A Behavioral Model of Sensory Alignment in the Superficial and Deep Layers of the Superior Colliculus

IJCNN 2008

Matthew Casey
Athanasios Pavlou
4 June 2008
Motivation

• Animals seamlessly fuse, process and act upon sensory information
 – Traditionally, sensory processing was thought to be done in isolation (unisensory)
 – It is now established that the senses are combined even during low-level processing [1-3] (multisensory)
 – Superior colliculus is key multisensory example

• What can we learn from this?
 – Can we construct models that can integrate different senses seamlessly?
 – Can we learn from how this is done to overcome limitations of computational paradigms (cf [4])?
Modelling Sensory Alignment in the Superior Colliculus

Superior Colliculus

- Laminated structure in the midbrain [2,5]
 - Combines visual, auditory and somatosensory stimuli
 - Sensory alignment of topographic maps (calibrated by vision [8])
- Forms a multisensory representation of space [1]
 - Causes gaze shift
- Multisensory integration
 - Enhancement and suppression [6]
 - Controlled by cortical feedback [2]
Previous Models

• Physiologically motivated models focusing on saccades
 – Parallel pathways between SC and cerebellum [9]
 – Competitive combination of sensory and voluntary information [10]
 – Trajectory information encoded in outputs [12]
 – For antisaccades [11]

• Computationally motivated paradigms
 – Bayesian and perceptron models of enhancement and suppression [13]

• Grossberg et al [7] considered sensory alignment
 – Modelled output from burst and buildup neurons in the deep SC
 – Development of sensory alignment with visual and auditory inputs through associative learning
Modelling the SC

• Models so far:
 – Have focused on the deep SC layers and information encoded in the motor outputs
 – Grossberg et al [7] also considered sensory alignment

• Can we build a fuller model of the SC?
 – With superficial and deep layer topographic sensory maps?
 – Learning sensory alignment and multisensory integration?
 – What can we learn computationally from such a model?

• We present
 – A simple rate-coded model of the SC
 – Topographic maps to explore sensory alignment (SOMs [14])
 – Learning multisensory integration (Hebbian association [15])
 – Is such a simple model sufficient and capable?
Approach

- Data representing a stimulus location in each modality
 - Gaussian activity patterns sampled at discrete points
 - Dense and non-dense regions of input (cf fovea)
- Topographic representations of visual and auditory space:
 - Kohonen’s SOM [14]
 - Magnification factor to allow dense regions to occupy a greater proportion of the maps
- Sensory alignment
 - Association between visual and auditory map outputs achieved through Hebbian learning on multimodal training data
- Multisensory representation
 - Additive combination of auditory and (translated) visual map outputs

All experiments were carried out using Matlab (version 7.3.0.298) and the SOM Toolbox [19].
Input Representation

- Gaussian input x at elevation i and azimuth j

$$x_{ij} = \lambda e^{-\left(\frac{i^2 - j^2}{\sigma^2}\right)}$$

- Dense regions have greater amplitude and smaller bandwidth
Modelling Sensory Alignment in the Superior Colliculus

Model

Map size: 10 x 10
Learning rate: Inverse
Value: Initial 0.5
Neighbourhood: Gaussian
Radius: Initial 10, final 1

Hebbian linkage: 100 (visual) to 300 (auditory)
Learning rate: Constant
Value: 0.1

Map size: 20 x 15
Learning rate: Inverse
Value: Initial 0.5
Neighbourhood: Gaussian
Radius: Initial 20, final 1

Normalised inverse distance

\[u_n^{\text{aud}} = \frac{1}{||x^{\text{aud}} - w_n^{\text{aud}}||} \]
\[y_n^{\text{aud}} = \frac{u_n^{\text{aud}} - \alpha^{\text{aud}}}{\beta^{\text{aud}} - \alpha^{\text{aud}}} \]

Normalised outputs

Additive combination

\[y^{\text{ms}} = y^{\text{aud}} + y^{\text{link}} \]

Matlab source and experimental data files for this work can be found at http://www.cs.surrey.ac.uk/BIMA/People/M.Casey/software.html.
Evaluation

- **Unisensory training**
 - To train the SOMs to establish topographic representations
 - Independent co-ordinate systems for auditory and visual spaces
 - Evaluate organisation of stimuli and proportion of map associated with dense regions

- **Co-ordinate alignment**
 - To train the Hebbian linkages between the visual and auditory (larger) spaces
 - Evaluate the ability of the links to translate coincident visual to auditory stimuli

- **Multisensory integration**
 - To combine the auditory and (translated) visual representations into a multisensory representation
 - Evaluate the strength of unisensory, multisensory (coincident and non-coincident) stimuli and compare with multisensory enhancement and suppression
Experiments: Unisensory

Training and testing data (separate sets)
Selection: Random locations (uniform)
Whole area: 1675
Dense region: 825 (33%)
Total examples: 2500
Trained for 1000 epochs

Training and testing data (separate sets)
Selection: Random locations (uniform)
Whole area: 810
Dense region: 90 (10%)
Total examples: 900
Trained for 1000 epochs

• U-matrix visualization overlaid with test best matching units
• Preservation the spatial relationships of their inputs (mostly)
• Auditory dense region covers 55% of the map (vs. 33% of the inputs)
• Visual dense region covers 26% of the map (vs. 1% input of the inputs)
• Greater representation of dense regions
Experiments: Alignment

Training and testing data (separate sets)
Coincident auditory and visual stimuli
Selection: Random locations (uniform)
Whole area: 1000
Dense region: 125 (11%)
Total examples: 1125
Trained for 100 epochs

- Blue circles direct translation from visual to auditory output (27%)
- Red circles translation within a radius of 1 unit (62%)
- Green circles translation within a radius of 2 units (71%)
- Approximate alignment of visual to auditory representations
Experiments: Multisensory

Auditory

Translated Visual

Multisensory

0.74 response: enhancement

0.57 response
Conclusions

• Contributions:
 – Alignment: translating co-ordinate spaces
 – Integration: learnt by association
 – Simple multisensory enhancement [20]
 – Fuller model of the SC comparable to biology
 – Model sufficient for abstract inputs and low resolution

• Limitations:
 – Simplistic combination (additive) vs. physiological (logarithmic) [6]
 – No suppression (consider multiple single-modal stimuli)
 – No cortical feedback (implicit through association)

• Future work
 – Model cortical feedback explicitly
 – Build a larger scale model and use pre-processed images and sounds as input: repeat physiological experiments (pulse-coding?)

• Incrementally increase scale and complexity of models and embed them in real environments (for example robots)
Modelling Sensory Alignment in the Superior Colliculus

References

Acknowledgements

Thanks to
Jim Austin, Jim Bednar, Alan Murray, Leslie Smith, Barry Stein and Stefan Wermter
for early discussions on this work

Royal Academy of Engineering
International Travel Grant 08-193

IEEE CIS / INNS Travel Grant
Thank you

Questions?

T: +44 (0)1483 689635
F: +44 (0)1483 686051
m.casey@surrey.ac.uk
a.pavlou@surrey.ac.uk

www.cs.surrey.ac.uk