
1
S
b
c
t
o
g
r
c
I
I
t
g
v
s
l
g
m
A
e
t
f
t

t
w
g
t
t
a
v
b
b
b
t
v
p

156 J. Opt. Soc. Am. A/Vol. 24, No. 1 /January 2007 H. T. Eyyuboğlu and Y. Baykal
Scintillations of cos–Gaussian and annular beams
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Based on the generalized beam formulation, we derive the scintillation index and selectively evaluate it for
cos–Gaussian and annular beams propagating in weak atmospheric turbulence. Dependence of the scintilla-
tion index on propagation length, focusing and displacement parameters, wavelength of operation, and source
size are individually investigated. From our graphical outputs, it is observed that a cos–Gaussian beam exhib-
its lower scintillations and thus has a tendency to be advantageous over a pure Gaussian beam particularly at
lower propagation lengths. It is also found that at longer propagation lengths, this advantage switches to the
side of the annular beam. Furthermore, the scintillation index of a focused annular beam will be below those
of both Gaussian and cos–Gaussian beams starting at earlier propagation distances. When analyzed against
source sizes, it is seen that cos–Gaussian beams will offer advantages at relatively large source sizes, while the
reverse will be applicable for annular beams. © 2006 Optical Society of America

OCIS codes: 010.1330, 010.1300, 010.3310, 060.4510.
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. INTRODUCTION
cintillations arising due to turbulence in the atmosphere
asically mean fluctuations in the intensity of the re-
eived beam. Scintillation is one of the major limiting fac-
ors in atmospheric communication and imaging systems
perating at optical frequencies and is therefore investi-
ated both theoretically and experimentally by many
esearchers.1–12 Excellent coverage on the results of these
ontributions is included in the books by Tatarskii,13

shimaru,14 Andrews and Phillips,15 and Andrews et al.16

n these studies, fundamental laws of intensity fluctua-
ions of optical waves in turbulent atmosphere in the re-
imes of both weak and strong turbulence have been in-
estigated in detail. The results produced from these
tudies mainly concern the Gaussian beam wave and the
imiting cases, namely, spherical and plane waves. Re-
arding the scintillations for other types of beams, colli-
ated annular beams are reported by Vetelino and
ndrews17 and flattened beams are presented by Cowan

t al.18 Evaluations of the scintillation index for other
ypes of beams, in general, and cos–Gaussian beams and
ocused annular beams, in particular, do not yet exist in
he literature.

In our recent studies, we have introduced different
ypes of incident beams in turbulent atmosphere. Lately,
e have presented the formulation of the correlations for
eneral beam types.19 As special case solutions, by using
he formulation presented in Ref. 19, we are able to find
he scintillation index of cos–Gaussian, annular beams,
nd numerous other types of incidences. We have also in-
estigated the scintillation index of flat-topped Gaussian
eams20 and extended our fourth-order solutions in tur-
ulence to provide the intensity fluctuations of incident
eams exhibiting arbitrary field profiles.21 The purpose of
hese undertakings has been to assess the performance of
arious types of source beam incidences that can be em-
loyed in broadband access free space optics links. The
1084-7529/06/010156-7/$15.00 © 2
rimary objective here is to see whether these beams
ould provide advantages when compared to the already
nown case of a Gaussian beam. In this respect, we have
hown20 that flat-topped beams possess better scintilla-
ion characteristics than the fundamental Gaussian beam
eyond the Fresnel zone. The present paper constitutes
he continuation of such efforts in this direction illustrat-
ng that cos–Gaussian and focused annular beams may
ose other alternatives. In this paper, within the frame-
ork of the general beam formulation, for one particular

ase, we recalculate the scintillation index of flat-topped
aussian beams thus verifying our earlier results and si-
ultaneously establishing comparisons between flat-

opped, annular, and cos–Gaussian beams.

. FORMULATION
he propagation geometry, relevant to our study, consists
f source and receiver planes lying perpendicular to the
xis of propagation, z. On the source plane, the position is
esignated by the vector s= �sx ,sy�, while the receiver
lane vectorial position designator is p= �px ,py�. A general
ource beam centered with respect to the point sx=sy=0
ill have a field distribution of19

us�s� = us�sx,sy� = �
l=1

N

�
�n,m�

Aln,m exp�− i�lnm�Hn�axlnsx + bxln�

�exp�− �0.5k�xlnsx
2 + iVxlnsx��Hm�aylmsy + bylm�

�exp�− �0.5k�ylmsy
2 + iVylmsy��, �1�

lnm and �lnm are, respectively, the amplitude and the
hase of the lnm component of the source field;
n�axlnsx+bxln� and Hm�aylmsy+bylm� are the Hermite

olynomials defining the beam distribution for sx and sy
irections, where n and m are the order; a and a
xln ylm

006 Optical Society of America
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H. T. Eyyuboğlu and Y. Baykal Vol. 24, No. 1 /January 2007 /J. Opt. Soc. Am. A 157
tand for the width; bxln and bylm are the complex dis-
lacement parameters;

�xln = 1/�k�sxln
2 � + i/Fxln, �ylm = 1/�k�sylm

2 � + i/Fylm, �2�

here �sxln and �sylm are Gaussian source sizes; Fxln and
ylm are the source focusing parameters along sx and sy
irections; and k=2� /� is the wavenumber with � being
he wavelength and i= �−1�0.5. Vxln and Vylm are the com-
lex parameters used to create physical location displace-
ent and phase rotation for the source field or a combi-

ation of both and are simply termed as displacement
arameters within the context of the present study. Fur-
hermore, by appropriately setting them as purely real or
maginary quantities and implementing a summation
ver two terms, i.e., N=2, we are able to attain sinusoidal
nd hyperbolic Gaussian beams.19 For cos–Gaussian
eams, only real values are assigned to displacement pa-
ameters.

The detailed steps of acquiring the log-amplitude corre-
ation function, B��p ,L�, on a receiver plane located at a
istance z=L from the source plane, for a general beam,
re described in Ref. 19. Below, we continue by utilizing
he results of this earlier work. From Ref. 19, importing
q. (13), which corresponds to the correlation function of

og-amplitude fluctuations and multiplying this function
y 4, we obtain the scintillation index m2 in weak turbu-
ence as follows:

m2 = 4� Re��
0

L

d��
0

�

	d	�
0

2�

d��G1�p,L,�,	,��

+ G2�p,L,�,	,���
n�	�� , �3�

ere, Re denotes the real part, � is the distance variable
long the propagation axis, 	 exp�i�� is the two-
imensional spatial frequency in polar coordinates, 
n�	�
s the spectral density of the index-of-refraction fluctua-
ions. Equations (15)–(26) of Ref. 19 supply the expres-
ions for G1�p ,L ,� ,	 ,�� and G2�p ,L ,� ,	 ,�� and the re-
ated definitions. They are rewritten below for the zeroth-
rder on-axis case and for the x–y symmetric alpha
arameter, i.e., n=m=0, px=py=0, and thus omitting n ,m
otation, we have �xl=�yl=�l=1/ �k�sl

2 �+ i /Fl. which in
urn yield

G1�p,L,�,	,�� =
GN�p,L,�,	,��GN�p,L,�,− 	,��

D2�p,L�
, �4�

G2�p,L,�,	,�� =
GN�p,L,�,	,��GN

* �p,L,�,	,��

	D�p,L�	2
, �5�

GN�p,L,�,	,�� = �
l=1

N

Ale
−i�l

ik

�1 + i�lL�
exp
−

i�Vxl
2 + Vyl

2 �L

2k�1 + i�lL��
�exp
 i�L − ���Vxl cos � + Vyl sin ��	

k�1 + i�lL� �
� exp
−

0.5i�L − ���1 + i�l��	2

k�1 + i� L� � , �6�

l

D�p,L� = �
l=1

N

Ale
−i�l

1

�1 + i�lL�
exp
−

i�Vxl
2 + Vyl

2 �L

2k�1 + i�lL�� . �7�

ote that the above notion implies that x–y symmetry
as only been assumed for the source size and the focus-

ng parameters—these are �sl and Fl—whereas the dis-
lacement parameters, Vxl and Vyl, are allowed to be
symmetric in x–y.
By substituting Eqs. (6) and (7) into Eqs. (4) and (5),

nd by setting 
n�	�=0.033Cn
2	−11/3, i.e., Kolmogorov

pectrum, Cn
2 being the structure constant, and perform-

ng the � integration of Eq. (3) using Eq. 3.937.2 of Ref. 22
for a=b=m=0), which is �0

2�d� exp�p cos �+q cos ��
2�I0��p2+q2�0.5� where I0� � is the modified Bessel func-

ion of the first kind, the following double integral results:

m2 = 2.6056Cn
2k2 Re�	D�p,L�	−2�

l1=1

N

�
l2=1

N

Al1
Al2

* e−i��l1
−�l2

�

�
1

�1 + i�l1
L�

1

�1 − i�l2
* L�

exp�−
i�Vxl1

2 + Vyl1
2 �L

2k�1 + i�l1
L�

+
i��Vxl2

2 �* + �Vyl2
2 �*�L

2k�1 − i�l2
L� �
�

0

L

d��
0

�

d		−8/3

� I0�
 i�L − ��Vxl1

k�1 + i�l1
L�

−
i�L − ��Vxl2

*

k�1 − i�l2
* L��2

+
 i�L − ��Vyl1

k�1 + i�l1
L�

−
i�L − ��Vyl2

*

k�1 − i�l2
* L��2�0.5

	�
�exp�− 0.5�L − ��
 i�1 + i�l1

��

k�1 + i�l1
L�

−
i�1 − i�l2

* ��

k�1 − i�l2
* L��	2��

− D−2�p,L��
l1=1

N

�
l2=1

N

Al1
Al2

e−i��l1
+�l2

�
1

�1 + i�l1
L�

1

�1 + i�l2
L�

� exp
−
i�Vxl1

2 + Vyl1
2 �L

2k�1 + i�l1
L�

−
i�Vxl2

2 + Vyl2
2 �L

2k�1 + i�l2
L� �

Ã
�
0

L

d��
0

�

d		−8/3I0�
 i�L − ��Vxl1

k�1 + i�l1
L�

−
i�L − ��Vxl2

k�1 + i�l2
L��2

+
 i�L − ��Vyl1

k�1 + i�l1
L�

−
i�L − ��Vyl2

k�1 + i�l2
L��2�0.5

	�exp�− 0.5�L − ��

�
 i�1 + i�l1
��

+
i�1 + i�l2

�� �	2��� , �8�

k�1 + i�l1

L� k�1 + i�l2
L�
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In solving the integral over 	, the two modified Bessel
unctions of the first kind, I0� �, are expanded in series,
hen to each term of the series multiplied by the accom-
anying exponential, Eq. 3.478.1 of Ref. 22, which is

0
�dxx�−1 exp�−�xp�=p−1�−�/p�� /p� where  is the gamma
unction, is individually applied. After these develop-
ents, the scintillation index takes the following form:

m2 = 1.3028Cn
2k2 Re
	D�p,L�	−2�

l1=1

N

�
l2=1

N

�
r=0

�

Al1
Al2

*

�exp�− i��l1
− �l2

��
1

�1 + i�l1
L�

1

�1 − i�l2
* L�

�0.25�r

�r ! �2

��r −
5

6�exp�−
i�Vxl1

2 + Vyl1
2 �L

2k�1 + i�l1
L�

+
i��Vxl2

2 �* + �Vyl2
2 �*�L

2k�1 − i�l2
* L� �

��
0

L

d��
 i�L − ��Vxl1

k�1 + i�l1
L�

−
i�L − ��Vxl2

*

k�1 − i�l2
* L��2

+
 i�L − ��Vyl1

k�1 + i�l1
L�

−
i�L − ��Vyl2

*

k�1 − i�l2
* L��2�r

��0.5�L − ��
 i�1 + i�l1
��

k�1 + i�l1
L�

−
i�1 − i�l2

* ��

k�1 − i�l2
* L���−r+5/6�

− D−2�p,L��
l1=1

N

�
l2=1

N

�
r=0

�

Al1
Al2

exp�− i��l1
+ �l2

��

�
1

�1 + i�l1
L�

1

�1 + i�l2
* L�

�0.25�r

�r ! �2 �r −
5

6�
�exp
−

i�Vxl1
2 + Vyl1

2 �L

2k�1 + i�l1
L�

−
i�Vxl2

2 + Vyl2
2 �L

2k�1 + i�l2
L� �

� �
0

L

d��
 i�L − ��Vxl1

k�1 + i�l1
L�

−
i�L − ��Vxl2

k�1 + i�l2
L��2

+
 i�L − ��Vyl1

k�1 + i�l1
L�

−
i�L − ��Vyl2

k�1 + i�l2
L��2�r�0.5�L − ��

�
 i�1 + i�l1
��

k�1 + i�l1
L�

+
i�1 + i�l2

��

k�1 + i�l2
L���−r+5/6�� , �9�

here ! denotes the factorial. As a check point, at the lim-
ts of N=1, Vx=Vy=0, meaning the Gaussian case, Eq. (9),
hen divided by 4, matches exactly Eqs. (18)–(29) of Ref.
4.

. RESULTS AND DISCUSSION
e note that the scintillation index formula provided by
q. (9) is able to account for any type of beam composed
rom the summation of different fundamental Gaussian
eams. In this study, however, we limit our attention to
os–Gaussian and annular beams and their comparison to
ure Gaussian cases. From Eq. (9), the cos–Gaussian
eam is attained by selecting N=2, Vxl=Vyl=−Vx for the
rst beam, Vxl=Vyl=Vx for the second beam, and making
he rest of the source parameters the same in both the
rst and second terms of the summations. Annular beam

s also constructed by taking two beams, i.e., N=2, called
rimary and secondary, but additionally by setting the
ource size in the secondary beam to be lower than that of
he first beam, simultaneously equating the displacement
arameters to zero. The amplitude factors for the cos–
aussian beam are Al= �0.5,0.5� while Al= �0.5,−0.5� for

he annular beam. The phase parameter �l is taken zero
or all situations. We produce graphs at a single value of
tructure constant, that is, Cn

2 =10−15 m−2/3, which to-
ether with adapted values of the path length and the
avelength, make our results valid for the weak turbu-

ent regime. The strength of turbulence is determined by
he cumulative effect of the wavelength, propagation dis-
ance, and the structure constant. The regime of weak at-
ospheric turbulence is defined for situations15 where in-

ensity fluctuations are relatively low. Specifically, we
peak about weak turbulent regime, when the scintilla-
ions of a plane-wave incidence are less than unity, i.e.,
.23Cn

2k7/6L11/6�1. Since our formulation is based on the
ytov method, which yields a weak turbulence solution

or the scintillation index, our results subsequently cover
eak turbulence, i.e., in our plots, the values for k, L, and

n
2 are chosen such that the weak turbulence condition
.23Cn

2k7/6L11/6�1 is fulfilled. Also in our plots, unless
tated otherwise, collimated beams are considered. As a
eneral rule, our graphical illustrations will only quote
he parameter values left unspecified here with the index-
ng being arranged to exclude the subscript l.

To aid comprehension of the subject, we initially show,
n Fig. 1(a), the source plane intensities of the cos–
aussian and Gaussian beams used in most of our graphs
verlaid on the same contour plot. As described in our pre-
ious work,23 the intensity of a cos–Gaussian beam will
e divided into several lobes that are aligned with respect
o the slanted axis. The number of lobes and their respec-
ive amplitudes will be determined by the displacement
arameter present in the argument of the cosine function,
nd both will increase against growing displacement val-
es. Due to the scale of source size and the displacement
alue employed, the side lobes of this particular cos–
aussian beam are extremely weak compared to the cen-

ral lobe as also seen from Fig. 1(b) that exhibits the 3D
iew of the cos–Gaussian beam of Fig. 1(a).

Figure 2 indicates how the differing levels of the dis-
lacement parameter affect the scintillation index, m2,
long the propagation axis at selected values of source
ize and wavelength. The natural expectation that the
cintillation index will rise with extending propagation
istance is confirmed by Fig. 2. It is further realized from
ig. 2 that, in comparison to the Gaussian case for which
x=0 m−1, at a source size of �s=2 cm, the cos–Gaussian
eam offers a range where the scintillation index values
re smaller. This range extends from L=0 up to a point of
ntersection between the cos–Gaussian and Gaussian
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ig. 1. (a) Contour plot of overlaid cos–Gaussian and Gaussian beams. (b) Three-dimensional normalized intensity of cos–Gaussian
eam belonging to (a).
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cintillation curves. According to Fig. 2, raising the dis-
lacement parameter will cause the scintillation index to
ttain lower values particularly at shorter propagation
istances but simultaneously carrying the crossover point
f cos–Gaussian and Gaussian beams scintillation curves
oward earlier propagation distances. Viewed in this man-
er, for fixed source and propagation conditions, there ap-
ears to be an optimum threshold for the displacement
arameter, which, in this instance, occurs at approxi-
ately Vx=1/�s. Figure 3 is a plot of the scintillation in-

ex variation against the propagation distance for flat-
opped, annular, Gaussian, and cos–Gaussian beams
here the already studied flat-topped beams20 are in-

luded for completeness. In Fig. 3, we have chosen the
ource size of one flat-topped beam, primary part of annu-
ar beam, Gaussian, and cos–Gaussian beams to be the
ame as Fig. 2, that is, �s1=�s=2 cm, while the other flat-
opped and the secondary part in the annular beam have

source size of �s2=1.8 cm. In adapting Eq. (1) for flat-
opped beams, the amplitude factor Al has to be suitably
djusted so that it produces the amplitude coefficients in
q. (7) of Ref. 20. The summation index n inside the ex-
onential term of Eq. (7) of Ref. 20 is, on the other hand,
o be incorporated into the �x and �y parameters of Eq.
1). Out of the two flat-topped beams of Fig. 3 plotted after

ig. 2. Scintillation index of cos–Gaussian beam versus propa-
ation distance at selected values of displacement parameters.

ig. 3. Scintillation index for flat-topped, collimated annular,
aussian, and cos–Gaussian beams versus propagation distance.
aking these arrangements in Eq. (1), the flat-topped
eam with N=5, �s=1.8 cm exactly matches Fig. 3 of Ref.
0 for N=5. Figure 3 of the current paper demonstrates
hat, at the given source and propagation settings, in
erms of the scintillation index, the cos–Gaussian beam
etains the already mentioned property of being advanta-
eous at short propagation distances, while the flat-
opped and annular beams emerge to be beneficial par-
icularly at longer propagation distances. We note that
hese observations regarding the behaviors of flat-topped
nd the annular beams are in line with the conclusions of
efs. 20 and 17, respectively. Next, we explore the effect
f focusing parameter excluding the flat-topped beams. In
his context Fig. 4 shows that, when the focusing param-
ter of F=1 km (note that for all the beams F=Fx=Fy) is
ncluded in the beams, the curves of Fig. 3 become almost
eversed after approximately L=800 m where the scintil-
ation index of the annular beam becomes the lowest
hile that of the cos–Gaussian beam is the highest. As
nderstood from the combined examination of Figs. 3 and
, however, a focused beam will serve to obtain smaller
cintillations. This behavior concerning the Gaussian
ase only is also reported in Ref. 17.

Figure 5 displays the dependency of the scintillation in-
ex for the cos–Gaussian beam on the wavelength of op-
ration versus the displacement parameter. It is seen
rom Fig. 5 that lower wavelengths will give rise to higher
cintillation indexes. On the other hand, decreasing wave-
engths appear to push the optimum value of the displace-

ent parameter for achieving the lowest scintillation in-
ex values, mentioned in relation to Fig. 2, toward bigger
alues of the displacement parameter. The corresponding
cintillation indices of pure Gaussian beams can be read
irectly from the vertical axis of Fig. 5, that is, Vx=0
oints of the horizontal axis.
The course of scintillation index for Gaussian, cos–

aussian, and annular beams at two propagation lengths
f L=1 and L=2.5 km, against the continually changing
ource size, is analyzed in Fig. 6 where the vertical
ogarithm-axis is utilized for ease of distinction between
eams. In the graphs of Fig. 6, we have arranged the dis-
lacement parameter of cos–Gaussian beams to be the in-
erse of the respective source size, that is, Vx=1/�s and
or annular beams, �s2 /�s1=0.9, while in the case of an-

ig. 4. Scintillation index for focused annular, Gaussian, and
os–Gaussian beams versus propagation distance.



n
o
t
s
w
a
n
o
b
g
v
b
t
t
s
p
a
a
n
s
i
g
b
c

4
W
e
t
f
T
l
t
c
s

r
l
l
l
m
s
G
c
c

n
t
m
l
a

G
o
t
e
w
v
t
s

@
�

@
�

R

F
p
o

F
v
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ular beams, the horizontal axis refers to the source size
f the primary beam. It is detected from Fig. 6 that, since
hey provide lower scintillations, cos–Gaussian beams are
pecifically advantageous at relatively large source sizes;
hereas the reverse holds for the annular beams. In fact,
s the source size gets bigger, the scintillation index of an-
ular beams escalates to excessively large values. More-
ver, the advantageous region of the cos–Gaussian beam
egins to cover the smaller source sizes if shorter propa-
ation distances are considered. Figure 6 additionally re-
eals that the scintillation features of the pure Gaussian
eam are typical also for cos–Gaussian beams. That is,
he scintillation index will initially display a downward
rend at small source sizes but after reaching a dip, will
tart to increase, eventually approaching the well-known
lane-wave limit24 for relatively large source sizes. The
nnular beams, on the other hand, exhibit different char-
cteristics at large source sizes. This is because for an an-
ular beam, to approach the plane-wave limit, the source
ize of the primary beam should be allowed to go to infin-
ty, while that of the secondary beam should be allowed to
o to zero. It is easy to realize that the chosen annular
eams of Fig. 6 have fixed source size ratios hence not
onforming to this configuration.

ig. 5. Scintillation index of cos–Gaussian beam versus dis-
lacement distance at selected values of wavelengths of
peration.

ig. 6. Scintillation index of Gaussian and cos–Gaussian beams
ersus source size at selected values of propagation lengths.
. CONCLUSION
ith the aid of generalized beam formulation, we have

xamined and made comparisons between the scintilla-
ion index characteristics of flat-topped, collimated, and
ocused cos–Gaussian and annular beams in turbulence.
hese comparisons show that a cos–Gaussian beam (col-

imated) and annular beam (collimated and focused), flat-
opped (collimated) offer certain advantages over their
ounterpart of a pure Gaussian beam, respectively, at
horter and longer propagation distances.

For the cos–Gaussian beam, a larger displacement pa-
ameter makes the scintillations smaller than the scintil-
ations of the corresponding Gaussian beam at shorter
ink lengths; whereas this behavior is reversed for longer
ink lengths. A certain threshold value of the displace-

ent parameter is encountered here beyond which no
ubstantial improvements in the scintillations of cos–
aussian beam can be obtained. Annular beams both in

ollimated and focused forms seem to be attractive espe-
ially at longer propagation distances.

As expected, the scintillations for cos–Gaussian and an-
ular beams are higher for lower wavelengths. An addi-
ional observation is that at a fixed link length the opti-
um value of the displacement parameter for achieving

owest scintillation indices is shifted toward bigger values
t smaller wavelengths.
Viewed against the source size changes, the cos–

aussian beam almost entirely follows the characteristics
f the pure Gaussian case, that is, initially high scintilla-
ions at small source sizes, then exhibiting a dip at mod-
rate source sizes and eventually rising to reach plane-
ave limits at relatively large source sizes. Source size
ariation plots also demonstrate that to obtain lower scin-
illations, cos–Gaussian beams of relatively large source
izes should be preferred.
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