critical clique C, let us consider the tree T formed by the critical edgesin C. Let us now consider any pair of disjoint !-cliques C 0 and C 00, corresponding to anedge e of T , i.e. for which the intersections C \ C 0 and C \ C 00 are nonempty and form apartition of C. Let us now change the graph by changing the list of its maximum cliquesin the following way. Remove the cliques C 0, C 00 and instead of these two add only one new!-clique (C 0 n C) [ (C 00 n C). Let us repeat the same for all the ! � 1 pairs of !-cliques,corresponding to the edges of T . Finally, let us remove the clique C itself from the list. Weshall show that this procedure always results in a new partitionable (�� 1; !)-graph G0.Let us remark that in the procedure above we speci�ed the changes of the family of!-cliques of the graph G only, rather than the changes with the graph itself. In particular,we paid no attention to updating the edge set, or updating the maximum stable sets of thegraph. In Section 2 we shall show that such an approach is correct and the \partitionability"of the family of the !-cliques in fact implies the \partitionability" of �-stable sets.It is a natural idea to inverse the above reduction. For this we need �rst to generalizeslightly the properties (i)-(ii). In Section 3 we shall prove that if S is a family of 2! � 2subsets of a �nite set C of size ! satisfying that S 2 S i� S = C nS 2 S, and for every pointv 2 C there is a subfamily Pv � S which forms a partition of C n fvg, then there exists a



RRR 10-99 Page 3unique spanning tree T on the vertex set C, such that the 2! � 2 sets of S are exactly thevertex sets of the connected components, which one can obtain by the successive removal of! � 1 edges of T .Using this characterization, in Section 4 we shall describe a constructive method to obtaina new partitionable (�+1; !)-graph G0 from a given partitionable (�; !)-graphG. Unlike thereduction, the recursion is not always applicable. In Section 4 we obtain conditions necessaryand su�cient for such a procedure to work. In Section 5 we specify these conditions for thecase of webs and demonstrate that it is always possible \to substitute a spider in a web",that is given an (�; !)-graph G which is a web and a tree T which is a spider, the recursionis always applicable.But how many partitionable graphs have critical cliques? We conjecture that in case! = 3 they all have. Computations con�rm this conjecture for � < 10. We prove that thisconjecture is equivalent to the following one: every partitionable (�; 3)-graph contains aninduced gem: (a; b); (b; c); (c; d); (d; e); (a; c); (c; e); (b; d). However, it is not even known ifevery (�; 3)-graph contains an induced diamond: (a; b); (b; c); (c; d); (a; c); (b; d).In case ! = 4 there are partitionable graphs without critical cliques. There exist 5partitionable (3; 4)-graphs and all 5 have critical cliques, there exist 132 partitionable (4; 4)-graphs and 126 have critical cliques, there exist 8340 partitionable (5; 4)-graphs and only6909 have critical cliques.Let us remark that our recursion generalizes an analogous one suggested by Chv�atal,Graham, Perold and Whitesides (1979). We get their recursion as a special case when tree Tis a simple path and !�1 maximum cliques in G, which de�ne the recursion, form a chain on2!�2 vertices, i.e. satisfy that Ck = fvk; vk+1; :::; vk+!�1g, for k = 1; :::; !�1. In particular,every two successive !-cliques in this chain have ! � 1 vertices in common. For example,let ! = 3. In this case there exists only one tree with 2 edges: this is the simple pathP3, but still we can chose two 3-cliques C1; C2 in three di�erent ways, such that cardinalityof the intersection jC1 \ C2j is 2,1 or 0. Chv�atal, Graham, Perold and Whitesides (1979)demonstrated that in the �rst case, jC1 \C2j = 2, only 4 out of 5 partitionable (4,3)-graphscan be recursively generated. Our computation shows that the �fth one can be generatedif we allow jC1 \ C2j = 1, and all three ways, jC1 \ C2j equals 2,1 and 0, are necessary togenerate all (7; 3)-graphs.Every partitionable graph generated by our recursion has a critical clique. Seb}o (1996)proved that no partitionable graph can be a counterexample to Berge's conjecture if thisgraph and its complement both contain critical cliques. This result is an argument that inour class there is no counterexample either, however this question is still open.2 Axiomatics of partitionabilityIn their de�nition of partitionable graphs Bland, Huang and Trotter (1979) demand parti-tionability for both families of maximum cliques C and maximum stable sets S. But in fact,it is su�cient to demand partitionability for only one of these two families and which then



Page 4 RRR 10-99will imply the partitionability of the other one. This idea is not new, and some results inthis direction can be found in literature. For completeness, we devout a special section tothis problem, as well as to some other axiomatics which also imply the numerous propertiesof the PGs. In fact, this section plays a very important role in our paper, because the trans-formations, which we will introduce, are based on transformations of the family of !-cliquesonly. The justi�cation of this approach is based on the following subsection.2.1 A one-axiom de�nitionLet us consider a �nite set V of n elements, and a family C of its subsets.De�nition 1 The family C will be called partitionable if jCj � jV j = n and for every v 2 Vthe set V nfvg is a union of some pairwise disjoint sets from C, i.e. if there exists a subfamilyPv � C for every v 2 V such thatV n fvg = [C2Pv C and C \ C 0 = ; for C;C 0 2 Pv; wheneverC 6= C 0: (A)Let B = f0; 1g, and let us consider the characteristic vectors xC 2 B V of the sets C 2 C,the vector of all ones e 2 B V , and the unit vectors ev 2 B V for v 2 V . With this notationwe can rewrite (A) as8v 2 V 9Pv � C such that bxV nfvg = e� ev = XC2Pv xC : (A�)Obviously, the vectors e� ev, v 2 V , form a basis in RV . If the family C is partitionablethen by (A) every such vector is a linear combination (with (0,1)-coe�cients) of some of thevectors xC , C 2 C, implying that these vectors form a generator of RV . Since jCj � jV j isalso assumed, it follows that jCj = jV j: (1)The vectors xC ; c 2 C; form a basis of RV : (2)The partition Pv � C is unique for every v 2 V: (3)Let us now �x a set C 2 C and let us sum up the equations of (A�) for v 2 C. We obtain



RRR 10-99 Page 5Xv2C(e� ev) = jCje� xC =Xv2C XC02Pv xC0from which we can express e ase = 1jCj  xC +Xv2C XC02Pv xC0! : (4)Since the vectors on the right hand side of (4) are from a basis of RV according to (2),the expression in (4) must be the unique representation of e in the basis fxC jC 2 Cg. SinceC 62 Pv for any v 2 C by de�nition, we obtain that the coe�cient of xC in the uniquerepresentation of e must be equal to 1jCj , for all C 2 C. On the other hand, looking at (4)for a �xed set C 2 C, we can observe that for any other set C 0 2 C, the coe�cient of thevector xC0 on the right hand side is an integer multiple of 1jCj , i.e. it can be equal to 1jC0jonlyif all sets appear exactly once on the right hand side of (4), and if all sets C 2 C have thesame size. Let us denote this common size of the sets in C by !. It follows then that all thepartitions Pv, v 2 V , are of the same size, which we shall denote by �.Thus, we can draw the following chain of conclusions:jCj = ! for all C 2 C; and jPvj = � for all v 2 V: (5)The families Pv for v 2 C 2 C are pairwise disjoint: (6)n = �! + 1: (7)Every point v 2 V belongs to exactly ! of the sets C 2 C: (8)For every C 2 Cthe subfamilies Pv; v 2 C together with C (9)form a partition of C:We can also rewrite (9) as
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8C;C 0 2 C; C 6= C 0; 9!v 2 C n C 0 such that C 0 2 Pv: (9')>From this, by a simple counting argument we can conclude thatEvery set C 2 C belongs to exactly � of the partitions Pv; v 2 V: (10)To verify (10), let us introduce the notationSC = fv 2 V jC 2 Pvg (11)for C 2 C. Clearly, C \SC = ;, by the de�nition. On the other hand, the set C must belongto exactly one of the partitions Pv, v 2 C 0 for any other set C 0 2 C, C 0 6= C by (9), implyingthus C \ SC = ; and jC 0 \ SC j = 1 for all C;C 0 2 C; C 6= C 0: (12)Since a partition Pv for any v 2 C contains � pairwise disjoint sets C 0 6= C, jSCj � �is implied by (12). By counting the pairs C 2 Pv �rst by v 2 V , and second by C 2 C, weobtain Xv2V jPvj =XC2C jSC j:from this, using (5) and the lower bound on jSC j, we getn� =Xv2V jPvj =XC2C jSC j � n�;which implies the equality jSC j = � for all C 2 C; (13)proving hence (10).Remark 1 Formula (11) is especially important for our approach. Given a partitionablefamily C, we introduce a family S by formula (11), and then prove that this new familyis partitionable, too. While Bland, Huang and Trotter (1979) introduce families C and Stogether and then de�ne partitionability in terms of both.



RRR 10-99 Page 7We are now ready to show that a partitionable family C is exactly the family of !-cliquesin a corresponding (�; !)-partitionable graph. We can verify this, based on the results ofBland, Huang and Trotter (1979), and on the properties above, by showing that the familyS = fSC jC 2 Cg forms a partitionable family of �-sets. For this we claim that the subfamilyQv = fSC jC 2 C; C 3 vgis a partition of V n fvg, for every v 2 V .Let us note �rst that if v 2 SC \ SC0, then by (11) both sets C and C 0 belong to thepartition Pv, and hence either C = C 0, or C \ C 0 = ;. Thus, we getSC \ SC0 = ; whenever C \ C 0 6= ; and C 6= C 0: (14)This implies immediately that the sets SC 2 Qv are pairwise disjoint. Since v 62 SC forSC 2 Qv by de�nition, and since jQvj = ! by (8), the subfamily Qv forms a partition of asubset of V n fvg of size !� = n� 1, i.e. it forms a partition of V n fvg.We can now de�ne a partitionable graph G = G(C;S) on the vertex set V (G) = V , inwhich the sets C 2 C are the !-cliques, and the sets S 2 S are the �-stable sets. In otherwords, for u; v 2 V , u 6= v, let us say that (u; v) 2 E(G) if there is a set C 2 C such thatfu; vg � C, and let us de�ne (u; v) 62 E(G) if there is a set S 2 S containing both u andv. We do not get any contradiction in this way, since jC \ Sj � 1 for all C 2 C and S 2 Saccording to (12). However, the graph G(C;S) is not well de�ned yet, because there can bepairs of vertices which do not belong neither to !-cliques nor to �-stable sets. Such pairs ofvertices are called indi�erent edges. An arbitrary subset of indi�erent edges can be includedin G(C;S). Thus in fact, G(C;S) is not one graph but a family of (partitionable) graphs.Each of these graphs has exactly n cliques C 2 C of cardinality ! and exactly n stable setsS 2 S of cardinality �. If ! 6= n� 1 then there cannot exist cliques of cardinality !+1, andsimilarly, if � 6= n� 1 then there are no stable sets of cardinality � + 1.Remark 2 In principle, partitionable families could have parameters (�; !) = (1; n� 1) or(�; !) = (n�1; 1). However, when dealing with partitionable graphs the standard assumptionis that � > 1 and ! > 1.2.2 Geometrical axiomsThe following nice geometrical approach to partitionability was suggested by Temkin (privatecommunications). Given a set V = fv1; :::; vng and two families of its subsets C = fC1; :::; Cngand S = fS1; :::; Sng such that C1\S1 = ;; :::; Cn\Sn = ;, let us introduce a projective biplanewhose n points are v1; :::; vn and n lines are L1 = C1 [ S1; :::; Ln = Cn [ Sn. The di�erencebetween the standard �nite projective plane and biplane is as follows. The incidence functionF (Li; vj) for a standard plane takes two values: F (Li; vj) = 1 if vj 2 Li and F (Li; vj) = 0 ifvj 62 Li, while for a biplane it takes three values: F (Li; vj) = 1 if vj 2 Ci, F (Li; vj) = �1 ifvj 2 Si, and F (Li; vj) = 0 if vj 62 Li.



Page 8 RRR 10-99Also the intersection of lines is understood in a rather unusual way. Given two linesLi = Ci [ Si and Lj = Cj [ Sj, their intersection is Li \ Lj = (Cj \ Si) [ (Ci \ Sj), that isonly those points which belong to both lines and whose incidence functions with respect tothese two lines have opposite signs are included, while the points from (Ci \ Cj) [ (Si \ Sj)do not count. After these two radical innovations a �nite projective biplane is de�ned bythe following two more or less standard axioms.Every two di�erent lines Li = Ci [ Si and Lj = Cj [ Sjintersect in exactly two di�erent points vk and vm (G1)such that vk 2 Ci \ Sj and vm 2 Cj \ Si;Every two di�erent points vk and vmare connected by exactly two di�erent lines (G2)Li = Ci [ Si and Lj = Cj [ Sj such that vk 2 Ci \ Sj and vm 2 Cj \ Si:Let us prove that axioms ((G1), (G2)) and (A1) are equivalent. First, given a set V =fv1; :::; vng and a partitionable (i.e. satisfying (A1)) family C = fC1; :::; Cng, let us generatethe family S = fS1; :::; Sng, according to (10), consider the corresponding biplane and provethat ((G1), (G2)) hold. Formula (G1) results directly from (11). To prove (G2) let us �xany two di�erent points vk; vm 2 V and consider all the ! sets Cj; j 2 J(vk) which containvm, see (9). According to (10), the corresponding ! sets Sj; j 2 J(vk) are pairwise disjointand each one contains � points, according to (12). Hence, together they contain n�1 pointsand must form a partition P(vm), that is exactly one of these sets, let us say Sj0, containsvk. Thus, there exists a unique j0 2 [n] such that vm 2 Cj0 and vk 2 Sj0. In the same waywe prove that there exists a unique i0 such that vm 2 Si0 and vk 2 Ci0 . Thus, (G2) holds.Now let us derive (A1) from ((G1), (G2)). That is given a biplane, let us prove thatfamily C = fC1; :::; Cng must be partitionable. For this let us �x an arbitrary point v 2 Vand consider all the lines Lj = Cj [ Sj j 2 J(v) such that v 2 Sj. Then (14) means exactlythat Cj; j 2 J(v) form a partition of P(v).2.3 Matrix axiomsThe following matrix approach to partitionability was suggested by Chv�atal, Graham, Peroldand Whitesides (1979). Let us consider equationXY = J � I (M)in n�n (0,1)-matrices where I is the identity matrix, J is the matrix whose all n2 entriesare 1's, and X; Y are unknown.



RRR 10-99 Page 9Again, given a set V = fv1; :::; vng and two arbitrary families of its subsets C = fC1; :::; Cngand S = fS1; :::; Sng, let us introduce X as (0,1) n� n incidence matrix of V (columns) andC (rows), and Y as (0,1) n � n incidence matrix of V (rows) and S (columns). And viceversa, to any two (0,1) n � n matrices X and Y we can assign a set V and two families Cand S of its subsets such that the same incidence relations takes place. Thus we get twomutually inverse one-to-one mappings. Let us prove that axioms (M) for X; Y and (A) forV; C are equivalent. Firstly, (M) is an obvious consequence of (12) because for (0,1) vectorsthe intersection and the scalar product mean just the same. Secondly, (M) implies partition-ability of the corresponding set-family C. Indeed, from one hand, the rows of matrix J � Iare by the de�nition vectors e � ei; i = 1; :::; n. >From the other hand, rows of the matrixproduct XY are linear combinations of the rows of X, and all the coe�cients takes onlyvalues 0 and 1. Thus these linear combinations are just sums. But a sum of characteristicvectors is e� ei if and only if the corresponding sets from C form a partition P(vi).Let us recall that partitionability of C implies the partitionability of S. Thus XY = J�Ii� Y X = J�I. Then let us note that matrix J�I is symmetric. This impliesXY = J�I i�Y tX t = J�I, where t means matrix transposition. Thus the following four matrix products:XY; Y X; Y tX t; X tY t can be equal to J � I only simultaneously. If pair of matrices (X; Y )generates a partitionable graph G then pair (Y;X) generates the complementary graph Gc,while pair (X tY t) generates dual partitionable graph Gd. Obviously, Gcd = Gdc.
3 Tree-covering familiesLet us consider a set C of size !, and let A be a family of subsets of C (more precisely,a multi-family, i.e. sets in A may have a multiplicity > 1.) Let us call A a tree-coveringfamily, if A 2 A =) A = C n A 2 A; (C1)and if for every point v 2 C there is a subfamily Rv � A which form a partition of C n fvg,i.e. if 8 v 2 C 9 Rv � A such that C n fvg = ]A2Rv A; (C2)where U denotes \disjoint union".We shall show �rst that a tree-covering family must have at least 2!� 2 elements. Usingthe characteristic vectors xA 2 B C , A 2 A, the vector of all ones e 2 B C , and the unitvectors ev 2 BC for v 2 C, conditions (C1) and (C2) can be restated as



Page 10 RRR 10-998A 2 A 9A 2 A such that xA + xA = e (C1�)8v 2 C 9Rv � A such that XA2Rv xA = e� ev (C2�)
Lemma 1 Let A be a tree-covering family on a �nite set C of size !, and let k denote thenumber of di�erent sets in A. Then k � 2! � 2.Proof. Let us observe �rst that k is even, since the di�erent sets of A can be divided intocomplementary pair by (C1). Let us denote by Ai, A i these complementary pairs, i = 1; :::; k2 .Let us next observe that by (C2�) all vectors of the form e�ev for v 2 C can be expressedas linear combinations of the vectors xA, A 2 A. Since fe � evjv 2 Cg forms a basis ofRC , the set fxAi;xA i ji = 1; :::; k2g must be a generator set of RC . Let us now consider asubfamily, B = fxAi ji = 1; :::; k2g [ fxA 1g consisting of the �rst complementary pair, andone of the characteristic vectors for all other complementary pairs. According to (C1�), wecan obtain all other characteristic vectors by xAi = (xA1 + xA 1)� xAi for i > 1, and henceB is a generating set of RC , too, implying jBj � !. Since jBj = 1 + k2 , the statement of thelemma follows immediately. �Let us call a tree-covering familyA on a �nite set C of size ! critical, if it has the smallestpossible size, i.e. if jAj = 2! � 2: (C3)An immediate corollary of Lemma 1 is that all sets of a critical tree-covering familymust have a multiplicity of 1. Thus, since in the sequel we shall talk about critical tree-covering families, we do not have to pay special attention to distinguishing families frommulti-families.Let us see �rst examples for critical tree-covering families: Let us consider an arbitraryspanning tree T on the vertex set V (T ) = C. The removal of an edge (u; v) 2 E(T ) dividesthe set of vertices into two connected components. Let us denote the component containingv but not u by Auv and let Avu be the other component. Finally, let us de�ne a familyAT = fAuv; Avuj(u; v) 2 E(T )g. Clearly, AT has 2! � 2 elements, and A uv = Avu, i.e. bothconditions (C1) and (C3) hold. Furthermore, one can see that for every vertex u 2 C thesubfamily Ru = fAuvj(u; v) 2 E(T )g forms a partition of the vertex set C n fug, since T isa spanning tree on C. Thus AT is a critical tree-covering family for every spanning tree T .We shall show next that in fact all critical tree-covering families arise in this way.



RRR 10-99 Page 11Theorem 1 If A is a critical tree-covering family on a �nite set C, then there exists aspanning tree T on C such that A = AT .To prove this theorem, we shall need a series of simple lemmas �rst.Let us consider a critical tree-covering familyA on the set C (jCj = !) as in the theorem.Lemma 2 If e =XA2A�AxA (16)for some nonnegative real coe�cients �A � 0 for A 2 A, then there exists a complementarypair of sets, A 2 A and A 2 A, for which both coe�cients �A and �A are positive.Proof. Let us assume indirectly that min(�A; �A ) = 0 for all A 2 A, and let us choose asubfamily B � A by de�ningB = fAj�A > 0g [ fAj�A = �A = 0 and v 2 Agwhere v 2 C is a �xed element. Clearly, in this way we chose into B exactly one set from eachcomplementary pairs in A. The subfamily B also contains all sets to which the correspondingvector on the right hand side of (16) has a positive coe�cient. Using then (C1�) and (16), wecan conclude that the vectors xA, A 2 B must form a generating set, just like in the proof ofLemma 1. This is a contradiction with the fact that jBj = ! � 1 for a critical tree-coveringfamily, and hence the lemma follows. �For a critical tree-covering family A on the set C, let us choose a subfamily Rv for everyv 2 C for which condition (C2) holds.Lemma 3 For every set A 2 A there exists a unique vertex v 2 C such that A 2 Rv.Proof. By summing up the equations (C2�), we getXv2C XA2Rv xA = (! � 1)e: (17)Let us denote by mA the number of points v 2 C for which A 2 Rv, and let v 2 C be a �xedvertex. With this notation (17) can be rewritten as(! � 1)e =XA2AmAxA= XA2A;v2Amin(mA; mA )�xA + xA� +XA2A�mA �mA�+ xA:



Page 12 RRR 10-99where (a� b)+ = a� b if a > b, and (a� b)+ = 0 otherwise. Using (C1�), we obtain �nally"(! � 1)� XA2A;v2Amin(mA; mA )# e =XA2A�mA �mA�+ xA: (18)The right hand side above is a nonnegative combination of nonnegative vectors, hence !�1 �PA2A;v2Amin(mA; mA ) follows. If the left hand side of (18) were in fact non zero, we couldobtain from (18) the vector e as a nonnegative combination of the vectors xA, A 2 A.According to Lemma 2 this would imply that for at least one set S 2 S both (mA �mA )+and (mA � mA)+ are positive, which is impossible, since for any two reals a and b, either(a� b)+ = 0 or (b� a)+ = 0 (or both). This contradiction shows that! � 1 = XA2A;v2Amin(mA; mA ): (19)Thus all the nonnegative coe�cients on the right hand side of (18) must also be equal tozero, i.e. mA = mA for all A 2 A follows.Let us observe next that mA > 0 for all A 2 A, since otherwise we have mA = mA = 0for some sets A 2 A, implying that the family A0 = A n fA;A g is again a tree-coveringfamily of size jAj � 2 < 2! � 2, a contradiction to Lemma 1.Since in the summation of the right hand side of (19) we have ! � 1 terms, and sinceeach of those is a nonnegative integer according to the above, we can conclude from (19)that mA = 1 for all A 2 A, hence proving the lemma. �The above lemma shows also that in a critical tree-covering family A on C for everyvertex v 2 C there is a unique subfamily Rv � A which forms a partition of the verticesC n fvg.Let us now consider a graph T on the vertex set V (T ) = C with an edge set de�ned byE(T ) = f(u; v)ju; v 2 C; 9A 2 A such that A 2 Rv and A 2 Rug:Since a critical tree-covering family A consists of ! � 1 complementary pairs, it follows byLemma 3 that the graph T has exactly !�1 edges, one corresponding to each complementarypair of sets of A. For an edge (u; v) 2 E(T ) let us denote the corresponding complementarysets of A by Auv and Avu = A uv such that v 2 Auv and u 2 Avu.It is easy to see that Lemma 3 and the above de�nitions readily implyCorollary 1 There are no loops in T , and we have A = fAuv; Avuj(u; v) 2 E(T )g. �



RRR 10-99 Page 13Lemma 4 For every v 2 C we have Ru = fAuvj(u; v) 2 E(T )g.Proof. The relation Ru � fAuvj(u; v) 2 E(T )g follows directly from the de�nition of theedges of T .For the converse relation, let A 2 Ru be arbitrary. Then A 2 A by (C1), and thus byLemma 3 there exists a unique vertex v 2 C for which A 2 Rv. Clearly u 6= v, since u 2 Aand A � C n fvg. Therefore, (u; v) 2 E(T ) and A = Auv follows by the de�nition of T . �Lemma 5 If (u; v) 2 E(T ) and (v; w) 2 E(T ), then Auv � Avw.Proof. According to Lemma 4 we have Avw 2 Rv and Avu 2 Rv, thus Avw \Avu = ;. SinceA uv = Avu, we get Auv � Avw, as a consequence. To see that this is a strict containmentrelation, it is enough to observe that v 2 Auv, while v 62 Avw. �Lemma 6 There are no circuits in T .Proof. Let us assume indirectly that u1, ..., uk are vertices from C forming a cycle, i.e.(ui; ui+1) 2 E(T ) for i = 1; :::; k � 1, and (uk; u1) 2 E(T ). Then, by Lemma 5 we wouldhave Au1u2 � Au2u3 � � � � � Auku1 � Au1u2, all relations as strict containment, a clearcontradiction, proving the lemma. �Proof of Theorem 1. The graph T constructed above is a spanning tree on C by Lemma 6,and the equality A = AT follows by Corollary 1 and Lemma 4. �
4 Reduction and recursive generation of partitionablefamilies.According to the results of Section 2 we shall be able to represent partitionable (�; !)-graphsby the (partitionable) family of their !-cliques.So let us consider a partitionable (�; !)-graph G on the vertex set V of n elements, andlet C be the (partitionable) family of its !-cliques. Let us denote by S the family of �-stablesets of G, in which we have exactly one vis-a-vis set SC corresponding to every C 2 C, asde�ned in (11).Lemma 7 Every clique C 2 C intersects at least 2! � 2 other cliques from C.



Page 14 RRR 10-99Proof. Let us denote by MC = f ~C 2 Cj ~C 6= C and C \ ~C 6= ;g, and let us start with thefollowing obvious equality:X~C2MC Xv2V n(C[SC); ~C2Pv 1 = Xv2V n(C[SC) X~C2MC\Pv 1:Let us then recall that by (11) we have ~C 2 Pv i� v 2 S ~C , and for sets ~C 2 MC wehave SC \ S ~C = ; by (14). Thus, the second summation on the left hand side is equal tojS ~C n Cj which is � � 1 for all ~C 2 MC , by (12) and (13). Let us also observe that thesecond summation on the right hand side of the above equation yields always at least 2,since C 2 Pv only for v 2 SC by (11). Thus, we can rewrite the above equality asjMCj(�� 1) = Xv2V n(C[SC) X~C2MC\Pv 1 � 2jV n (C [ SC)j = 2(�� 1)(! � 1);from which we obtain jMCj � 2(! � 1);since � > 1 is assumed. �An !-clique C 2 C is called critical if it intersects exactly 2! � 2 other !-cliques of C.Clearly, this can happen only if jMC \ Pvj = 2 (20)for all v 2 V n (C [ SC), according to the above proof of Lemma 7. This implies that fora critical clique C, the sets in MC can be combined into ! � 1 pairs C1; C2, such thatC � C1 [ C2, and C1 and C2 belong to the same Pv partition for some v 2 V n (C [ SC).Let us denote by E an index set of ! � 1 elements, and let us write MC asMC = fC1e ; C2e je 2 Eg;reecting such a pairing of the elements of MC. With this notation we haveC � C1e [ C2e and C1e \ C2e = ; for all e 2 E: (21)Furthermore, (20) implies that8v 2 V n (C [ SC)9e 2 E such that C1e ; C2e 2 Pv: (22)Let us remark that for a critical clique C the sets of the form C \ ~C for ~C 2 MC are alldi�erent, as it is implied by (20).



RRR 10-99 Page 154.1 ReductionGiven a partitionable family C of the !-cliques of a partitionable (�; !)-graph G on vertexset V , and given a critical clique C 2 C, we shall construct another family C 0 on the setV 0 = V nC and show that C 0 is partitionable, too, i.e. that C 0 is the family of !-cliques of apartitionable (�� 1; !)-graph G0 on the vertex set V 0.Let us consider the family MC = fC1e ; C2e je 2 Egas above, and for every e 2 E let us de�ne a setC 0e = (C1e [ C2e ) n C; (23)and let us de�ne the new family byC 0 = (C n (MC [ fCg)) [ fC 0eje 2 Eg: (24)Theorem 2 The reduced family C 0 is a partitionable family on the set V 0 = V n C.Proof. Clearly, all sets in C 0 are subsets of V 0 by the de�nition, and we havejC 0j = jCj � (jMC j+ 1) + jEj = n� (2! � 1) + (! � 1) = n� ! = jV n Cj = jV 0j:Thus, to prove the theorem it is enough to show that for every v 2 V 0 there exists a partitionP 0v � C 0 partitioning the set V 0 n fvg.Let us consider �rst the family Pv � C. If C 2 Pv, then Pv \MC = ;, and thusP 0v = Pv n fCgis a desired partition within C 0. On the other hand, if C 62 Pv, then v 2 V n (C [ SC), andthus by (20) and (22) there exists a unique e 2 E such thatPv \MC = fC1e ; C2eg:In this case the family P 0v = �Pv n fC1e ; C2eg� [ fC 0egwill be a subfamily of C 0 partitioning the set V 0 n fvg. �



Page 16 RRR 10-994.2 RecursionTo be able to �nd a constructive inverse to the above reduction operation, let us �rst analyzethe structure of the restrictions of the hypergraph C to the sets C and V n C, separately.Let us observe �rst thatThe family A = fC \ ~Cj ~C 2 MCg is a critical covering family: (R1)Clearly, conditions (C1) and (C3) hold by (21) and by the criticality of C. To see (C2), letus de�ne Rv = fC \ ~Cj ~C 2 MC \ Pvgfor every v 2 C. Then, Rv � A, and its members form a partition of the set C n fvg by thede�nition, and hence (R1) follows.Let us remark that according to (R1) and the results in Section 3, A = AT for a (unique)spanning tree T on the vertex set C. On the other hand, Seb}o (1996) showed that in acritical clique of a partitionable graph, the critical edges from a spanning tree. One canshow easily, using (20) and (22) that these two trees in fact are identical { no surprises.Let us draw some conclusions about such a tree T = T (C) which can arise as the tree ofthe critical edges in a critical clique C. Let dv denote the degree of vertex v 2 C in T , or inother words, dv = jRvj, for v 2 C.Lemma 8 For every critical clique C of an (�; !)-graph G, and for all vertices v 2 C wehave dv � �:Proof. Let us consider the cliques ~C 2 MC \ Pv for a vertex v 2 C. Since all these belongto the same partition, they are pairwise disjoint, and thus we havedv! = X~C2MC\Pv j ~Cj � jV n fvgj = �!;implying hence the statement. �In fact, a stronger inequality holds. Let us denote by L(T ) the set of all the leaves oftree T = T (C)Lemma 9 For every critical clique C of an (�; !)-graph G we havejL(T )j � �:



RRR 10-99 Page 17Proof. Since every leaf node v 2 C of T is incident with exactly one tree edge, there exists aunique vertex uv 62 C corresponding to each leaf node V , for which the set ~Cv = fuvg[Cnfvgis a clique of G belonging to MC , according to our analysis above. Since ~Cv has only onepoint, namely uv, outside of C, that vertex hence must belong to the vis-a-vis stable set SC ,because all cliques (other than C) must intersect SC . Let us also note that such a vertexuv is adjacent to all vertices of C other than v. This latter implies, in particular that thevertices uv and uw corresponding to two di�erent leaf nodes v and w must be di�erent, sinceotherwise fv; uvg � ~Cvw would imply that (v; uv) 2 E(G), i.e. the set C [ fuvg would be an(! + 1)-clique of G. Thus, jfuvjv 2 L(T )gj = jL(T )j and fuvjv 2 L(T )g � SC both hold,implying hence the claim. �Let us note next that the family B = fC 0eje 2 Eg is a subfamily of C 0 of cardinality !� 1such that jB \ P 0vj � 1 for all v 2 V 0; (R2)which follows immediately from the proof of Theorem 2.Let us note also that sets in B are split into two by the sets ~C nC for ~C 2 MC such that8v 2 C the set 0@V 0 n [~C2Pv\MC( ~C n C)1A is partitioned by C 0: (R3)Indeed, the sets in Pv \ C 0 for v 2 C provide such a partition.Remark 3 Condition (R1) can be restated, due to the results in Section 3, as A = AT forsome spanning tree T on the vertex set C.Remark 4 Condition (R2) can also be stated in a more convenient way, by (11), sayingthat the vis-a-vis stable sets SC0e for e 2 E are pairwise disjoint.In particular, (R2) holds if all ! � 1 sets fC 0eje 2 E(T )g have a vertex in common,according to (14). In this case the resulting partitionable graph has a small transversal. Itfollows from Theorems 2 and 3 by Seb}o (1996).Remark 5 Condition (R3) holds automatically if vertex v 2 C is a leaf of T . This conditioncan be translated in terms of the vis-a-vis sets SC , as well as (R2). Also both these conditionscan be translated in terms of the dual partitionable graph Gd.We are now ready to show that the above conditions (R1), (R2) and (R3) are essentiallythe necessary and su�cient conditions one needs to inverse the reduction.However, we should strengthen (R3) slightly. Let us now assume that we are givena partitionable family C 0 of !-sets on the vertex set V 0, corresponding to a partitionable



Page 18 RRR 10-99(�; !)-graph G0. Let C be a set of size !, disjoint from V 0, and let T be a spanning tree onC with edge set E = E(T ). Let us denote by Tuv and Tvu the vertex sets of the connectedcomponents obtained by removing the edge (u; v) 2 E(T ) from the tree T , such that v 2 Tuvand u 2 Tvu. Let �nally �v denote the set of neighbors of v in T , i.e. �v = fuj(u; v) 2 E(T )g.Let us further assume that there is a subfamily B = fC 0uvj(u; v) 2 E(T )g � C 0 satisfyingcondition (R2), the cliques of which can be split into two parts C 0uv = Buv [Bvu for (u; v) 2E(T ) in such a way that Buv \ Bvu = ;, jBuvj = jTuvj (and thus jBvuj = jTvuj), and suchthat 8v 2 C the sets Buv for u 2 �v are pairwise disjoint, and9Hv � C 0 n B partitioning V 0 nSu2�v Buv: (R3�)Let us then de�neC = (C 0 n B) [ fTuv [Bvu; Tvu [Buvj(u; v) 2 E(T )g [ fCg: (25)Theorem 3 The family C is a partitionable family of !-cliques of a partitionable (�+1; !)-graph G on the vertex set V = V 0 [ C. Furthermore, C 2 C is a critical clique, for which ifwe apply the reduction, we obtain C 0 back.Proof. Clearly, C is a family of sizejCj = jC 0j � jBj+ 2jE(T )j+ 1 = jC 0j+ ! = jV 0j+ jCj = jV j:Thus, to prove the �rst half of the theorem, we need to show that for every v 2 V thereexists a subfamily of C partitioning the set V n fvg.Let us consider �rst points v 2 V 0. If P 0v \ B = ;, thenPv = P 0v [ fCgis an appropriate partitioning subfamily of C. If P 0v \B 6= ; then, by our assumptions, thereis a unique set C 0uv of B which belongs to P 0v. In this case the familyPv = (P 0v n fC 0uvg) [ fTuv [ Bvu; Tvu [Buvgis a subfamily of C partitioning the set V n fvg.Let us �nally consider the points v 2 C, and de�nePv = Hv [ fBuv [ Tvuju 2 �vg:Clearly Pv � C by our de�nition, and the sets in Hv cover with no overlap the pointsV 0 nSu2�v Buv by (R3�), while the sets Buv [ Tvu for u 2 �v cover, without any overlap by(R3�), the rest of V 0 and C n fvg. Thus, Pv is a partition of V n fvg for every v 2 C.Since the only sets of C intersecting C in a nontrivial way, are those of the form Buv[Tvuand Bvu [Tuv for (u; v) 2 E(T ), there are exactly 2!� 2 such sets, and hence C is a criticalclique of the family C. It is now a straightforward veri�cation that the conditions (R1), (R2)and (R3�) hold, and the reduction starting with C and C 2 C will yield C 0. �



RRR 10-99 Page 195 Substituting spiders in webs>From practical point of view, condition (R1) is well characterized in Section 3, hence equiv-alently we always can start with a spanning tree on the !-set C. However, �nding ! � 1cliques in C 0 satisfying (R2), and �nding a split of each of these cliques so that (R3�) satis�ed,is far not trivial.Given a partitionable (�; !)-graph G0 = (V 0; E 0), and a disjoint !-set C, let us try toconstruct a partitionable (� + 1; !)-graph on the vertex set V 0 [ C, following the recursiondescribed in the previous section. As we have shown, we must choose �rst a spanning treeT with V (T ) = C, and use the critical family de�ned by its edges in our construction. (Andtherefore condition (R1) will automatically be satis�ed.)An immediate question arise: can we pick any spanning tree T on the set C? ApplyingLemmas 8 and 9 we can conclude that the maximum degree of the vertices in T and eventhe number of leaves certainly cannot exceed � + 1. We also know that a simple path cansurely arise, since this is the case with a web, in which all cliques are critical.In this section we show that in fact there is an in�nite family of trees (larger thanthe family of paths but still very restricted) which can arise as spanning trees in criticalcliques, by applying the recursive construction described in the previous section. For thiswe shall consider (�; !)-webs and apply the recursion to them starting with a special familyof spanning trees.The (�; !)-web, is the graph G0 = (V 0; E 0), in which the vertices can be identi�ed withthe integers modulo n = �! + 1, i.e. V 0 = Zn, and in which the !-cliques correspond toconsecutive (modulo n) sequences of integers in Zn.Let us introduce the notations 
 = f0; 1; :::; ! � 1g = Z!, � = f1; :::; �g = Z�, andlet us have the convention that arithmetical operations with elements of Zn will always bemeant modulo n. Furthermore, for a subset S � Zn and an integer a 2 Zn let us de�nea+S = fa+ iji 2 Sg. The family of !-cliques of the (�; !)-web G0 then can, more precisely,be described as C 0 = fC 0i = i + 
ji 2 Zng (26)while its �-stable sets are S 0 = fS 0i = i+ ! � �ji 2 Zng: (27)With these de�nitions, C 0i and S 0i are vis-a-vis for all i 2 Zn.Let us next de�ne a spider. A spider is a rooted tree, in which only the root vertex canhave degree higher than 2. In particular, a path is a spider, whichever its vertex as chosenas the root. The paths, connecting vertices of degree 1 (leaves) of a spider to its root arecalled its legs.Theorem 4 Let us consider an (�; !)-web G0 = (V 0; E 0) (on n = �! + 1 vertices), and aspanning spider T = (C;E) rooted at r 2 C, where C is an !-set, disjoint from V 0, and



Page 20 RRR 10-99let us assume that for the degree of the root vertex of T we have dr � � + 1. Then, therecursion of the previous section can be applied, and an (�+1; !)-partitionable graph G canbe constructed on the vertex set V 0 [ C, such that C becomes a critical clique of G, and Twill be the tree of its critical edges.Proof. Let us �rst identify the vertices of G0 with Zn, as above, and let us introduce co-ordinates for the vertices of T . Let us number the legs �rst from 1 to dr, and then let usassociate the pair (k; i) to the vertex v 2 C, if v belongs to the k-th leg, and is the i-thvertex counted from the leaf on that leg, i.e. (k; 1), for k = 1; :::; dr are the leaves of T . Letus note that formally all the pairs (k; nk+1) for k = 1; 2; :::; dr are corresponding to the rootof the tree, where nk denotes the number of vertices on the k-th leg (not counting the root).With these notations, we have drXk=1 nk = ! � 1 (28)and that C = frg [ f(k; i)j1 � i � nk; 1 � k � drg: (29)To simplify notations, let us also introduce subintervals of Zn by de�ning[a; b) = fa+ jjj = 0; 1; :::; (b� a) mod ng:For instance for n = 11 we have [4; 8) = f4; 5; 6; 7g and [10; 2) = f10; 0; 1g.To describe our construction, we need to specify !� 1 cliques of G0 corresponding to theedges of T , and an appropriate split of each of them into two subsets.With our notation, all the edges of T are of the form [(k; i); (k; i + 1)] for some indices1 � k � dr and 1 � i � nk +1. In particular, the edge [(k; nk); (k; nk +1)] is the edge of thek-th leg, incident with the root. Then the sets corresponding to the partitions of C inducedby these edges are T[(k;i);(k;i+1)] = f(l; j)jl 6= kg [ f(k; j)jj � i + 1g; whileT[(k;i+1);(k;i)] = f(k; j)jj � ig; (30)for i = 1; :::; nk, and k = 1; :::; dr. Clearly, jT[(k;i+1);(k;i)]j = i and jT[(k;i);(k;i+1)]j = ! � i for all1 � i � nk and 1 � k � dr.Let us now de�ne the associated !-cliques of G0 byC 0[(k;i);(k;i+1)] = [k! � (n1 + � � �nk�1 + i); (k + 1)! � (n1 + � � �nk�1 + i))= C 0k!�(n1+���nk�1+i) (31)using our notation of (26), for i = 1; 2; :::; nk and for k = 1; :::; dr. Let us split each of thesecliques into two subintervals given byB[(k;i);(k;i+1)] = [k! � (n1 + � � �nk�1); (k + 1)! � (n1 + � � �nk�1 + i)) andB[(k;i+1);(k;i)] = [k! � (n1 + � � �nk�1 + i); k! � (n1 + � � �nk�1)) ; (32)



RRR 10-99 Page 21We claim that with these de�nitions, the clique family C, given as in (25), will indeedde�ne an (� + 1; !)-partitionable graph on the vertex set V 0 [ C. In order to see this,according to Theorem 3, we have to verify that conditions (R1), (R2) and (R3�) are allsatis�ed by our construction.The �rst condition (R1), as we noted earlier, follows directly from the fact that T is aspanning tree, and the splits T[(k;i);(k;i+1)] and T[(k;i+1);(k;i)] are de�ned by the edges of thistree. Hence, by Theorem 1, they form indeed a critical tree-covering family on C.To verify condition (R2), we have to show that the cliques C 0k!�(n1+���nk�1+i) for i =1; 2; :::; nk and for k = 1; :::; dr all belong to di�erent partitions P 0v of the (�; !)-web G0. Tothis end, let us observe �rst that, due to the special structure of a web, two cliques C 0i andC 0j (i < j), as de�ned by (26), belong to the same partition if and only if j � i � ! andj � i = 0 or 1 mod !, i.e. if they do not overlap, and one of the gaps between these twosubintervals of the circular Zn can be tiled by !-intervals. Let us now consider two cliques ofthe form C 0k!�(n1+���nk�1+i) and C 0k0!�(n1+���nk0�1+i0), as in (31). Let us observe that if k = k0,then these cliques overlap, and thus cannot belong to the same partition, while for k > k0we have (k! � (n1 + � � �nk�1 + i))� (k0! � (n1 + � � �nk0�1 + i0))= (k � k0)! � (nk0 + � � �nk�1 + i� i0):Since nk0 � i0 � 0, i � 1 and k > k0, the sum nk0 + � � �nk�1 + i� i0 is always positive, and ittakes its maximum, if k0 = 1, k = dr, i = ndr and i0 = 1, when it is ! � 2, by (28). Thus1 � nk0 + � � �nk�1 + i� i0 � n1 + � � �+ ndr � 1 = ! � 2follows, implying that the quantity ((k � k0)! � (nk0 + � � �nk�1 + i� i0)), is never 0 or 1modulo !.To verify (R3�) let us note �rst that the sets, Buv for u 2 �v, as de�ned in (32) arepairwise disjoint, and consecutive, i.e. form an interval of lengthXu2�v jBuvj = Xu2�v(! � jTvuj) = dv! � jV 0 n fvgj = (dr � 1)! + 1;for all v 2 C, and hence the complementary set V 0 n Su2�v Buv has its cardinality as amultiple of ! (since n = �!+1). Thus it can be tiled by !-cliques of the web G0. Therefore,to verify (R3�), we need to show �rst that the above hold with the de�nitions in (32), andsecond that to tile the sets V 0 n Su2�v Buv for v 2 C by !-cliques of G0 one does not needthe cliques de�ned in (31).To see the �rst part is easy just by looking at the de�nitions (32). Namely, for leafvertices there is nothing to check. For the root of T we have the setsB[(k;nk);(k;nk+1)] = [k! � (n1 + � � �nk�1); (k + 1)! � (n1 + � � �nk�1 + nk)) (33)



Page 22 RRR 10-99for k = 1; 2; :::; dr, and these obviously are consecutive, in this order, with no overlap. Foran interior vertex (k; i) of a leg (i.e. with 1 < i < nk) we have the two setsB[(k;i+1);(k;i)] = [k! � (n1 + � � �nk�1 + i); k! � (n1 + � � �nk�1)) andB[(k;i�1);(k;i)] = [k! � (n1 + � � �nk�1); (k + 1)! � (n1 + � � �nk�1 + i� 1)) (34)and again these sets are always consecutive without any overlap.For the second part, let us �rst have a look again at the sets (33), and let us observethat the complement of their union can be partitioned by the cliques Hr = fC 0(dr+j)!+1jj =0; 1; :::; � � drg. Since for the cliques of the form C 0k!�(n1+���nk�1+i) for 1 � i � nk for1 � k � dr (see (31)), we have! � 1 � k! � (n1 + � � �nk�1 + i) � (dr � 1)! + 1therefore, Hr indeed does not contain any of these. For the two sets �nally in (34), we cansee that their complement is partitioned by the cliquesH(k;i) = fC(k+j)!�(n1+���nk�1+i�1)jj = 1; :::; �� 1gand again these are all di�erent from those in (31). �As an illustration, let us consider the (2; 5)-web (anti-hole) on 11 vertices, and the spideron �gure 1. In this example we have � = 2, ! = 5, (and hence n = 11), and, as shown in
���
���
���

������ ������ @@@@@@r
a b

c
d(1; 1) (2; 2)

(2; 1)
(3; 1)

(1; 2) = (2; 3) = (3; 2)

n1 = 1 n2 = 2 n3 = 1Figure 1: A coordinatized spider on 5 vertices.�gure 1, r = (1; 2) = (2; 3) = (3; 2), a = (1; 1), b = (2; 2), c = (2; 1), and d = (3; 1). Then



RRR 10-99 Page 23the sets by (31) and (32) are as followsC 0ar = [4; 9) Bra = [4; 5) Bar = [5; 9)C 0br = [7; 1) Brb = [7; 9) Bbr = [9; 1)C 0dr = [0; 5) Brd = [0; 1) Bdr = [1; 5)C 0bc = [8; 2) Bbc = [8; 9) Bcb = [9; 2)The eight sets [4; 5)[fr; b; c; dg, [5; 9)[fag, [7; 9)[fr; a; dg, [9; 1)[fb; cg, [0; 1)[fr; a; b; cg,[1; 5)[ fdg, [8; 9)[ fr; a; b; dg, and [9; 2)[ fcg together with C = fr; a; b; c; dg and the sevenof the original cliques of the (2; 5)-web, namely [1; 6), [2; 7), [3; 8), [5; 10), [6; 0), [9; 3) and[10; 4) form the clique family of a (3; 5)-partitionable graph on the 16 vertices of Z11 [ C.Remark 6 Even though for ! = 3 all spiders are a simple path of two edges, still, dependingon where the root is, we get di�erent results. E.g. starting from the (2; 3)-web, and the spiderfr; a; bg forming a 2 edge path with the root at the end, we obtain a (3; 3)-web. While if weuse the spider fa; r; bg forming a 2 edge path again, but now having the root in the middle,we get a non-web (3; 3)-partitionable graph, appearing in [2].Remark 7 By the above result, we can generate an (� + 1; !)-partitionable graph from an(�; !)-web for every labeled spider on ! points with dr � � + 1. (Though, some of thesegraphs might be isomorphic.)Remark 8 Obviously, jL(T )j � dv for every vertex v 2 T , and there exists a vertex v inT such that jL(T )j = dv if and only if T is a spider. Thus for spiders and only for theminequalities of Lemmas 8 and 9 are equivalent.
6 (�; 3)-partitionable families and other experimentalresults.For ! = 3 we have the following characterization of critical cliques:Lemma 10 A clique is critical if and only if it is in the middle of a gem.Proof. There is a unique tree with 3 vertices, let us say b; c; d. There is a unique tree-coveringfamily: (b; c); (d); (b); (c; d). Thus there should be cliques (a; b; c) and (c; d; e). Vertices aand e are di�erent, otherwise we would get a K4. Vertices a; b; c; d; e form a gem with criticalclique (b; c; d) in the middle. �We conjecture that for ! = 3 every partitionable graph has a critical clique. The followingexperimental results support this conjecture. We have veri�ed, that for ! = 3 there exists a



Page 24 RRR 10-99gem (and therefore a critical clique) in all partitionable graphs up to � = 9. The existenceof a diamond was veri�ed for partitionable graphs up to � = 10.In Table 1 we list some additional experimental results. We have generated all thepartitionable graphs for ! = 3 and � = 2; : : : 7 and for ! = 4 and � = 4 and 5. For ! = 3all graphs have critical cliques, while for ! = 4 this is no longer true.The column \ST" counts the number of graphs which have a small transversal, that isa subset of the vertices of size � + ! � 1 that intersects all !-cliques and all �-stable sets.The column \C5" lists the number of partitionable graphs without C5. Both these valuesturn out to be very useful parameters in case one is interested to generate all partitionablegraphs that are reasonable candidates to be counterexamples to the Strong Perfect GraphConjecture. It is well known that such graphs have neither a small transversal nor a C5.Table 1: The number of partitionable graphs without indi�erent edges. (Numbers in boldwere not known before ) # of graphs without # of graphs constructable byn ! � # total crit. clique ST C5 CGPW our construction10 3 3 2 0 0 0 2 213 3 4 5 0 0 1 4 516 3 5 21 0 0 2 18 2119 3 6 154 0 0 7 138 15422 3 7 1488 0 0 22 1332 148817 4 4 132 6 1 1 22 12621 4 5 8340 1431 0 4 1189 690925 4 6 ? ? 0 ? ? ?Remark 9 Our computations show that a counterexample to the Strong Perfect Graph Con-jecture must have at least 26 vertices. This slightly improves the previous bound 25 givenby Gurvich and Udalov (1992). These two bounds are obtained due to a computer analysisof the (4,6)- and (4,5)-graphs, respectively. It was shown that all these graphs have smalltransversals and thus cannot be counterexamples to the Berge Conjecture. To reach the nextbound 29 the case of (5,5)-graphs has to be considered.
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