

FEASIBILITY OF THE NINTENDO DS FOR TEACHING PROBLEM-BASED
LEARNING IN KINDERGARTEN THROUGH TWELFTH GRADE STUDENTS

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

MICHAEL LIPINSKI

Dr. Otho Plummer, Thesis Supervisor

August 2008

The undersigned, appointed by the dean of the Graduate School, have
examined the thesis entitled

Feasibility of the Nintendo DS for Teaching Problem-Based
Learning in Kindergarten through Twelfth Grade Students

presented by Michael Lipinski,

a candidate for the degree of Masters of Science,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Otho Plummer

Professor William Harrison

Professor Michael Hosokawa

- ii -

Acknowledgements

 First off I would like to thank my loving family for all their support over

the years. If it was not for them and their sacrifices I would not be writing

this page today. I would also like to thank my close friends (anyone who

could be considered part of the “Como crew”), my family away from my

family. They helped me laugh through the sad times, supported me through

the tough times, and entertain me through the boring times. They were

always willing to lend a hand and an ear and I love them all dearly for it.

That goes double for my best friend and partner in crime, Mike Torpea. I

would also like to thank my first advisor, my boss, and my friend Dr. Ali

Hussam. I would not have even been in graduate school if not for his

“gentle” pushing and the job he gave me to help pay for it. I deeply

appreciate all of the opportunities he has given me and will remember the

lessons I learned under him forever. Next I would like to thank Dr. Otho

Plummer who became my advisor when politics got in the way of an

education. Dr. Plummer has been as kind, helpful, and understanding as an

advisor could be and that says a lot considering he came in half way through

my project. I would also like to thank Dr. William Harrison and Dr. Michael

Hosokawa for being on my thesis committee. Finally, and most importantly,

I would like to thank my Grandfather, Sam Mandina, who bought me my first

computer when I was three years old and helped foster my love of

technology. This thesis paper and my Master’s degree are dedicated in his

memory.

- iii -

Table of Contents

Acknowledgements Page ii

Table of Contents iii

List of Figures v

List of Tables vi

List of Registers viii

List of Code Samples ix

Abstract x

Chapter 1: Introduction 1

Chapter 2: Problem-Based Learning 5

Chapter 3: Technological Solutions 10

 Section 3.1: Possible Solutions 10

 Section 3.2: Portable Game Systems 17

 Section 3.3: Technical Specifications 21

 Section 3.4: Prototype Specifications 25

Chapter 4: Nintendo DS Development 27

 Section 4.1: Nintendo DS Hardware 27

 Section 4.2: Libnds 35

 Section 4.3: Backgrounds 38

 Section 4.4: Screen Drawing 39

 Section 4.5: Graphic Modes 41

- iv -

 Section 4.6: Extended Rotation Backgrounds Page 43

 Section 4.7: Tiled Backgrounds 45

 Section 4.8: Display Control Registers 49

 Section 4.9: Background Control Registers 52

 Section 4.10: Background Functions 60

 Section 4.11: Sprites 70

 Section 4.12: Object Attribute Memory 73

 Section 4.13: Sprite Attributes 76

 Section 4.14: Direct Memory Access 83

 Section 4.15: Input 86

 Section 4.16: Button Input 86

 Section 4.17: Touch screen Input 90

 Section 4.18: Graphic Effects – Mosaic 96

 Section 4.19: Graphic Effects – Alpha Blending 99

 Section 4.20: Graphic Effects – Windowing 105

 Section 4.21: Wi-Fi 110

Chapter 5: Development Process 113

 Section 5.1: Development Environment 113

 Section 5.2: High-Level Libraries 116

 Section 5.3: Prototype 120

Chapter 6: Conclusion 124

References 127

- v -

List of Figures

Figure 4.1: Nintendo DS Memory Map Page 30

4.2: Screen Drawing Diagram 40

4.3a: 16x32 Sample Sprite 45

4.3b: 16x32 Sprite Zoom In 46

4.3c: 16x32 Sprite Bitmap 46

4.4a: Sample Background 48

4.4b: Sample Tileset 48

4.4c: Sample Tilemap 49

4.5: Background Memory Layout 58

4.6: Camera Scrolling Example 60

4.7a: Sprite Divided Into Tiles 72

4.7b: Sprite Stored in 2D Memory 72

4.7c: Sprite Stored in 1D Memory 72

4.8: PA Graffiti Language 92

4.9: Mosaic Graphic Example 97

5.1: Multiple Choice Demo 120

5.2: Correct Answer Demo 120

5.3: Saving to Database Demo 122

5.4: Graffiti Text Demo 122

5.5: Keyboard Demo 123

- vi -

List of Tables

Table 4.1: Nintendo DS Memory Addresses Page 31

4.2: Display Timing Details 41

4.3: Graphic Modes 43

4.4: List of DISPLAY_CR Bits 50-51

4.5: List of BGx_CR Bits 53

4.6a: Regular Background Map Sizes 53

4.6b: Affine Background Map Sizes 54

4.6c: 8 bit Bitmap Background Map Sizes 54

4.6d: 8 bit Large Bitmap Background Map Sizes 54

4.6e: 16 bit Bitmap Background Map Sizes 55

4.7: List of Sprite Attribute 0 Bits 78

4.8a: List of Sprite Attribute 1 Not Affine Bits 79

4.8b: List of Sprite Attribute 1 Affine Bits 79

4.9: List of Sprite Attribute 2 Bits 80

4.10: List of Sprite Sizes 80

4.11: OAM Overlay 81

4.12: List of DMAx_CR Bits 85

4.13: List of REG_KEYCNT Bits 89

4.14: List of MOSAIC_CR Bits 98

4.15: List of BLEND_CR Bits 101

- vii -

Table 4.16: List of BLEND_AB Bits Page 102

4.17: List of BLEND_Y Bits 102

4.18: Alpha Blending Weights Example 102

4.19: List of Window Registers 106

4.20: List of WIN_IN Bits 107

4.21: List of WIN_OUT Bits 107

- viii -

List of Registers

Register 4.1: DISPLAY_CR Register Page 50

4.2: BGx_CR Registers 52

4.3: BGx_X0 Registers 60

4.4: BGx_Y0 Registers 60

4.5: Sprite Attribute 0 77

4.6a: Sprite Attribute 1 Not Affine 78

4.6b: Sprite Attribute 1 Affine 79

4.7: Sprite Attribute 2 80

4.8: DMAx_CR 84

4.9: REG_KEYINPUT Register 87

4.10: REG_KEYCNT Register 89

4.11: MOSAIC_CR Register 98

4.12: BLEND_CR Register 100

4.13: BLEND_AB Register 102

4.14: BLEND_Y Register 102

4.15: WIN_IN Register 107

4.16: WIN_OUT Register 108

- ix -

List of Code Samples

Code 4.1: Bg Struct Page 62

4.2: EnableBackground() Function 63

4.3: EnableSubBackground() Function 64

4.4: UpdateBackground() Function 65-67

4.5: InitBackground() Function 68-69

4.6: GBA Sprite Attribute Struct 74

4.7: SpriteEntry Struct in Libnds 74-75

4.8: SpriteRotation struct in Libnds 76

4.9: InitSprites() Function 82

4.10: Button Functions Example 88

4.11: REG_KEYCNT Example 90

4.12: Touch screen Coordinates Example 91

4.13: touchReadXY() Example 91

4.14: PA_Graffiti() Example 93

4.15: Keyboard Functions Example 95

4.16: Mosaic Example 99

4.17: Alpha Blending Example 104

4.18: Window Register Example 109

4.19: Wi-Fi Example 112

5.1: Question Struct and Function Defines 117

- x -

Abstract

 Problem-based learning (PBL) is an instructional approach that

has been employed successfully since the 1960s and continues to gain

mainstream acceptance in many areas of study. PBL is an

instructional, and curricular, learner-centered approach that empowers

learners to conduct research, integrates theory and practice, and

applies knowledge and skills to develop a viable solution to a defined

problem (2). In order to gain a wider acceptance in K-12 classrooms,

PBL might need to take a technological approach. But with

technology, just like education, there are many possible solutions to

consider in solving a problem. This paper will discuss a proof of

concept prototype built for the Nintendo DS to further PBL education.

Because of the built-in Wi-Fi access, massive textual input possibilities,

and existence of a large hobbyist development community, the

Nintendo DS is the clear choice for this prototype. Many features of

the Nintendo DS (and other video game consoles) will be discussed in

length in this paper such as backgrounds, sprites, tilesets, input, and

Wi-Fi.

- 1 -

INTRODUCTION Chapter 1

Technology is a constantly changing and evolving medium.

Because of the increase in advantages and improvements that

technology provides us, we must constantly re-evaluate the potential it

has to do old things in new exciting ways. In recent years, a new

teaching style has started to develop and has proven to provide

increased learning benefits to participants. This learning style is called

Problem-Based Learning and is starting to garner international

recognition of a new way of teaching. Problem-Based Learning, or

PBL, is a teaching approach that involves a student-centered

instructional strategy in which students collaboratively solve problems

and reflect on their experiences. In this process students are

encouraged to learn by being asked to solve challenging, open-ended

problems while working in small collaborative groups. During the PBL

process teachers take on less of an “instructional” role and more of a

“facilitator of learning” role. With its collaborative, open-ended, and

modular approach to learning, PBL is a perfect candidate for receiving

a helping hand from current technology to allow it to spread further

and easier. This paper will look briefly at the advantages of PBL, what

types of technology could help to make PBL easier to use for the

masses, and finally in-depth inspection of the proposed solution of

using the Nintendo DS to provide a cheap, economical, and user

- 2 -

friendly interface for PBL for Kindergarten through Twelfth Grade (K-

12) students.

Problem-Based Learning (PBL) is a curriculum and instructional

innovation first adopted in medical education at McMaster University in

the mid-1960s. By 1992, approximately 60 medical schools worldwide

had implemented, at least in part, a problem-based learning approach

in their curricula (1). PBL has spread to other professional fields such

as veterinary medicine, agriculture, natural resources, health related

professions (such as occupational therapy), and educational

leadership. Furthermore, there is a growing interest in PBL approaches

in public schools, especially in the areas of math and science (10).

Applications of this method are possible in almost every course of

study. This growing support for PBL in professional and educational

institutions lends itself to a need for technological support. Currently a

majority of PBL systems are done with pen and paper, in which

students receive static chunks of information after they achieve certain

milestones in a PBL Case. Since PBL has been structured to be a

dynamic and individual learning experience, static pen and paper seem

to hinder the full vision of PBL. Technology can help this exciting new

idea reach its full potential.

To provide PBL to a wider audience, such as Kindergarten

through Twelfth Grade (K-12) students, many factors need to be

- 3 -

weighed. Robustness in application, development time, accessibility to

teachers and students, and cost are some of the many parameters

relevant to a possible PBL technological solution. Some possible

solutions that will be discussed in this paper will be individual modules

downloaded onto group laptops, students having access to a web

application environment, and modules running on the Nintendo DS

that communicate with web applications and databases seamlessly

from the user’s point of view. Each solution presents both positives

and negatives, and they will be discussed briefly in this paper.

Finally, the proof of concept project of this paper is the Nintendo

DS solution. This paper will discuss both the merits of this solution

and a broader understanding of how this solution works. While there

is research into the viability of other solutions, this is the solution that

actually deserves a proof of concept working prototype. The Nintendo

DS is a very sophisticated piece of hardware that has a large “hobby”

or “homebrew” community around it. This community has developed

many tools that make development on the Nintendo DS simpler and

more accessible to many programmers. Programming for the

Nintendo DS requires the detailed use of memory registers to store the

manner in which the hardware interprets the data that is stored in

memory. Both tools and registers of the Nintendo DS will be discussed

in detail.

- 4 -

This paper will briefly discuss the procedures and benefits of

PBL, how technology could make this new teaching style the norm for

many people, and the proof of concept prototype of how PBL could be

taught using the Nintendo DS. PBL is a new and exciting way to teach

students that encourages them to discover solutions for themselves,

which may lead to more knowledge retention. Arguably, the best way

to bring PBL to the masses is some type of technological solution. Of

all the solutions that were investigated, the Nintendo DS seems the

most feasible in the case of teaching K-12. The power of turning self-

discovery learning into a video game is very powerful for this age

group. The further investigation of how to achieve this solution makes

up the bulk of this thesis discussion.

- 5 -

PROBLEM-BASED

LEARNING

Chapter 2

Problem-based learning (PBL) is an instructional approach that

has been employed successfully since the 1960s and continues to gain

mainstream acceptance in many areas of study. PBL is an

instructional, and curricular, learner-centered approach that empowers

learners to conduct research, integrates theory and practice, and

applies knowledge and skills to develop a viable solution to a defined

problem (2). PBL evolved from innovative health sciences and medical

curricula introduced in the 1960s in North America. Medical education,

with its intensive pattern of basic science lectures followed by an

equally exhaustive clinical teaching program, was rapidly becoming an

ineffective and inhumane way to prepare students, given the explosion

in medical information and new technology and the rapidly changing

demands of future practice (3). Medical faculty at McMaster University

in Canada introduced a tutorial process, not only as a specific

instructional method, but also as central to their philosophy for

structuring an entire curriculum promoting student-centered,

multidisciplinary education, and lifelong learning in professional

practice (4).

PBL is an instructional method that encourages students, or

learners, to conduct research, test theories and practices, and use

- 6 -

knowledge and skills to develop a viable solution to a defined

problem. Crucial to the learner's success in PBL is the presentation of

“ill-structured” problems, by tutors or educators, which often involve

facets of many disciplines. Furthermore, the learners require a tutor

who can guide them through the learning process without directly

teaching or telling the learners what to learn. When the learning

experience concludes, the tutor provides a thorough debriefing, not

only to guarantee that learners are exposed to the same knowledge,

but to allow learners to reflect on what they have discovered

throughout the solution process. These methods used in PBL help to

develop specific skills that include the ability to think critically; analyze

and solve complex, real-world problems; find, evaluate, and use

appropriate learning resources; work cooperatively; demonstrate

effective communication skills; and use content knowledge and

intellectual skills to become continual learners (5).

There are many ideas behind why PBL is a better way for

students to learn. The most important, and probably fundamental,

idea behind PBL is that learners must be responsible for their own

learning. Learners tackle problems in PBL with only their own

knowledge and experience base. In order for learners to overcome

new problems presented to them, they are required to learn on their

own and also figure out what to learn. Basically, PBL requires learners

- 7 -

to help set their own curriculum. PBL also requires that the problems

in the program be “ill-structured”. In this way, learners get to practice

on problems that are more like the real world and may not have a

simple or “clean” solution. By having ill-structured problems, the

learners develop critical thinking skills that can be readily applied to

the real world. In addition to being ill-structured, problems should

also require knowledge from many disciplines. Not only does this help

replicate real world problems more thoroughly, but it allows the

learner to see the solutions from many perspectives and reinforce

knowledge. Collaboration is essential in PBL because it helps emulate

the real world even further because outside of school many learners

will have to share information and collaborate on a problem to develop

a solution. This also helps learners to share information with their

classmates so that all learners can benefit from the work of a single

learner. All individual work must be shared in this way to help redirect

and reanalyze any work the group does.

The closing analysis, or debriefing, of the problem and the

solution is crucial. This discussion allows learners to discuss what

concepts and principles they discovered did and did not work. At the

same time, the debriefing allows the tutor the opportunity to

guarantee all the learners covered similar material and gauge the

success of the learning done during the problem. Also, this debriefing

- 8 -

encourages personal reflection among the learners and should be

reinforced with peer and self assessment. Finally, all assessments and

examinations of the learners should be done to measure the learners’

progress towards the goals of PBL. Learners need to be assessed

regularly both on the dimensions of knowledge and on the learning

process to assure that each learner is achieving the full benefit of the

PBL process.

While PBL has a relatively long history of successful use in

medical and pre-professional schools, it has yet to be widely adopted

by K–12 teachers (6). This may be due, in part, to the numerous

challenges teachers experience when implementing PBL (6). The first

challenge that new tutors and learners will face with PBL is learning

how to create a culture of collaboration and interdependence. As

outlined above, collaboration is a central part of the PBL process.

However, for a collaborative environment, certain structures need to

be in place, such as positive interdependence and individual

accountability. One strategy teachers have used to help students

adjust to the collaborative nature of PBL is the use of “posthole” units

(7). Postholes are smaller, or “mini”, PBL problems that allow learners

to test out the PBL system on a much smaller scale. The use of

postholes allows learners and tutors to get acquainted with how the

- 9 -

PBL system works and how to learn inside it before being fully

committed to a much larger project.

The next challenge facing PBL in K-12 schools is adjusting to the

change in roles, which is a product of the collaborative classroom

environment. In the collaborative classroom environment, teachers

fulfill a more tutor-like role, instead of the more traditional directive

role. One proposal of how to overcome this is the suggestion of

“rituals”. Rituals are classroom scripts for specific activities that help

teachers and students know that practices are appropriate at different

times in the project sequence (8). Having automatic or routine

practices in the PBL process can help teachers and students feel

comfortable and in control.

Another challenge is how to scaffold the learning process and

expectations of performance. Scaffolds represent one means of

supporting learners in complex or unfamiliar environments (6).

Instructional scaffolds refer to the tools, strategies, or guides that

enable learners to reach higher levels of understanding and

performance than would be possible without them (9). With the

intricacies of starting and maintaining PBL in the K-12 environment,

teachers and students that are new to their roles in PBL can benefit

from many of these tools that structure the necessary PBL tasks while

increasing their ability to complete the tasks independently.

- 10 -

TECHNOLOGICAL

SOLUTIONS

Chapter 3

POSSIBLE SOLUTIONS Section 3.1

In order to gain a wider acceptance in K-12 classrooms, PBL

might need to take a technological approach. But with technology,

just like education, there are many possible solutions to consider in

solving a problem. The solution provided must promote PBL learning,

allow for a modular learning process, present an easy to use interface

for the K-12 demographic, be affordable, enhance enjoyment of

learning and tutoring, and allow for data acquisition for the purposes

of assessment. Many technological solutions are available to make

PBL more accessible to the K-12 classroom; however, the following

three were considered for this project. The benefits and drawbacks of

each solution will be discussed in greater detail before the reasons are

given for the selected solution. Three alternatives are considered for

this paper: 1) have a pen and paper approach to PBL with static

content and allow teachers to enter data into a database for

evaluation; 2) have a website that both learners and tutors can use for

data entry, collection, and assessment; and 3) use a Nintendo DS to

have learners interact with the case and save their data through the

built-in Nintendo DS Wi-Fi.

- 11 -

In a pen and paper solution, tutors would distribute information

to learners when they achieve certain benchmarks or milestones in the

problem. Many institutions, including University of Missouri's own

School of Medicine, have used this method since the introduction of

PBL. This method would be an easy way for learners and tutors to

adapt to a PBL system. The differences in PBL and traditional learning

are large and would require time and effort from both tutors and

learners to adjust. Also, this solution would be the most cost effective

in that it uses similar resources that are in classrooms now. Tutors

would print out informational sheets to help knowledge discovery and

probably worksheets to further facility the teaching and learning

process as well as for assessment purposes. Teachers could possibly

find these informational and work sheets from either a K-12 PBL

website or through a package or library of content that the school

purchases. Finally, the teacher would input student data into a

database for tracking and assessment purposes.

While this is probably the most cost effective solution, it is also

the least technological and also possibly the most work intensive,

especially for the tutor. In this solution the tutor would have to find

and prepare projects either by hand or from the provided website or

database. If a website or database is used, the school would most

likely have to purchase some type of license to use this software.

- 12 -

Depending on the cost of the license, this could drastically cut the cost

effectiveness and make it just as expensive as other solutions that

provide a more hands-on approach or a more technological or

multimedia rich approach. Between finding problems and entering

data after the problem, this solution is very time intensive for the tutor

and requires a lot of time outside of the classroom, which is less than

ideal.

Another solution would be to use an interactive website built

around PBL. This website would allow learners and tutors to login to

the system to do all learning and data entry about the problem. The

tutor would release new “assets” to the learners when the tutor

believes the group or class to be ready. These assets would be new

information that could take any form including text, video, images,

audio, or interactive applications. The learners would view these

assets and then develop personal and group notes, hypotheses, and

learning objectives. A website infrastructure of note taking and asset

releasing could be easily specialized towards different types of learning

by adding modules that apply themselves to specific facets of a

specialized learning environment.

Since all of this work is done on a website and saved in a

database, building tools to do assessment would be facilitated because

the infrastructure for collecting all the data is already in place. A tutor

- 13 -

could browse a catalog of problems, like in the pen and paper solution;

however, these problems would then be used online on the website.

The website package could also allow for authoring tools that allow

tutors to make their own problems for their class. However, building

an interactive website like this would be a rather extensive and

expensive undertaking.

While a solution like this will not be the most cost effective for a

K-12 school, it would probably yield the best results, but at the same

time it may have the highest learning curve for all participants.

Learners could interact with each other through the Internet in and

outside the PBL package, store all of their data, and refer to it later for

studying purposes. The freedom of tutors to share what they want

and when they want is still included in this solution, much like in the

pen and paper solution. However, these assets are much more rich

and do not have to be statically given. The assets could be video,

images, audio, or even of an interactive nature to help facilitate the

idea of learning discovery behind PBL. The ability for tutors to easily

make interactive and rich problems with some assets they gather or

create is very powerful. However, with all of this power comes a very

high cost. The development cycle for a project like this is very long

and requires a large, dedicated team to complete. This is not

something a school could easily do individually. It would require

- 14 -

buying a lot of software, computers, and possibly even servers on

which to run the solution. The added costs of a desktop or laptop

computer for every student is very large. When many schools just

struggle financially, this added cost could not be justified to try an

experimental way of teaching. In addition to the financial costs, there

would be a lot of time spent by tutors and learners learning the system

instead of learning their curriculum.

The final solution discussed in this paper is to do a portable

version of the website model outlined above but on a Nintendo DS. In

this solution, learners would interact with assets on the Nintendo DS

(NDS) by “playing” an interactive PBL learning “game.” These

“games,” or interactive modules, would be selected by the tutor from a

list of available problems provided by the developer. During the

interactive module the learner would select a video game character, or

an avatar, to represent them in the digital environment. Then the

learner could do a variety of activities, such as answer questions in an

interactive quiz, travel to faraway lands to explore, watch videos,

listen to audio, look at pictures, type in comments or discussion on

topics, and more. All of the learners’ interactions will be saved to a

database for evaluation later by a teacher. Anything that cannot be

done on the NDS itself can be done on a single computer (or computer

linked to a projector) to show the entire class either through assets

- 15 -

the teacher has found through a website that is part of the

development of the NDS package.

The cost of this solution is less than the interactive website

solution with much of the same functionality. The interactive website

would require every learner to have at least a moderately powerful

computer (laptop or desktop) for them to surf the web, watch videos

(possibly in High-Definition), etc. The NDS solution requires each

student to have a NDS; however the cost of an NDS is about a fifth to

a tenth as much as that of a solid computer. All of the data that the

learners enter would be stored in a database much like in the previous

two solutions for assessment purposes; this would not be very

different than other solutions. For assessment purposes, either

website interface tools could be made to allow the tutor to interact

with the learner's data or data could be handled manually from the

database. Finally, the NDS would be an environment that most K-12

learners would be accustomed to. Many learners in the K-12

demographic play video games regularly and may, in fact, own NDSes

of their own. This would greatly decrease the learning curve of the

system for the majority of the K-12 learners.

To help facilitate the acceptance of PBL in K-12 schools, three

possible technological solutions were discussed: enhancing pen and

paper with a database, using an interactive website, or developing

- 16 -

interactive modules for the NDS. PBL seems to be a much more

interactive and dynamic type of teaching and learning environment.

Because of this, a more technological medium would help to facilitate

the interactivity with the data and dynamic possibilities of the content.

Receiving static input that does not change based on the user's actions

is less than ideal. Whereas the pen and paper case would be helpful in

getting acquainted with PBL during the early stages of use in the

“mini” PBL, it is less than ideal for a full solution. The PBL website

would fulfill the interactive and dynamic requirements of what is

needed by K-12 schools. However, the sheer cost of buying a website

package for use and all of the computers that every student would

need are staggering. In contrast, the NDS is rather economical

compared to the price of desktops and laptops. With the NDS system,

only one computer would be needed in each classroom in order to

demonstrate the few extra things that the NDS cannot do. Also, many

children today are well acquainted with websites and video games so

both the website or the NDS solution would benefit from this.

Unfortunately, the intricacies of the NDS make it difficult to develop

programs, so creating tools for tutors to make their own problems is

probably not possible. However, as demonstrated by the video game

market, a small development company could produce a wide catalog of

problems to benefit K-12 PBL.

- 17 -

PORTABLE GAME SYSTEMS Section 3.2

The Nintendo DS is not the only portable gaming system that

could be used to create a PBL learning environment for K-12 learners.

Three systems were considered: Nintendo Game Boy Advance (GBA),

Nintendo DS (NDS), and the PlayStation Portable (PSP). Each of these

systems has its own strengths and weaknesses in features, hardware,

and development support, which will be explored in this section. The

features that are most important for a project like this are Wi-Fi

capabilities, easy text entry, and a large development community.

In order for users to save their data to the database, it is critical

that the portable device used utilizes some type of Internet

connection. None of the three devices mentioned comes with an

Ethernet connection, but two have Wi-Fi capabilities, the NDS and the

PSP. The NDS has built-in support for IEEE 802.11b/g compatible

Wireless Network Connections with WEP encryption only. The PSP has

only IEEE 802.11b compatible Wireless Network Connections with no

encryption support. Most Wi-Fi hot spots or school networks have

some type of encryption to maintain a secure network, so encryption

capabilities are critical. Thus, the NDS's built-in support of Wi-Fi b and

g as well as basic WEP encryption support makes it the only viable

choice.

- 18 -

PBL requires significant amounts of note taking and free

thinking, so a portable device that runs a PBL system requires some

type of text entry system. Although none of these devices has

keyboards or keyboard peripherals, the NDS has a touch screen. The

NDS touch screen uses a stylus for input and can do fairly accurate

pixel detection of input to do fine commands. With this touch screen a

user can type on a graphical keyboard, draw images, make highlights

on assets, move objects around, and even imitate a Graffiti-like letter

recognition system that has been popular on PDAs for over 10 years.

The NDS also has a microphone that can be used for input and

commands.

Hobby development for video game consoles, known as

“homebrew,” is growing in popularity across the Internet.

Homebrewing is legal because it is simply running code that a

developer creates on legally purchased hardware. Since there are no

development tools for video game systems on a student or personal

scale (the only ones that exist are commercially available for tens of

thousands of dollars), a good, legal homebrew community is important

for learning how to program for the hardware of the device.

Programming for video game consoles is not like just opening up any

compiler, typing in the language of the developer’s choice, and clicking

on the build button. Programming for video game consoles requires a

- 19 -

very intricate knowledge of the hardware of the device and its

specification. Unless the developer plans on reverse engineering the

entire piece of hardware and figuring this out on his or her own, a

large online community is necessary to help map out the hardware and

figure out ways to work with the hardware.

The GBA was one of the first video game consoles to have a

massive homebrew development online. The homebrew community

quickly unlocked all of the features of the GBA and mapped all of its

registers and their uses. When the NDS came out, the homebrew

community surrounding the GBA quickly gravitated towards it and

started the process anew. Since the NDS is basically the same

hardware infrastructure (doubled the register RAM for the two screens,

increased the processor power, and added support for touch screen,

Wi-Fi, and microphone) this was not a difficult task for the basics of

the NDS system.

During the GBA homebrew cycle, numerous isolated sites

developed independently and produced many standards. With the

NDS, however, a few of the people that were important in the GBA era

collaborated and developed “libnds”. Libnds is a standardized low-

level library to deal with registers and some basic functions to allow

everyone an entry level into NDS homebrew development. Many sites

still exist and offer individual tutorials covering many different topics of

- 20 -

NDS development; however, the vast majority of them use libnds as a

basis of their work. Furthermore, there are many sites that make

libraries that go further to create much more higher-level functions

that allow the developer to easily create keyboards and emulate the

Graffiti text system. Eventually, libraries were even made to use the

NDS's Wi-Fi capabilities, which was the last uncharted part of the NDS

hardware. Unfortunately for PSP homebrew, Sony is constantly trying

to put a stop to it because they fear the repercussions that could occur

due to piracy. Because of this, homebrew development on the PSP is

spotty and inconsistent among systems and usually requires a

downgrade of the system firmware to do any work.

Obviously the NDS is the clear winner in the criteria of Wi-Fi

access, massive textual input, and existence of large homebrew

community. While the GBA and the PSP have some advantages in

other fields (e.g., the GBA is cheaper and the PSP has a stronger

graphical system), neither of them can best the NDS in what would be

considered the most important aspects of development for this

project. Also, with the GBA and the NDS being very similar, I can use

a lot of my knowledge I gained working with the GBA on the NDS only

with increased features. Not only will this paper delve deeper into the

intricacies of the NDS, its development, and the work done specifically

on this project in future sections, but, to a lesser extent, it will also

- 21 -

cover the comparisons and contrasts between the GBA and the NDS

hardware.

TECHNICAL SPECIFICATIONS Section 3.3

 The forgoing discussion of PBL is not an unambiguous

specification of a system implementation, but it does permit the

requirements to be understood in a general way. Some facets of the

proposed system may not be necessary on some cases or developed at

all depending on the needs of the users. First and most importantly, is

what will be developed on the NDS. Then how any extra information

that cannot be displayed on the NDS will be delivered to the users will

be defined. Finally, tools will need to be made for the tutors in order

to select or build cases and evaluate learners' progress will need to be

specified.

 The software on the NDS will need to be defined the most

extensively as it is the keystone of how this software package will

function. First, cases should allow the selection or building of personal

avatars for learners. This is a small task that will just require

extensive artwork, but it will allow younger learners to become more

invested in the learning process by creating avatars that they can

identify with. Of course the avatars will run the gamut of every sex,

gender, and body type to allow children to better identify with the

character they select to represent them in the video game world.

- 22 -

Allowing the user to imagine themselves in the game world should

allow for learners, especially younger ones, to become more invested

in the learning process and provide better results. Avatars will not be

the only graphics necessary in the NDS cases; sprites of varying

characters for the game will need to be made, along with tilesets of

different locales (urban, rural, indoors, outdoors, different countries,

etc) will need to be made.

Next, the cases on the NDS will need to provide many different

forms of input to the user. Some mandatory inputs will be the use of

the controller buttons on the NDS unit and simple touch screen

functions such as selection and “drag and drop”. While many other

inputs could be implemented through the touch screen, these are the

bare minimum for a functioning system. Further inputs may be

wanted, but are not necessarily mandatory, such as keyboard and

Graffiti input through the touch screen with a stylus. These two types

of input will allow a much broader range of data collection from the

learners and allow much more possibilities for learning and

evaluation. A keyboard or Graffiti system would even allow for the

development of a communication system between users. However,

the communication system would most likely be rather slow and could

be better implemented through an optional website system so this is

left up to the discretion of the developer. Even more inputs may be

- 23 -

capable through the combinations of touch screen and controller use;

however any further input capabilities are left up to the discretion of

the developer.

Furthermore, a simple mechanic of a quiz system will need to be

developed to ask learners multiple choice questions and then record

their answers for use later. Developers of the NDS game will require

input of cases and assets from experts in the appropriate fields that

are building cases for particular subjects. Using these cases and

assets developers will have to build different activities to perform and

puzzles to solve to help facilitate the learning process. Sound and

music development could be done, but is left up to the discretion of

the developer if it is necessary. Finally, Wi-Fi interactivity will need to

be created between the NDS game and a website to store data in a

database.

 There will be some assets that cannot be shown on the NDS like

high-definition video, images, or some types of audio. If these assets

are important enough to the progression of the case, they must be

displayed to the users in some way. A delivery system over the

Internet might be ideal, assuming that every classroom has at least

one computer with Internet access. The class could crowd around the

one computer or the computer could be connected to a television or

projector. The decision of how to display these assets could be left up

- 24 -

to the school or the developers. However, to deliver these assets, a

website will need to be made to distribute them properly. This website

would not need to be incredibly sophisticated, it just needs to allow log

in, selection of assets, and tools to either download or display the

assets.

 Along with an asset website, some type of assessment website

would need to be made. The assessment website could be bundled

with the asset website if desired. This website would allow tutors to

log in and evaluate the work of all the learners. It would need to show

the progress of the learners through the case and their answers to all

questions and activities that are run on the NDS. Furthermore, the

tutor would be shown if the learners answered correctly to multiple

choice questions and possible answers for more open ended

questions. The tutor could then see statistics and rankings of progress

of each individual learner and suggestions on what areas the learners

could improve and suggestions on how to help them improve. An

evaluation website has limitless options and is completely up to the

discretion of the developer. However, at the very least, a rudimentary

site that shows learners progress and answers is required to evaluate

the job of the learners during a case.

- 25 -

PROTOTYPE SPECIFICATIONS Section 3.4

 For the sake of this thesis, a prototype will be constructed that

incorporates all of the major features mentioned above in order to

prove this concept is feasible. All of the websites mentioned above for

asset delivery and assessment are easily built and not necessary for a

proof of concept, so for the sake of this thesis, they are ignored in

development. The most important part of this concept is the NDS

game and the website that allows storage through the NDS over Wi-

Fi. All of the graphics (sprites and background tilesets) will be

borrowed from the Super Nintendo game Chrono Trigger (copyright

Square-Enix Company). This means that a wide range of graphics are

not necessary for this proof of concept as they are easily made by

artists on a development team that would build a final product. The

proof of concept prototype will include all types of input mentioned

such as controller input and touch screen inputs that include basic

touch screen selection, keyboards, and a Graffiti text recognition

system. This prototype will not include any type of messaging system

for users of the system; this can easily be built for a website or proven

through the use of saving to a database through the NDS. The quiz

system will be fully developed to allow users to answer multiple choice

questions. Besides a basic quiz, no other activities or puzzles are

planned for this prototype. A combination of examples from other

- 26 -

video games and what is built into this prototype for other functions is

sufficient to provide proof of this capability. No sound or music

development will be done in this prototype as it is some what out of

the range of what is necessary to prove the core of this idea. Finally,

Wi-Fi interactivity is crucial to this project working and this will be built

into the prototype to test communication between the NDS and a

website to store data into a database.

- 27 -

NINTENDO DS

DEVELOPMENT

Chapter 4

NINTENDO DS HARDWARE Section 4.1

The NDS's hardware is rather powerful for its small size. The

standard NDS measures 148.7 x 84.7 x 28.9 mm (5.85 x 3.33 x 1.13

in) in size and the newer NDS Lite measures 133 x 73.9 x 21.5 mm

(5.24 x 2.9 x 0.85 in) which is about 42% less volume than the

original NDS. Both versions of the NDS have the same internal and

external hardware, but one is smaller than the other. Even with its

small size, the NDS has enough processing power from its dual

processors to create graphics on par with the Nintendo 64. The

Nintendo 64, which was released in 1996, is considered to be only two

video game generations older and was a larger, non-portable home

system. The NDS runs on two ARM processors, an ARM946E-S main

CPU and an ARM7TDMI co-processor, that run at clock speeds of 67

MHz and 33 MHz respectively (14). This is a significant hardware

improvement from the GBA's (predecessor to the NDS) single

ARM7TDI that clocked at 16.8 MHz (11). Each one of the NDS's

processors can devote an entire 2D engine to one of the NDS's two

screens. These 2D engines work very similarly to the 2D engine on

the GBA, but the NDS's are more powerful and there are two of them.

- 28 -

This allows the NDS to have one of the most advanced 2D rendering

systems ever seen on a console system.

Both of the NDS's screens measure 62.5 x 47.0 mm (2.45 x 1.81

in), 76.2 mm (3 in) diagonal, run at a resolution of 256 x 192 pixels,

and have a dot pitch of .24 mm. These screens are about 22 mm

(0.87 in) apart or 90 imaginary pixels away from each other. The

lower screen on the NDS is overlaid with a resistive touch screen,

which registers pressure from one point on the screen at a time. This

screen can also average multiple points of contact, if necessary.

As stated before, each screen can have one whole 2D engine

dedicated to it. However, the NDS is only capable of one 3D engine

that can only render on one screen at a time. The NDS has a

transform and lighting chip as part of its 3D hardware. This allows for

better graphics while alleviating some of the processing power from

the core processor. The NDS's 3D hardware is also capable of texture-

coordinate transformation, texture mapping, alpha blending, anti-

aliasing, cell shading, and z-buffering. However, it uses point (nearest

neighbor) texture filtering, which results in some tiles having a blocky

or pixelized appearance. Unlike most 3D hardware however, the NDS

has a set limit on the number of triangles it can render as part of a

single scene. The maximum amount of vertices is about 6144, or

about 2048 triangles per frame.

- 29 -

All of this hardware stores its data locally on 4 MB of RAM. While

many files and instructions can be stored on a game card, these 4 MB

are what the processors use directly for current processing. In

addition to this 4 MB of RAM, there are 656 KB of Video RAM (VRAM)

and additional RAM for BIOS, fast RAM (IWRAM), fast shared RAM

(WRAM), Virtual Video RAM, and a few other odds and ends. Refer to

Figure 4.1 for a graphical representation of this.

- 30 -

Figure 4.1: Nintendo DS Memory Map (20). Unless otherwise stated,

the data width for each bus is 16 Bit.

- 31 -

Memory Map

ARM 9

Name Start Address Stop Address Size

Main 0x02000000 0x023FFFFF 4MB

BIOS 0xFFFF0000 0xFFFF7FFF 32KB

ITCM 0x00000000 0x00007FFF 32KB

DTCM 0x0B000000 0x0B003FFF 16KB

Shared WRAM Bank 0 0x03000000 0x03003FFF 16KB

Shared WRAM Bank 1 0x03004000 0x03007FFF 16KB

ARM 7

Main 0x02000000 0x023FFFFF 4MB

BIOS 0x00000000 0x00003FFF 16KB

IWRAM 0x03800000 0x0380FFFF 64KB

Shared WRAM Bank 0 0x03000000 0x03003FFF 16KB

Shared WRAM Bank 1 0x03004000 0x03007FFF 16KB

Video RAM

Main OAM 0x07000000 0x070003FF 1KB

Sub OAM 0x07000400 0x070007FF 1KB

Main Palette 0x05000000 0x050003FF 1KB

Sub Palette 0x05000400 0x050007FF 1KB

Bank A 0x06800000 0x0681FFFF 128KB

Bank B 0x06820000 0x0683FFFF 128KB

Bank C 0x06840000 0x0685FFFF 128KB

Bank D 0x06860000 0x0687FFFF 128KB

Bank E 0x06880000 0x0688FFFF 64KB

Bank F 0x06890000 0x06983FFF 16KB

Bank G 0x06894000 0x06897FFF 16KB

Bank H 0x06898000 0x0689FFFF 32KB

Bank I 0x068A0000 0x068A3FFF 16KB

Virtual Video RAM

Main Background 0x06000000 0x0607FFFF 512KB

Sub Background 0x06200000 0x0621FFFF 128KB

Main Sprite 0x06400000 0x0643FFFF 256KB

Sub Sprite 0x06600000 0x0661FFFF 128KB

Table 4.1: Nintendo DS Memory Addresses

- 32 -

Table 4.1 lists all parts of RAM and include addresses and size of

each part. Some of the parts of RAM are self explanatory, like BIOS;

however, some could use a little more explanation. ITCM, or

Instructions Tightly Coupled Memory, is a 32 KB section of the ARM9

memory that is faster than the main RAM. ITCM is ideal for small,

preferably 32-bit, functions that are either computation-intensive or

frequently called. For example, libnds uses ITCM to store its interrupt

dispatcher. DTCM, or data tightly coupled memory, is another section

of the ARM9 memory that is used for fast data memory retrieval.

Since DTCM is only 16 KB, it is mostly used as a location for the

programs stack and for local variables. Because of the small size of

DTCM it is advisable not to use too many local variables (especially

arrays) or deep recursion. Too much of either of these things could

cause overflow problems very quickly. Both ITCM and DTCM use 32

byte cache lines thanks to the Direct Memory Access (DMA) buses and

are directly contained in the ARM9 CPU core.

There are also two small 16 KB banks of fast, 32 bit RAM that

both the ARM7 and ARM9 can use. These are referred to as the

Shared Windows RAM Banks or WRAM. WRAM has nothing to do with

the Windows Operating System and is, in fact, a faster version of

Video RAM or VRAM. These blocks of RAM can only be accessed by

one processor at a time. If both processors try to access this RAM, the

- 33 -

ARM7 has priority. By default, these two banks will be mapped to the

ARM7 as they form a continuous chunk of RAM with ARM7's IWRAM, or

Internal Working RAM. IWRAM is the ARM7's personal 64 KB of fast,

32 bit RAM. The combination of the two Shared WRAM banks at 16 KB

a piece and the 64 KB of IWRAM effectively gives the ARM7 96 KB of

fast, 32 bit RAM.

A rather large, and important, section of memory is the Object

Attribute Memory, or OAM. The OAM stores all of the data for how

every graphical object, or sprite, is rendered to the screen. This data

includes pixel location on screen, the sprite location on the current

map, and other attributes of the sprite like height, shape, and palette

type. The area of memory following this is reserved for the Palettes.

This stores all of the color information currently in use by the Video

RAM for backgrounds and sprites. There is a Main and Sub version of

both OAM and Palette, to indicate to which 2D engine the OAM and

Palette belong.

Next are the 9 different VRAM banks of varying sizes. These

banks, when mapped correctly, will contain any type of tilesets and

maps for the requested amount of backgrounds and sprites. For the

engine to know what VRAM bank to use, it must be assigned to the

Virtual Video RAM registers. The Virtual Video RAM is a map of what

backgrounds and sprites need to be displayed on both of the screens.

- 34 -

Finally the 256 KB of Serial Flash Memory is used for system settings,

BIOS, and update-able Firmware.

Finally, attention must be paid to the input devices for the NDS.

As stated before, the lower screen on the NDS has a touch screen that

allows input from one point on the screen at a time. This input can be

administered through touch or a stylus. The screen can even average

multiple points of contact to gather one touch point from many. This

touch screen can be used for many applications including a “point and

click” interface, a virtual keyboard, emulating a Graffiti system, and

even dragging and dropping. The NDS also has a directional pad, two

shoulder buttons, and four face buttons for many combinations of

input. Some games even utilize multiple styles of input to allow users

to pick a favorite. Not only are there controls on the NDS for input,

but there is a standard microphone too. This microphone can be used

to control objects through just noise or voice recognition commands.

Finally the NDS is Wi-Fi enabled to connect to any Wi-Fi b or g hot spot

that has up to, and including, WEP encryption security. Wi-Fi on the

NDS allows for wireless multi-player games through either a LAN or

through the Internet. Also, it can be used for limited web surfing and

HTTP posting in order to save to a database.

 The strength of the ARM hardware for the present application

derives from the provision of hardware elements which can carry out

- 35 -

key functions such as graphics, direct memory access, sprites, touch

screen input, and Wi-Fi. Conversely, there is no hardware for many

operations common on general purpose computers, including even

multiplication and division. This hardware concept provides the speed

and memory efficiency necessary for a powerful portable device;

however it does require the programmer to directly control these

hardware units through their associated registers.

LIBNDS Section 4.2

In order to program to the hardware, a library of registers and a

compile toolchain are necessary. Libnds and devkitPro are the library

and toolchain of choice for NDS programming. Libnds, formerly ndslib,

is a library of register definitions and some low level functions that was

created by Michael Noland (joat) and Jason Rogers (dovoto) (12).

Libnds was developed to be an open source alternative to Nintendo's

official SDK for the NDS. Noland and Rogers were both heavily

involved in the homebrew scene for the GBA. Both Noland and Rogers

reverse engineered the GBA very early on to discover all of its

registers and memory map. They also created many of the first

programs and tutorials for development of homebrew on the GBA.

When the NDS came out, they decided to try to make an all

encompassing library of definitions so there was a standard that

everyone could work with.

- 36 -

In the days of GBA homebrew development, sources of register

and memory definitions were scarce and it seemed everyone created

their own by scratch and had different naming conventions.

Understandably, this led to many problems when sharing code with

other developers and hindered a lot of possible progress on GBA

homebrew development. But with the advent of libnds, Noland and

Rogers were able to provide a common library that everyone could

build from and use as a point of discussion. Not only that, but their

register and memory location naming convention in libnds was much

more logical and orderly than the majority of naming conventions in

GBA definitions that floated around the Internet. Currently libnds is

maintained and updated by Dave Murphy (WinterMute) through the

devkitPro project.

DevkitPro is as the developers put it a “toolchain of choice for

homebrew game development.” DevkitPro currently supports

development for the GBA, GP32, PSP, NDS, and GameCube. DevkitPro

is an all-in-one tool that features many libraries for homebrew

development like libnds, tools to help developers make data for their

project (i.e. image and audio converters), and provides a development

environment. Even though devkitPro helps configure a computer for

development, it is not an Integrated Development Environment, or

IDE. DevkitPro installs path variables onto an OS for the development

- 37 -

packages selected, ties the packages into an open source compiler

(gcc and g++), and allows developers to build projects using this

compiler and make files. All the things that devkitPro does could be

done manually, and all the programs it installs could be installed

separately. However, devkitPro makes it extremely simple to set up a

homebrew development environment and allows a developer to start

programming sooner and easier. DevkitPro also allows the developer

to select their personal favorite IDE since it is compatible with

Microsoft Visual Studio, UltraEdit, Programmer's Notepad, and even

Eclipse.

Though libnds is essential to any NDS homebrew development, it

is not the only user built, open source library out there; the most

popular of these libraries is PALib. PALib is a very large open source

community project to build basic functions that have a lot of utility for

NDS development. The wiki, tutorial, functions, and documentations

have been translated into at least 7 different languages. While PALib

does not come included with devkitPro, it can be installed to integrate

with devkitPro very easily. Another smaller and more specialized

library is dswifi. Dswifi is a library of tools that allows the use of the

NDS's built-in Wi-Fi. This was one of the last features of the NDS to

be unlocked by the homebrew community. It was locked for so long

that some websites started offering “bounties” for a programmer who

- 38 -

could document all of the Wi-Fi registers and the first developer to

make homebrew code that would actually send and receive from

websites. This bounty went unclaimed for over a year until Steve Stair

created the dswifi library and released it to the public. Since then,

dswifi has been modified and built upon to be added into devkitPro and

PALib. It is not difficult to use libnds, dswifi, and PALib in conjunction

with each other; in fact most projects like this one use a little bit of all

of them. Through the course of this project the various functions that

are used from Libnds and PALib will be recognized while explaining

how coding for the NDS works and how this project in particular works.

BACKGROUNDS Section 4.3

The NDS has a very robust and full featured 2D engine in it (two

2D engines actually). Some of these features include frame buffer

backgrounds, rotational backgrounds, tiled backgrounds, sprites,

rotational sprites, transparencies, importing of graphics through Direct

Memory Access (or DMA), graphic effects (like windowing, blending,

and mosaic effects), text output, and many more. In addition, the

NDS is capable of sound, Wi-Fi, and user input through controllers,

touch, and microphone.

- 39 -

SCREEN DRAWING Section 4.4

Some background knowledge of how the NDS renders to the

screen is necessary before discussion of how to render out any

graphics to the screen can begin. Each of the LCD screens on the NDS

functions in the same way that any other screen does. The hardware

draws the picture on the screen from left to right and from top to

bottom. Both NDS screens are entirely refreshed 59.8 times every

second or 60 frames per second. However, it is not nearly as simple

as that. Every row of pixels is called a scanline, and while a scanline is

being drawn the hardware is in the HDraw period. The HDraw period

lasts for 256 pixels on every scanline. After a scanline is drawn there

is a brief pause before the next scanline can be drawn. This brief

pause in between scanlines is called the HBlank period and lasts for 91

pixels. In between the HDraw and HBlank period there is a brief 8

pixel buffer where the NDS’s registers read as if the hardware is still in

HDraw, but there are no pixels visible on the screen for this time.

There is a scanline for every pixel high the screen is; in the case

of the NDS, there are 192 scanlines and the drawing of all of these

scanlines makes up the VDraw period. At the end of VDraw there is a

brief pause before the screen starts drawing again at the top, left

corner while it continues to draw 70 scanline blanks; this is called the

VBlank period. In between VDraw and VBlank is another buffer of 1

- 40 -

scanline where the NDS’s registers read as if the hardware is still in

VDraw, although there is not a visible scanline on the screen at this

time. VBlank is longer than HBlank because many HBlanks occur

during the VBlank as shown in Figure and Table 4.2. To avoid

graphical glitches like tearing, positional data and graphical updates

are usually made during the VBlank period. As a result, most GBA and

NDS games run at 60 or 30 fps because they are synched to the

VBlank period and not to any type of processor cycle clock.

Figure 4.2: A diagram showing the ranges of VDraw, VBlank, and

HBlank on the NDS screens.

- 41 -

Subject Length Cycles

Pixel 1 6

HDraw 256px 1536

HBuffer 8px 48

HBlank 91px 546

Scanline HDraw + HBuffer + HBlank 2130

VDraw 192 * Scanline 408960

VBuffer 1 * Scanline 2130

VBlank 70 * Scanline 149100

Refresh VDraw + VBuffer + VBlank 560190

Table 4.2: Display timing details

GRAPHIC MODES Section 4.5

Backgrounds are a basic building block for video games. The

majority of video games put the player in control of some type of

character (usually represented by a sprite) and the player moves this

character around on some type of background. These backgrounds

come in many types and sizes and display differently depending on the

render mode the NDS's hardware is in. As mentioned previously,

there are two separate 2D graphic cores in the NDS. These two cores

are commonly referred to as the Main and Sub graphics cores. Only

one 2D graphics core can be displayed on each screen at a time.

- 42 -

When set to the same mode, each core will act the same and have

similar features. However, there are some minor differences between

the cores. These differences are:

• The Main core has two extra modes which the Sub core does not

have. These modes are capable of rendering large bitmaps.

• The Main core can use one of its backgrounds in the 3D engine,

which can only be displayed on the Main core's screen.

• The Main core can also choose not to use the 2D engine at all

and render directly from Virtual Video RAM. Doing this is usually

referred to as the “frame buffer mode.”

- 43 -

Main 2D Engine

Mode BG0 BG1 BG2 BG3

Mode 0 Text/3D Text Text Text

Mode 1 Text/3D Text Text Rotation

Mode 2 Text/3D Text Rotation Rotation

Mode 3 Text/3D Text Text Extended

Mode 4 Text/3D Text Rotation Extended

Mode 5 Text/3D Text Extended Extended

Mode 6 3D - Large Bitmap -

Frame Buffer Direct VRAM display as a bitmap

Sub 2D Engine

Mode BG0 BG1 BG2 BG3

Mode 0 Text Text Text Text

Mode 1 Text Text Text Rotation

Mode 2 Text Text Rotation Rotation

Mode 3 Text Text Text Extended

Mode 4 Text Text Rotation Extended

Mode 5 Text Text Extended Extended

Table 4.3: This table shows how all of the different Graphics Modes

work on the different cores.

EXTENDED ROTATION BACKGROUNDS Section 4.6

Extended rotation backgrounds are often referred to as the

bitmap modes. Since there is a direct relationship between what is in

the Virtual Video RAM and what is drawn on the screen, bitmap modes

are a good example of how graphics work on the NDS. Figure 4.3a

shows a bitmap representation of a sprite. A sprite is used here just

for simplification purposes, but what happens on the bitmap

background works the same way, just on a larger scale. A bitmap in

the NDS is exactly like a bitmap on a computer; it is composed of a

- 44 -

grid of colored pixels. In order to use bitmaps in a program and

correctly render them on the screen, the developer and the program

need to know how they are arranged in memory. Figure 4.3b is a

zoomed in copy of the sprite found in Figure 4.3a and demonstrates

how these pixels are blocked off in a grid.

Since a bitmap is just a matrix of color-indices that can be

described by wxh, where w is the width of the bitmap and h is the

height of the bitmap, each individual pixel can be referenced by a

coordinate pair. In the Virtual Video RAM though, the lines of the

bitmap are laid out in one long array so that the pixel (x, y) in the

bitmap wxh would be the ((w * y) + x)-th address from the starting

point designated for this entry in memory. Figure 4.3b demonstrates

how this works by labeling the offset in memory with the little yellow

numbers. This figure illustrates a w=24 by h=24 bitmap which is

stored in RAM at 8bpp, or 8 bits per pixel which is equal to 1 byte.

Since the y-axis in the NDS points down, the origin is at the top left

corner. This entire math is dependent on an 8bbp; if a change is

made to another bit depth, all of the addresses change, as well. For

example, if another common bit depth of 16bpp is used, this would

require 2 bytes per pixel, and all pixel numbers would need to be

multiplied by two.

- 45 -

TILED BACKGROUNDS Section 4.7

Text backgrounds are used in the homebrew community to

describe what are also known as “tiled” backgrounds. Tiled

backgrounds work much like bitmaps but on a larger scale. A tiled

background requires a tileset that consists of multiple 8x8 pixel tiles.

These tiles work in similar ways to large colors in a bitmap, but instead

of painting a single pixel one color, it paints an 8x8 pixel tile onto the

screen. These tiles are then used to create a map of what the screen

will look like. This map works much like the bitmap in Figure 4.3c, in

which the numbers represent which tiles get painted at which tile

location on the screen. Because the size of the screen is reduced by a

factor of 8, the NDS is only concerned with rendering 32 x 24 tiles on

the screen at any time. Obviously this requires much less overhead in

processing power when updating a background as opposed to updating

256 x 192 pixels. This is the reason that the vast majority of GBA and

NDS games use tiled backgrounds instead of drawing the backgrounds

by hand with bitmaps.

Figure 4.3a: A sprite composed of a 16x32 bitmap.

- 46 -

Figure 4.3b: Zoom in on Figure

4.3a, with pixel offsets.

Figure 4.3c: Zoom in on Figure

4.3a, with pixel values. Zero omitted

for clarity. Palette on the left-hand

side.

For concrete, mathematical proof of this, consider Figure 4.4a,

which illustrates a 256 x 256 pixel image; even at 8bpp this would

require over 65 KB of VRAM. Recalling how our VRAM is divided (refer

to Table 4.1), there is not a VRAM bank larger than 128 KB. Even if

the largest VRAM bank was used to store backgrounds, there is only

- 47 -

room for two of the four backgrounds that can be used. Most normal

game levels get up to 1000 x 1000 pixels, which is not at all practical.

In addition to storing the screen in RAM, there is the need to be able

to scroll around the map, which would mean updating all of the pixels,

every frame. Even if the code required to scroll was optimized to its

full potential, it would take too long to run almost 60 times per

second. Closer inspection of the map would yield the observation that

the majority of the map is composed of repeated shapes and

elements.

Normally the NDS divides tiles into 8x8 pixel tiles; however for

simplicity the map and tileset in Figures 4.4a-c are divided into 16x16

pixel tiles. On closer observation of Figure 4.4a, it can be noticed that

the image is made up of these repeating 16x16 pixel tiles. These

blocks would be the tiles of the map as represented in the tileset of

Figure 4.4b. There are only a few unique tiles that compose the

tileset. However, to render these tiles to the screen a tilemap is

needed that works in much the same way a bitmap renders pixels to

the screen. The image that is to be rendered on the screen is divided

into a matrix of tiles. Each element of the matrix has a tile index

which represents the tile that is to be displayed in that location. In

Figure 4.4c such a tilemap has been overlaid upon the image to

demonstrate how this works. Suppose that both the tileset and the

- 48 -

map used 8bit entries: the sizes of 11 * (16 * 16) = 2816 bytes for

the tileset and 16 *16 = 256 bytes for the tilemap. That makes for a

grand total of 3072 bytes for the whole scene instead of the 65 KB

that were necessary for the bitmap version of the scene. Rotation

backgrounds, also known as affine backgrounds, work exactly the

same was as normal tiled backgrounds when rendering to the screen.

However, they have the added benefit of the ability to be rotated and

scaled according to an affine matrix.

The tile mapping process is demonstrated by using the tileset of Figure

4.4b and the tile map of Figure 4.4c; the end-result is Figure 4.4a.

Figure 4.4a: The image on the screen. Figure 4.4b: The tileset.

- 49 -

Figure 4.4c: The tile map (with the proper tiles as a backdrop).

DISPLAY CONTROL REGISTER Section 4.8

In order to put this knowledge to use, a developer needs to store

bits into the NDS's memory register to control the hardware. The first

register that a developer must control is the DISPLAY_CR register,

which is the primary control of the Main core engine. A

SUB_DISPLAY_CR controls the Sub core engine. The bit layout of

these registers can be found in Register 4.1 and the uses of all of

these bits can be found in Table 4.4. All representations of registers

or register-like data in this paper will follow the general format where

the libnds library uses the libnds name, the Sub name is the register

name for the Sub core's version (if it exists), the Address and Sub

Address is where the registers reside in memory, the Engine is which

core or 2D engine it works on (M for Main and S for Sub), the Bit is

- 50 -

which bit in the register is being discussed, the Name is how the bits

are represented in the register map, the definition is how it is defined

by libnds, and the description explains what the bit(s) do.

Libnds name: DISPLAY_CR, Address: 0x04000000,

Sub name: SUB_DISPLAY_CR, Sub Address: 0x04001000

F E D C B A 9 8 7 6 5 4 3 2 1 0

SW W1 W0 SPR BG3 BG2 BG1 BG0 FB SBM SBD STM 3D Mode

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

SE BE SB CB HB SBB STB DMB DM

Register 4.1: Register map for the Display control register.

Engine Bit Name Definition Description

M & S
0-2 Mode

MODE_x_2D Allows for setting graphic

modes 0-5.

M
3 3D

ENABLE_3D Sets BG0 to 2D or 3D mode
(0 = 2D; 1 = 3D)

M & S
4 STM

DISPLAY_SPR_1D
DISPLAY_SPR_2D

Sprite Tile Mapping (0 =
2D, max 32 KB; 1 = 1D,
max 32 KB - 256 KB)

M & S

5 SBD

DISPLAY_SPR_2D_BMP_128
DISPLAY_SPR_2D_BMP_256

Sprite Bitmap 2D-
Dimension (0 = 128 x 512

pixels; 1 = 256 x 256
pixels)

M & S

6 SBM

DISPLAY_SPR_1D_BMP Sprite Bitmap Mapping (0 =

2D, max 128 KB; 1 = 1D,
max 128 KB - 256 KB)

M & S 7 FB DISPLAY_SCREEN_OFF Force a screen blank

M & S 8 BG0 DISPLAY_BG0_ACTIVE Enables rendering of BG0

M & S 9 BG1 DISPLAY_BG1_ACTIVE Enables rendering of BG1

M & S A BG2 DISPLAY_BG2_ACTIVE Enables rendering of BG2

M & S B BG3 DISPLAY_BG3_ACTIVE Enables rendering of BG3

M & S C SPR DISPLAY_SPR_ACTIVE Enables rendering of Sprite

M & S D W0 DISPLAY_WIN0_ON Enables the use of Window0

M & S E W1 DISPLAY_WIN1_ON Enables the use of Window1

- 51 -

M & S
F SW

DISPLAY_SPR_WIN_ON Enables the use of Sprite

Window

M & S
10-
11

DM
MODE_FIFO Display Mode (Engine A: 0 -

3; Engine B: 0 - 1; GBA:

Green Swap)

M
12-
13

DMB
 Display Mode VRAM block

(0- 3 = VRAM A - D) (DM

>= 2)

M & S
14-

15
STB

DISPLAY_SPR_1D_SIZE_32
DISPLAY_SPR_1D_SIZE_64

DISPLAY_SPR_1D_SIZE_128
DISPLAY_SPR_1D_SIZE_256

Sprite Tile 1D-Boundary

(see Bit4)

M
16 SBB

DISPLAY_SPR_1D_BMP_SIZE_128
DISPLAY_SPR_1D_BMP_SIZE_256

Sprite Bitmap 1D-Boundary
(see Bit5 - 6)

M & S

17 HB

DISPLAY_SPR_HBLANK Sprite Processing during H-

Blank (was located in Bit5
on GBA)

M
18-
1A

CB

DISPLAY_CHAR_BASE(n) Character Base (in 64 KB

steps) (merged with 16 KB
step in BGx_CR)

M
1B-
1D

SB
DISPLAY_SCREEN_BASE(n) Screen Base (in 64 KB

steps) (merged with 2 KB
step in BGx_CR)

M & S
1E BE

DISPLAY_BG_EXT_PALETTE BG Extended Palettes
(0=Disable; 1=Enable)

M & S
1F SE

DISPLAY_SPR_EXT_PALETTE Sprite Extended Palettes

(0=Disable; 1=Enable)

Table 4.4: Listing of bits in DISPLAY_CR and SUB_DISPLAY_CR

The first 16 bits act much in the same way that REG_DISPCNT

did on the GBA. REG_DISPCNT was the name of the same address

space in the GBA's memory that was used to control the main display.

As shown in Table 4.4, Bits 0-2 control the various graphic modes that

were discussed in Table 4.3. Bit 4 tells the NDS to store the Sprite

data in RAM as either a one dimensional array or a two dimensional

array of tiles. Knowing how these tiles are stored in memory can

drastically change how they are accessed and will be discussed in

- 52 -

Section 4.11. Bits 8 through B turn on the various backgrounds. Each

2D engine can display up to four different backgrounds; however it is

required to enable these backgrounds through the DISPLAY_CR

register or else they will not render to the screen. Bit C allows the use

of sprites. Bits D through F turn on the various windows that can be

used in the 2D core. Windows work similarly to graphical masks and

allow various backgrounds or sprites to be seen through. Windows will

be described in greater detail in Section 4.20.

BACKGROUND CONTROL REGISTERS Section 4.9

Once the backgrounds are enabled through DISPLAY_CR, they

need to be configured in their respective registers. As stated

previously, each graphics core has four backgrounds that can be

rendered to the screen at a time. Each one of these backgrounds has

a memory register that controls how the background behaves. All of

these registers act in the same way; their register map can be found in

Register 4.2, and the bit lists can be found in Table 4.5.

Libnds name: BGx_CR, Address: 0x04000008 + 2x,
Sub name: SUB_BGx_CR, Sub Address: 0x04001008 + 2x

F E D C B A 9 8 7 6 5 4 3 2 1 0

Sz Wr MBB CM Mos TBB Pr

Register 4.2: Register map for the background control register.

- 53 -

Bit Name Definition Description

0-1 Pr BG_PRIORITY(n) Priority of the background.

2-5 TBB
BG_TILE_BASE(base) The address of the tile base block

that stores the tiles for the BG.

6 Mos
BG_MOSAIC_OFF

BG_MOSAIC_ON
Enables mosaic effect.

7 CM

BG_16_COLOR

BG_256_COLOR

Color mode of the background (0

= 16 colors (4bpp); 1 = 256 colors

(8bpp))

8-C MBB
BG_MAP_BASE(base) The address of the map base block

that stores the map for the BG.

D Wr

BG_WRAP_OFF
BG_WRAP_ON

If set, allows affine/rotational
backgrounds wrap around their

edges. Has no effect on regular
backgrounds because they wrap

around by default.

E-F Sz

(See Tables 4.6a-e) Sets the size of the background.
Regular and affine backgrounds

have
different sizes depending on

settings. These sizes can be found
in Tables 4.6a-e.

Table 4.5: Listing of bits in BGx_CR and SUB_BGx_CR registers.

Sz-flag Definition Tiles Pixels

00 BG_32x32 32x32 256x256

01 BG_64x32 64x32 512x256

10 BG_32x64 32x64 256x512

11 BG_64x64 64x64 512x512

Table 4.6a: Regular Background map sizes.

- 54 -

Sz-flag Definition Tiles Pixels

00 BG_RS_16x16 16x16 128x128

01 BG_RS_32x32 32x32 256x256

10 BG_RS_64x64 64x64 512x512

11 BG_RS_128x128 128x128 1024x1024

Table 4.6b: Affine Background map sizes.

Sz-flag Definition Pixels

00 BG_BMP8_128x128 128x128

01 BG_BMP8_256x256 256x256

10 BG_BMP8_512x256 512x256

11 BG_BMP8_512x512 512x512

Table 4.6c: 8 bit Bitmap Background map sizes.

(Since extended affine backgrounds do not include 16-color modes, Bit

7 can be used for mode selection. For these four settings Bit 7 needs

to be set)

Sz-flag Definition Pixels

00 BG_BMP8_1024x512 1024x512

01 BG_BMP8_512x1024 512x1024

Table 4.6d: 8 bit Large Bitmap Background map sizes.

- 55 -

Sz-flag Definition Pixels

00 BG_BMP16_128x128 128x128

01 BG_BMP16_256x256 256x256

10 BG_BMP16_512x256 512x256

11 BG_BMP16_512x512 512x512

Table 4.6e: 16 bit Bitmap Background map sizes.

(Since bitmaps do not have any tile base blocks used, Bits 2-5 can be

used for mode selection. For these four settings Bits 2 and 7 need to

be set.)

The first two bits of the background control register are the

priorities of the background. The priority of a background represents

the order that the background is rendered to the screen. Because

there are four backgrounds for each core, there are four levels of

priority. A background that has a priority of zero means that the

background is rendered on top of all other backgrounds; a background

that has a priority of three means that the background is rendered

beneath all other backgrounds. Because of windows (see Section

4.20) and transparencies, some backgrounds can be seen through

other backgrounds. It is because of this that we have priorities so that

the backgrounds render in the correct order. In case of a tie in priority

or no priorities being assigned to the backgrounds, the backgrounds

are rendered out in the order of their names. So if all backgrounds

- 56 -

were given a priority of zero, then BG0 would render out first and BG3

would render out last.

To map a background to its tileset, the background needs to be

mapped to a place in memory to store the tiles called the tile base

blocks, sometimes referred to as character base blocks. The tile base

blocks are 16 KB offsets of memory in the Main and Sub Background

Virtual Video RAM. As stated in Register 4.2 and Table 4.5, the tile

base block map bits of a background are bits 2-5 in the background's

control register. This section of the register tells the NDS where to

find the tiles for the background memory. This data is first stored in

one of the nine VRAM banks and then is mirrored to the Virtual Video

RAM. As can be seen from Table 4.1, the Main core's background data

is stored in between 0x06000000 and 0x0607FFFF giving the Main

core 512 KB of background storage. Also, the Sub core's background

data is stored in between 0x06200000 and 0x0621FFFF giving the Sub

core 128 KB of background storage. This difference in storage area is

because the Main core can do 3D graphics, which require more space,

and the Sub core cannot.

Since each background control register has four bits dedicated to

tile base blocks, this allows each background to map to 16 different

tile base blocks. Also with the DISPLAY_CR bits 18-19 all of the Main

core's addresses in Main Background memory can be offset by

- 57 -

increments of 64 KB; however, these settings do not affect the Sub

core. The exact offset of the memory being used can be calculated

using these formulas:

Main Tile Base Block: BGx_CR.Bits2-5 * 16 KB + DISPLAY_CR.Bits18-19 * 64 KB

Sub Tile Base Block: SUB_BGx_CR.Bits2-5 * 16 KB + 0

Tile base blocks are where the tilesets are stored, but the maps

that show how those tiles are displayed on the screen are stored in the

map base blocks, sometimes referred to as screen base blocks. The

map base blocks are mapped over the same parts of memory as the

tile base blocks; the only difference is the map base blocks are in

offsets of 2 KB and the tile base blocks are in offsets of 16 KB.

Because tile and map base blocks occupy the same space, it is possible

to accidentally store a map over a tile, or vice versa, which would

cause a corruption in some of the graphics. To prevent this it is a

general practice to try to store maps early in memory and tiles late in

memory and have them both grow towards each other. The

background control registers dedicate Bits 8-C for map base blocks,

which allows up to 32 offsets for maps. The exact memory offset

inside Virtual Video RAM can be calculated with these formulas:

Main Map Base Block: BGx_CR.Bits8-C * 2 KB + DISPLAY_CR.Bits18-19 * 64 KB

Sub Map Base Block: SUB_BGx_CR.Bits8-C * 2 KB + 0

- 58 -

Figure 4.5: Tile and map base block offsets in the first VRAM (21).

- 59 -

With the tile and map base block filled with data and the correct

registers set, graphics should be rendered to the screen. When

looking at Tables 4.6a-e it becomes quickly apparent that some maps

will have data that renders larger than the 256x192 screens that are in

the NDS. In order to display the parts of the map that are off screen,

a program needs to make use of two more registers. Each background

has a horizontal and a vertical offset to show part of these maps. It is

best to consider the map a large 2D image and the screen is a camera

that shows part of that image. To move the camera around the

horizontal and vertical offsets of the background the map needs to be

manipulated through two registers. These registers can be seen in

Register 4.3 and 4.4. Figure 4.6 demonstrates how these offsets can

move the “camera” over the map. Oddly enough, these registers are

write only. Since the registers cannot be read from, no calculations

can be made with the values in the registers themselves. To keep

track of the values in the registers, variables will need to be

managed. A possible solution to this will be demonstrated in a

Background struct that was used in this project.

- 60 -

Libnds name: BGx_X0, Address: 0x04000010 + 4x,

Sub name: SUB_BGx_X0, Sub Address: 0x04001010 + 4x

F E D C B A 9 8 7 6 5 4 3 2 1 0

Horizontal offset

Register 4.3: Background horizontal placement register.

Libnds name: BGx_Y0, Address: 0x04000012 + 4x,
Sub name: SUB_BGx_Y0, Sub Address: 0x04001012 + 4x

F E D C B A 9 8 7 6 5 4 3 2 1 0

Vertical offset

Register 4.4: Background vertical placement register.

Figure 4.6: Scrolling offset dx is the position of the screen on the

map. In this case, dx = (212, 32).

BACKGROUND FUNCTIONS Section 4.10

After learning how the NDS reads graphics from memory and

displays it on the screen, code is written. Since there are many

variables to keep track of while working with backgrounds and some of

them are write only, this project uses a custom struct to interact with

backgrounds. Refer to Code 4.1 to view this struct. TileData and

- 61 -

MapData are the points in memory where the tile and map data are

stored in order to be transferred to the tile and map base blocks that

TileBlock and MapBlock are set to. ScrollX and ScrollY are the camera

offsets that are stored in BGx_XO and BGx_Y0. The rest of the

variables just store the relevant constant to the setting desired (i.e.

Bg.Mosaic = BG_MOSAIC_ON). In order for this struct to be able to

do anything, three functions are necessary to do the following: enable

Main backgrounds (Code 4.2), enable Sub backgrounds (Code 4.3),

and update the backgrounds (Code 4.4). The only difference between

EnableBackground() and EnableSubBackground() is that

EnableBackground() uses the Main core registers and

EnableSubBackground() uses the Sub core registers.

- 62 -

//defines the background structure that makes it easier to manipulate backgrounds
typedef struct Bg

{
 u16* TileData; //the tile data for the background
 u16* MapData; //the map data for the background
 u8 Mosaic; //the mosaic setting for the background

 u8 ColorMode; //which color mode the background is set to
 u8 Number; //which number background it is
 u16 Size; //the size of the background
 u8 TileBlock; //the char block set to the background

 u8 MapBlock; //the screen block set to the background
 u8 Wraparound; //the wraparound setting for the background
 s16 ScrollX, ScrollY; //the x and y offset of the background

 s32 DX,DY; //the zoom on a rotational background
 s16 PA,PB,PC,PD; //the rotational data of each corner of the background
 bool Main; //Boolean flag to tell if the background is a Main

 //background. false == sub, true == main or normal

}Bg;

Code 4.1: Bg struct for keeping track of background data in

Backgrounds.h.

- 63 -

// void EnableBackground(Bg* bg)
// This function takes the background sent to it and sets all of the

// appropriate registers in the display register and the
// appropriate background registers.
// Input: pointer to the background you would like to enable
// Output: None (just updates registers)

void EnableBackground(Bg* bg)
{
 u16 temp; //temp pointer for info of background

 //load the tile data into the appropriate Char Block
 bg->TileData = (u16*)BG_TILE_RAM(bg->TileBlock);

 //load the map data into the appropriate Screen Block
 bg->MapData = (u16*)BG_MAP_RAM(bg->MapBlock);

 //make use of the temp pointer for all other info

 temp = bg->Size | bg->ColorMode | BG_MAP_BASE(bg->MapBlock) |
BG_TILE_BASE(bg->TileBlock) | bg->Mosaic;

 //check which background was sent to the function
 switch(bg->Number)
 {

 //if case 0 set BG0 register equal to the info in temp
 case 0: BG0_CR = temp;
 //set the display register ORed to BG0 enable
 DISPLAY_CR |= DISPLAY_BG0_ACTIVE;

 break;

 //if case 1 set BG1 register equal to the info in temp

 case 1: BG1_CR = temp;
 //set the display register ORed to BG1 enable
 DISPLAY_CR |= DISPLAY_BG1_ACTIVE;
 break;

 //if case 2 set BG2 register equal to the info in temp
 case 2: BG2_CR = temp;

 //set the display register ORed to BG2 enable
 DISPLAY_CR |= DISPLAY_BG2_ACTIVE;
 break;

 //if case 3 set BG3 register equal to the info in temp
 case 3: BG3_CR = temp;
 //set the display register ORed to BG3 enable
 DISPLAY_CR |= DISPLAY_BG3_ACTIVE;

 break;
 }
}

Code 4.2: The EnableBackground() function in Backgrounds.cpp.

- 64 -

// void EnableSubBackground(Bg* bg)
// This function takes the Sub background sent to it and sets all of the

// appropriate registers in the display register and the
// appropriate background registers.
// Input: pointer to the background you would like to enable
// Output: None (just updates registers)

void EnableSubBackground(Bg* bg)
{
 u16 temp; //temp pointer for info of background

 //load the tile data into the appropriate Char Block
 bg->TileData = (u16*)BG_TILE_RAM_SUB(bg->TileBlock);

 //load the map data into the appropriate Screen Block
 bg->MapData = (u16*)BG_MAP_RAM_SUB(bg->MapBlock);

 //make use of the temp pointer for all other info

 temp = bg->Size | bg->ColorMode | BG_MAP_BASE(bg->MapBlock) |
BG_TILE_BASE(bg->TileBlock) | bg->Mosaic;

 //check which background we are dealing with

 switch(bg->Number)
 {
 //if case 0 set BG0 register equal to the info in temp
 case 0: SUB_BG0_CR = temp;

 //set the display register ORed to BG0 enable
 SUB_DISPLAY_CR |= DISPLAY_BG0_ACTIVE;
 break;

 //if case 1 set BG1 register equal to the info in temp
 case 1: SUB_BG1_CR = temp;
 //set the display register ORed to BG1 enable

 SUB_DISPLAY_CR |= DISPLAY_BG1_ACTIVE;
 break;

 //if case 2 set BG2 register equal to the info in temp

 case 2: SUB_BG2_CR = temp;
 //set the display register ORed to BG2 enable
 SUB_DISPLAY_CR |= DISPLAY_BG2_ACTIVE;

 break;

 //if case 3 set BG3 register equal to the info in temp
 case 3: SUB_BG3_CR = temp;

 //set the display register ORed to BG3 enable
 SUB_DISPLAY_CR |= DISPLAY_BG3_ACTIVE;
 break;
 }

}

Code 4.3: The EnableSubBackground() function in Backgrounds.cpp.

- 65 -

// void UpdateBackground(Bg* bg)
// This function takes the background sent to it and sets the new x

// and y offsets and the rotation of the background.
// Input: pointer to the background to be updated
// Output: None (but updates the registers of the background)

void UpdateBackground(Bg* bg)
{
 if(bg->Main == true)
 {

 switch(bg->Number)
 {
 //if case 0 set the Hor and Ver offsets = the backgrounds's x & y scrolls

 case 0: BG0_X0 = bg->ScrollX;
 BG0_Y0 = bg->ScrollY;
 break;

 //if case 1 set the Hor and Ver offsets = the backgrounds's x & y scrolls
 case 1: BG1_X0 = bg->ScrollX;
 BG1_Y0 = bg->ScrollY;

 break;

 case 2: //if case 2
 if(!(DISPLAY_CR & MODE_0_2D))//it is a rot background

 {
 BG2_CX = bg->DX; //set the x and y settings for the background
 BG2_CY = bg->DY;

 BG2_XDX = bg->PA;//set the rotational info for the background
 BG2_XDY = bg->PB;
 BG2_YDX = bg->PC;

 BG2_YDY = bg->PD;
 }
 else //it is a text background
 {

//set the Hor and Ver offsets = the backgrounds's x and y scrolls
 BG2_X0 = bg->ScrollX;
 BG2_Y0 = bg->ScrollY;

 }
 break;

 case 3: //if case 3

 if(!(DISPLAY_CR & MODE_0_2D))//it is a rot background
 {
 BG3_CX = bg->DX; //set the x and y settings for the background
 BG3_CY = bg->DY;

 BG3_XDX = bg->PA;//set the rotational info for the background
 BG3_XDY = bg->PB;

 BG3_YDX = bg->PC;
 BG3_YDY = bg->PD;
 }

- 66 -

 else //it is a text background
 {

//set the Hor and Ver offsets = the backgrounds's x and y scrolls
 BG3_X0 = bg->ScrollX;
 BG3_Y0 = bg->ScrollY;
 }

 break;
 }
 }
 else

 {
 switch(bg->Number)
 {

 //if case 0 set the Hor and Ver offsets = the backgrounds's x & y scrolls
 case 0: SUB_BG0_X0 = bg->ScrollX;
 SUB_BG0_Y0 = bg->ScrollY;
 break;

 //if case 1 set the Hor and Ver offsets = the backgrounds's x & y scrolls
 case 1: SUB_BG1_X0 = bg->ScrollX;

 SUB_BG1_Y0 = bg->ScrollY;
 break;

 case 2: //if case 2

 if(!(SUB_DISPLAY_CR & MODE_0_2D))//it is a rot background
 {
 SUB_BG2_CX = bg->DX; //set the x and y settings for the background
 SUB_BG2_CY = bg->DY;

 SUB_BG2_XDX = bg->PA;//set the rotational info for the background
 SUB_BG2_XDY = bg->PB;

 SUB_BG2_YDX = bg->PC;
 SUB_BG2_YDY = bg->PD;
 }
 else //it is a text background

 {
 //set the Hor and Ver offsets = the backgrounds's x and y scrolls
 SUB_BG2_X0 = bg->ScrollX;

 SUB_BG2_Y0 = bg->ScrollY;
 }
 break;

 case 3: //if case 3
 if(!(DISPLAY_CR & MODE_0_2D))//it is a rot background
 {
 SUB_BG3_CX = bg->DX; //set the x and y settings for the background

 SUB_BG3_CY = bg->DY;

 SUB_BG3_XDX = bg->PA;//set the rotational info for the background

 SUB_BG3_XDY = bg->PB;
 SUB_BG3_YDX = bg->PC;
 SUB_BG3_YDY = bg->PD;
 }

- 67 -

 else //it is a text background
 {

 //set the Hor and Ver offsets = the backgrounds's x and y scrolls
 SUB_BG3_X0 = bg->ScrollX;
 SUB_BG3_Y0 = bg->ScrollY;
 }

 break;
 }
 }
}

Code 4.4: The UpdateBackground() function in Backgrounds.cpp.

So after building functions to enable and update backgrounds,

backgrounds are ready to be used in the main program. All of the

background enabling and the initialization code are placed in one

function in main.cpp called InitBackgrounds(), which can be seen in

full in Code 4.5. In this function many constants are used. All

constants are built-in parts of libnds except for

SPRITE_DMA_CHANNEL which is declared in Sprites.h to be 3. Also

note the use of right bit shifting. The GBA and NDS do not have any

type of mathematical logic or operations unit, so there is no support

for hardware multiplication or division. While multiplying is just

emulated by multiple additions of numbers, divisions are emulated by

a very costly algorithm. A bit shift in either direction takes one clock

cycle, so it is much more efficient to do bit shifts if dividing by a power

of two. In this occurrence, division is by 8, with a resultant bit shift to

the right 3 times to make the calculations more efficient.

- 68 -

void InitBackgrounds()
{

 int index; //counting variable for a for loop
 int NumberTiles;//variable to calculate how many tiles are in the map so to
 // determine how much data to transfer

 bg0.Number = 0; //background number 0
 bg0.TileBlock = 0; //sets background 0 to Character Base Block 0
 bg0.MapBlock = 31; //sets background 0 to screen base block 31
 bg0.ColorMode = BG_COLOR_256; //sets background 0 to 256 color mode

 //sets background 0 to a Text background of 256x256
 bg0.Size = TEXTBG_SIZE_256x256;
 bg0.Mosaic = 0; //turns off mosaic

 bg0.ScrollX = ScreenX; //sets background 0 to the x screen offset
 bg0.ScrollY = ScreenY; //sets background 0 to the y screen offset
 bg0.Main = true; //sets background 0 as a main background

 //enables the background and sets all the proper pointers
 EnableBackground(&bg0);

 //Sets the priority of this background to zero (highest priority)
 BG0_CR |= BG_PRIORITY(0);

 //loads tile graphics for Alphabet using libnds function

 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, FontData, bg0.TileData,
 FontDataSize);

 bg1.Number = 1; //background number 1

 bg1.TileBlock = 1; //sets background 1 to Character Base Block 1
 bg1.MapBlock = 30; //sets background 1 to screen base block 30
 bg1.ColorMode = BG_COLOR_256; //sets background 1 to 256 color mode

 //sets background 1 to a Text background of 256x256
 bg1.Size = TEXTBG_SIZE_256x256;
 bg1.Mosaic = 0; //turns off mosaic
 bg1.ScrollX = ScreenX; //sets background 1 to the x screen offset

 bg1.ScrollY = ScreenY; //sets background 1 to the y screen offset
 bg0.Main = true; //sets background 1 as a main background

 //enables the background and sets all the proper pointers
 EnableBackground(&bg1);

 //sets BG1 to priority 2 (second to lowest priority)

 BG1_CR |= BG_PRIORITY(2);

 //loads MapTile's palette into the Main background palette using libnds function
 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, MapTilesPalette, BG_PALETTE,

 MapTilesPaletteSize);

 //loads MapTile data using libnds function

 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, MapTilesData, bg1.TileData,
 MapTilesDataSize);

 //Take the width and the height of the map, divide both by 8 (>>3)

- 69 -

 // since tiles are 8x8 pixels,
 // and then multiple them together to get all the tiles for the map.

 NumberTiles = (Screens[CurrentMap].MapHeight >> 3) *
 (Screens[CurrentMap].MapWidth >> 3);

 //load map data for the current screen

 for(index = 0; index < NumberTiles; index++)
 bg1.MapData[index] = Screens[CurrentMap].MapData[index];

 SubBG0.Number = 0; //background number 0
 SubBG0.TileBlock = 0; //sets background 0 to Character Base Block 0
 SubBG0.MapBlock = 31; //sets background 0 to screen base block 31

 SubBG0.ColorMode = BG_COLOR_256; //sets background 0 to 256 color mode
 //sets background 0 to a Text background of 256x256
 SubBG0.Size = TEXTBG_SIZE_256x256;
 SubBG0.Mosaic = 0; //turns off mosaic

 SubBG0.ScrollX = ScreenX; //sets background 0 to the x screen offset
 SubBG0.ScrollY = ScreenY; //sets background 0 to the y screen offset
 SubBG0.Main = false; //sets background 0 as a sub background

 //enables the background and sets all the proper pointers
 EnableSubBackground(&SubBG0);

 SUB_BG0_CR |= BG_PRIORITY(3); //sets SubBG0 to priority 3 (lowest priority)

 //loads tile graphics for Alphabet using libnds function
 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, FontData, SubBG0.TileData,

 FontDataSize);

 //loads MapTile's palette into the Sub background palette using libnds function

 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, MapTilesPalette, BG_PALETTE_SUB,
 MapTilesPaletteSize);

 return;

}

Code 4.5: Function InitBackground() in main.cpp that initializes all

background data to be used.

After running these functions and waiting for a VBlank state, and

then using the libnds built-in function swiWaitForVBlank(),

backgrounds will finally be rendered out to the screens. It is very easy

to update these screens through the Bg struct and then wait for

- 70 -

another VBlank to update the background registers. Most applications

on the NDS follow this loop of updating variable states, waiting for the

next VBlank, and then updating all of the register states so the next

VDraw cycle will have the new data.

SPRITES Section 4.11

 Graphics in console video game systems are comprised of

backgrounds and sprites. Any type of static object that comprises the

environment, background, or menu system will most likely be a

background. Anything else, be it a player, character, enemy, gun fire,

health gauge, etc., are sprites. Video game sprites are more

commonly defined as an animated object that can move freely from

the background; this is why sprites are also commonly referred to as

objects or OBJ. The NDS has hardware specifically built to handle

sprites and backgrounds, which is why it has such a powerful 2D

engine. Most video game systems do not have powerful hardware to

render sprites and backgrounds directly. Those types of video game

systems usually “paint” the 2D image manually onto a 3D plane.

 Sprites are similar to backgrounds in many ways; the following is

a list of the most important similarities. Both sprites and backgrounds

are rendered through hardware on a tile system. As described in the

previous section about backgrounds, tiles are a way to shrink down the

amount of pixels that get updated every screen refresh by building

- 71 -

graphics out of 8x8 pixel squares. Sprites also have the option of

being 16-color or 256-color. Just like backgrounds, sprites have their

own palette space that be either comprised of one 256-color palette or

sixteen 16-color palettes. Another similarity between sprites and

backgrounds is that they both render out based on a priority system.

Just like backgrounds, sprites have priorities zero (the highest) to

three (the lowest). A higher priority sprite will render on top of a

lower priority sprite. In the event of the same priority, the one with

the higher position in Object Attribute Memory (OAM) will be rendered

on top. Also, sprites will render above any background of equal or

lower priority. This allows sprites to be able to go behind certain

background, but stand “on top” of the majority of them.

 While sprites and backgrounds share much in common, they are

also very different. The first difference that is encountered when

working with sprites is how the sprites are mapped into memory.

Sprites are not limited to a single tile and, in fact, the majority of

sprites will be a combination of a few tiles (see Table 4.10 for different

size options). These tiles are mapped to tile blocks in VRAM and

Virtual VRAM just like background tiles. However, the programmer

has the option of storing the tiles into memory as a 1D or 2D array.

To view how to control the 1D or 2D memory array, refer to the

explanation of Bit 4 in DISPLAY_CR as explained in Register 4.1 and

- 72 -

Table 4.4. For example, there is a full sprite in Figure 4.7a; Figure

4.7b shows how this would be stored in 2D mapping in which each tile

row of the sprite has a 32-tile offset. However, if the tile base block is

considered as a large array of tiles, then the tiles of every sprite are

consecutive by rows of the sprite; as in Figure 4.7c.

Figure 4.7a: A full

sprite divided into its

tiles. Colored

numbers indicate

mapping mode: red

for 2D, cyan for 1D

Figure 4.7b: How Figure 4.7a would be

stored in memory using 2D mapping.

Figure 4.7c: How Figure 4.7a would be

stored in memory using 1D mapping.

- 73 -

OBJECT ATTRIBUTE MEMORY Section 4.12

 The major difference between sprites and backgrounds is how

they are controlled through registers. While each background has only

one control register, sprites use a few in what is known as the Object

Attribute Memory (OAM). The OAM starts at address 0x07000000

(with OAM_SUB at 0x07000400) and is 1024 bytes long. A sprite uses

two basic structures that a sprite uses to render itself on the screen;

libnds defines these as a SpriteEntry and a SpriteRotation. The

SpriteEntry structure contains what are commonly referred to as the

“Object Attributes” in which there are three attribute registers that

contain all the details of rendering a sprite. The GBA also has an OAM

that works in the exact same manner as the NDS. On the GBA, the

sprite attributes were just defined as u16 registers that stored

hexadecimal numbers just like any register (see Code 4.6).

Fortunately, programmers of libnds made an extremely in-depth

definition of SpriteEntry so it can be used as a more fully optioned

struct (see Code 4.7). The libnds definition still handles all of the

three attributes; fortunately it makes controlling all the various bits

much more intuitive.

 The other part of OAM is the SpriteRotation data or what is also

referred to as “Object Affine.” Sprites can be rotated just like

backgrounds and are known as either rotational or affined sprites. The

- 74 -

SpriteRotation structure is fairly simple and identical to the one used

by most GBA programmers (see Code 4.8). An interesting part of the

structures is the filler data that is apparent in all three of them. The

reason that filler data is used is because the OAM is structured so that

the attributes and rotational data are overlaid so that for every three

attributes of a sprite there is one piece of the rotational data for a

sprite, as seen in Table 4.11. Since OAM has 1024 bytes and each

register takes two bytes, there is enough room for a maximum of 128

sprites and 32 affine rotations.

typedef struct tagOBJ_ATTR
{
 u16 attr0;
 u16 attr1;

 u16 attr2;
 s16 fill;
} ALIGN4 OBJ_ATTR;

Code 4.6: Basic GBA structure used to store sprite attributes.

typedef union {
 struct {
 struct {
 u16 posY :8; /**< Sprite Y position. */

 union {
 struct {
 u8 :1;

 bool isHidden :1;/* Sprite is hidden (isRotoscale cleared). */
 u8 :6;
 };
 struct {

 bool isRotoscale :1;/* Sprite uses affine parameters if set.*/
 bool rsDouble :1;// Sprite bounds is doubled (isRotoscale set).
 tObjMode objMode :2; /**< Sprite object mode. */

 bool isMosaic :1; /**< Enables mosaic effect if set. */
 tObjColMode colMode :1; /**< Sprite color mode. */
 tObjShape objShape :2; /**< Sprite shape. */
 };

 };
 };

- 75 -

 union {
 struct {

 u16 posX :9; /**< Sprite X position. */
 u8 :7;
 };
 struct {

 u8 :8;
 union {
 struct {
 u8 :4;

 bool hFlip:1; /* Flip sprite horizontally (isRotoscale cleared). */
 bool vFlip:1; /* Flip sprite vertically (isRotoscale cleared).*/
 u8 :2;

 };
 struct {
 u8 :1;
 u8 rsMatrixIdx :5; /**< Affine parameter number to use

(isRotoscale set). */
 tObjSize objSize:2; /**< Sprite size. */
 };

 };
 };
 };

 struct {
 u16 tileIdx :10;/**< Upper-left tile index. */
 tObjPriority objPriority :2; /**< Sprite priority. */
 u8 objPal:4; /**< Sprite palette to use in paletted color modes. */

 };

 u16 attribute3;/**< Four of those are used as a sprite rotation matrice */

 };

 struct {
 uint16 attribute[3];

 uint16 filler;
 };

} SpriteEntry, * pSpriteEntry;

Code 4.7: The definition of the SpriteEntry struct in libnds.

- 76 -

typedef struct sSpriteRotation {
 uint16 filler1[3];

 int16 hdx;

 uint16 filler2[3];
 int16 hdy;

 uint16 filler3[3];
 int16 vdx;

 uint16 filler4[3];
 int16 vdy;
} SpriteRotation, * pSpriteRotation;

Code 4.8: The definition of the SpriteRotation struct in libnds.

SPRITE ATTRIBUTES Section 4.13

 As shown above, each sprite has three attributes that control

how the sprite is rendered to the screen. All three of these attributes

need to be set in some capacity because they all contain various parts

of the sprite's render instructions. For instance, attribute 0 contains

the Y coordinate while attribute 1 contains the X coordinate that the

sprite is placed at on the screen. Remember, the NDS renders from

left to right and from top to bottom so (0, 0) is at the top left corner.

Attribute 0 also contains flags for sprite rendering mode, the type of

graphics, the mosaic effect, the color mode, and sprite shape. In

addition to the X coordinate, attribute 1 contains the index to the

affine rotation, horizontal and vertical flipping flags, and the sprite

size. Finally, attribute 2 contains the base tile-index of the sprite's tile

graphics, sprite render priority, and the palette that this sprite uses.

- 77 -

For more information about sprite attributes, refer to Registers 4.5-4.7

and Tables 4.7-4.9.

Sprite Attribute 0

F E D C B A 9 8 7 6 5 4 3 2 1 0

Sh CM Mos GM OM Y

Register 4.5: Attribute 0 for all sprites.

- 78 -

Bit

Name

SpriteEntry

Variable

Value Range
Description

0-7 Y
posY 0-255 Y coordinate of

the top of the

sprite.

8-9 OM

isRotoscale,

isHidden,
rsDouble

TRUE or FALSE The object mode

of the sprite:
normal,

affine/rotation,

disable/hidden,
double size

A-B GM

objMode OBJMODE_NORMAL
OBJMODE_BLENDED

OBJMODE_WINDOWED
OBJMODE_BITMAP

Graphics special
effects: normal,

alpha blending
(see Section

4.19), object is

part of object
window (see

Section 4.20),
forbidden

C Mos
isMosaic TRUE or FALSE Enables the

mosaic effect (see

Section 4.18)

D CM

colMode OBJCOLOR_16/256 The color mode
the sprite uses:

16-colors (4bpp)
or 256-colors

(8bpp)

E-F Sh

objShape OBJSHAPE_SQUARE
OBJSHAPE_WIDE

OBJSHAPE_TALL
OBJSHAPE_FORBIDDEN

Sets the shape of
the sprite. Used

with the sprite's
size in Table 4.10.

Table 4.7: Listing of bits in all Attribute 0 registers.

Sprite Attribute 1 (Normal)

F E D C B A 9 8 7 6 5 4 3 2 1 0

Sz VF HF - X

Register 4.6a: Attribute 1 when the sprite is not affine.

- 79 -

Bit

Name

SpriteEntry

Variable

Value

Range
Description

0-7 X
posX 0-511 X coordinate of the left of

the sprite.

9-B -
 Not used in normal sprite

mode.

C HF
hFlip TRUE or

FALSE

A flag to flip the graphics of

the sprite horizontally.

D VH
vFlip TRUE or

FALSE
A flag to flip the graphics of
the sprite vertically.

E-F Sz

objSize OBJSIZE_8
OBJSIZE_16

OBJSIZE_32
OBJSIZE_64

Sets the size of the sprite.
Used with the sprite's shape

in Table 4.10.

Table 4.8a: Listing of bits in Attribute 1 registers if the sprite is not

affine.

Sprite Attribute 1 (Affine)

F E D C B A 9 8 7 6 5 4 3 2 1 0

Sz AID X

Register 4.6b: Attribute 1 when the sprite is affine.

Bit

Name

SpriteEntry
Variable

Value
Range

Description

0-7 X
posX 0-511 X coordinate of the left of

the sprite.

9-D AID
rsMatrixIdx 0-31 Maps the sprite to one of the

32 sprite affine matrices.

E-F Sz

objSize OBJSIZE_8
OBJSIZE_16

OBJSIZE_32
OBJSIZE_64

Sets the size of the sprite.

Used with the sprite's shape

in Table 4.10.

Table 4.8b: Listing of bits in Attribute 1 registers if the sprite is affine.

- 80 -

Sprite Attribute 2

F E D C B A 9 8 7 6 5 4 3 2 1 0

PB Pr TID

Register 4.7: Attribute 2 for all sprites.

Bit

Name

SpriteEntry

Variable

Value Range
Description

0-9 TID

tileIdx 0-1023 The offset in the tile
base where this

sprite's graphic tiles
start.

A-B Pr

objPriority OBJPRIORITY_0

OBJPRIORITY_1
OBJPRIORITY_2

OBJPRIORITY_3

The priority of the
sprite.

C-F PB

objPal ATTR2_PALETTE(n) The palette that is

used by this sprite's

tiles. Has no effect in
256-color mode.

Table 4.9: Listing of bits in all Attribute 2 registers.

libnds
Shape/Size

OBJSIZE
_8

OBJSIZE_
16

OBJSIZE_
32

OBJSIZE_
64

OBJSHAPE_SQU
ARE

8x8 16x16 32x32 64x64

OBJSHAPE_WID
E

16x8 32x8 32x16 64x32

OBJSHAPE_TALL 8x16 8x32 16x32 32x64

Table 4.10: The available sprite sizes in pixels using the libnds shape

and size attributes.

- 81 -

OAM (u16) 0 3 4 7 8 b c f

SpriteEntry 0 1 2 0 1 2 0 1 2 0 1 2

SpriteRotation hdx hdy vdx vdy

Table 4.11: How SpriteEntries and SpriteRotations are overlaid in

OAM.

- 82 -

//Define a constant for the NPC1 sprite
#define NPC1 0

void InitSprites(tOAM * oam, SpriteInfo *spriteInfo)
{
 //loads the Sprite's graphic's palette into the Sprite Palette in RAM.

 // In 256 color mode so use the whole palette

 // using a libnds function
 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, SpriteChronoPalette,
 SPRITE_PALETTE, SpriteChronoPaletteSize);

 //sprite 0 (NPC 1)
 //create a SpriteEntry and a SpriteInfo for the NPC1

 SpriteInfo * NPC1Info = &spriteInfo[NPC1];
 SpriteEntry * NPC1Entry = &oam->spriteBuffer[NPC1];

 //Initialize the SpriteInfo for NPC1

 NPC1Info->oamID = NPC1;
 NPC1Info->width = 16;
 NPC1Info->height = 32;

 NPC1Info->angle = 0;
 NPC1Info->entry = NPC1Entry;

 //Configure attribute 0 for NPC1 using libnds defined SpriteEntry struct

 //set sprite to 256 color, tall, and y placement = NPC1YCoordScreen
 NPC1Entry->posY = NPC1YCoordScreen;
 NPC1Entry->isRotoscale = false;
 NPC1Entry->rsDouble = false;

 NPC1Entry->objMode = OBJMODE_NORMAL;
 NPC1Entry->isMosaic = false;
 NPC1Entry->colMode = OBJCOLOR_256;

 NPC1Entry->objShape = OBJSHAPE_TALL;

 //Configure attribute 1 for NPC1 using libnds defined SpriteEntry struct
 //set size=32 and x placement = NPC1XCoordScreen

 NPC1Entry->posX = NPC1XCoordScreen;
 NPC1Entry->objSize = OBJSIZE_32;

 //Configure attribute 2 for NPC1 using libnds defined SpriteEntry struct
 //sets NPC1 to down stand (the tile offset we want) and priority 1
 NPC1Entry->tileIdx = (NPC1 * OMA_OFFSET) + SPRITE_DOWN_NORM;
 NPC1Entry->objPriority = NPCPriority;

 NPC1Entry->objPal = NPC1Info->oamID;

 //loads sprite picture for NPC 1 for this screen using libnds function
 dmaCopyHalfWords(SPRITE_DMA_CHANNEL, SpriteMagnusData,

 &SPRITE_GFX[(NPC1Info->oamID) * DMA_OFFSET], SPRITE_DATA_SIZE);
 return;}

Code 4.9: InitSprites() function that declares and initializes any

sprites.

- 83 -

 The function InitSprites() (see Code 4.9) is called in main() to

declare and initialize sprites. The function works as a simple way to

contain all sprite initialization calls much like InitBackgrounds() (see

Code 4.5). This function declares a SpriteInfo and a SpriteEntry for

the only sprite in this program (NPC1). In other programs this

function could declare and initialize many sprites. All variables are set

in the sprite, leaving no default value to chance.

Direct Memory Access Section 4.14

 Many of the functions discussed so far include a reference to the

dmaCopyHalfWords() function. This is a built-in function of libnds that

allows use of the NDS's Direct Memory Access (DMA). The DMA is a

fast way of transferring data internally in the NDS. Not only can it be

used to copy data, but it can also be used to fill data. An example of

filling data would be when a sprite is removed and the current palette

alpha color is used to clear out all of its tiles. When DMA is activated,

the DMA controller actually takes over the hardware (which

temporarily halts the CPU), does the transfer, and then returns control

back to the CPU. All of this is done through much quicker channels

than a direct array copy would in a for loop. There are four DMA

channels that range from 0 to 3 and work on the same priority system

as backgrounds and sprites. Channel 0 is the highest priority and is

usually reserved for time-critical operations and can only be used with

- 84 -

internal RAM. Channels 1 and 2 are usually used to transfer sound

data to the right sound buffers for playback. Finally, the lowest

priority channel, channel 3, is used for any general purpose transfer.

Channel 3 is usually labeled the “Sprite DMA Channel” and is primarily

used for loading in new bitmap or tile data.

 All transfer routines, including the use of DMA, need 3 things: a

source, a destination, and the amount of data to copy. The NDS has

three separate registers for each channel of DMA. The source

addresses are referred to in libnds as DMAx_SRC and reside in physical

memory at “0x040000B0 + (x * 12)” where x is the DMA channel.

The destination address registers work in much the same way where

they are defined in libnds as DMAx_DEST and are located at

“0x040000B4 + (x * 12)” where x is the DMA channel. Finally, control

registers for DMA are defined in libnds as DMAx_CR and are found at

“0x040000B8 + (x * 12)” where x is the DMA channel (see Register

and Table 4.12 for more). All of the DMA registers (source,

destination, and control) are 32 bit registers.

Libnds name: DMAx_CR, Address: 0x040000B8 + (x * 12)

F E D C B A 9 8 7 6 5 4 3 2 1 0

N

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

En I TM - CS R SA DA -

Register 4.8: Register map for all of the DMA control registers.

- 85 -

Bit Name Definition Description

0-F N
 The number of transfers in this

DMA call.

15-16 DA

DMA_DST_INC

DMA_DST_DEC
DMA_DST_FIX

DMA_DST_RESET

Destination Adjustment: increment

the destination, decrement the
destination, none because the

address is fixed, increment and
then reset

17-18 SA

DMA_SRC_INC

DMA_SRC_DEC
DMA_SRC_FIX

Source Adjustment, works exactly

like Destination Adjustment but
there is no RESET mode.

19 R

DMA_REPEAT Repeats the copy at each VBlank or

HBlank if those transfers are
enabled.

1A CS
DMA_16_BIT
DMA_32_BIT

The chunk size of the transfer: 16-
bit or 32-bit

1C-1D TM

DMA_START_NOW

DMA_START_HBL
DMA_START_VBL

DMA_START_FIFO

The timing modes of the DMA

channel which include: start
immediately, at HBlank, at VBlank,

or run on a first in, first out model

1E I
DMA_IRQ_REQ Allows the DMA to raise an

interrupt when finished.

1F En DMA_ENABLE Enables the DMA transfer for this

channel.

Table 4.12: Listing of bits in the DMAx_CR registers.

Fortunately, libnds has built-in functions to help with the use of

DMA. The libnds functions allow synchronous, asynchronous, and fill

type of operations. All three methods have the option of being run

either as a half word (16-bit) or a full word (32-bit). Both

synchronous and asynchronous have a standard copy function that

runs on DMA channel 3. Also, both of the fill functions run on DMA

- 86 -

channel 3. Otherwise, the functions leave the channel choice up to the

developer.

INPUT Section 4.15

 As with any computer or video game system, the NDS has

various ways to provide input to the system. The NDS has a 4-way

directional pad (otherwise known as a D-pad), four face buttons (A, B,

X, Y), two control buttons (Start and Select), two shoulder buttons (R

and L), a touch screen, a microphone, and recognition when the lid of

the unit is shut. Between the buttons and the touch screen there are

many opportunities to make a fully functioning interactive program.

While the microphone is a rather powerful input device, it is outside

the scope of this project.

BUTTON INPUT Section 4.16

 To interact and read input from these buttons, two basic

registers are used. The first register is defined by libnds as

REG_KEYINPUT (see Register 4.9). The process of checking to see if a

key is currently being pressed, or down, would be rather

straightforward. However, this register works opposite to all of the

other registers that have been discussed up to this point. In a state of

rest, the register is full of 1s and has a value of 0x3FFF and not 0x0 as

would be expected. Still this is easily avoided if kept in consideration

- 87 -

and all key checks are done in this way: #define

KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key). In this macro the

register is first inverted to a more intuitive form of a bit being set

means a key is down. Then the register is masked by checking it

against the key that we want to check. Note that this register and

method can be used to check if combinations of keys are all down at

once.

Libnds name: REG_KEYINPUT, Address: 0x04000130

F E D C B A 9 8 7 6 5 4 3 2 1 0

- Lid Touch Y X L R Down Up Left Right Start Select B A

Register 4.9: The register in memory that holds the current state of

all keys.

 All of this might sound like a lot of work, and in the days of GBA

development it was. Fortunately the people who developed libnds took

all of this into consideration and made a few useful functions to help

make key input controls much friendlier to the developer. Libnds

includes a simple function called scanKeys(). This function is called

immediately before any key press processing is done. It scans the

REG_KEYINPUT register and prepares data to be used for any of the

three key state comparison functions: keysHeld(), keysDown(), and

keysUp(). keysHeld() is used to scan for any keys that are down

currently and have been down for any time. While keysDown() and

keysUp() check for keys that have recently either have been pressed

- 88 -

down or let go of (the key has been allowed up) respectively. These

three functions are rather powerful and can make what used to be

very complex data input on the GBA, as demonstrated in Code 4.10,

very easy on the NDS.

scanKeys();

if(keysDown() & KEY_A)
{

 //Do something only when the key is initially pressed such as make a sound.
}

if(keysHeld() & KEY_A)

{
 //Do something such as move a character, shoot at a target, increment a timer.
}

if(keysUp() & KEY_A)
{
 //Do something only when the key is let go, such as stop a timer.

}

Code 4.10: An example of how keysDown(), keysHeld(), and

keysUp() can make the same button have three different

functionalities.

 The other register, REG_KEYCNT, is used only for a key-based

interrupt and can be seen in Register 4.10 and Table 4.13.

REG_KEYCNT has the same 14 bit positions for all the keys that exist

on the NDS just like REG_KEYINPUT. REG_KEYCNT, however, works

just like all of the other NDS registers in which bits need to be set in

order to be used. First a developer would want to set the bits for the

keys that would trigger the interrupt. Then, Bit 14 would need to be

- 89 -

set to enable the interrupt. Finally, Bit 15 would either need to be

cleared or set depending on how the developer wants the keys to be

evaluated. If the developer would wish that any of the keys that are

set in Bits 0-13 triggers the interrupt, then Bit 15 needs to be cleared.

If the developer would like multiple keys being pressed simultaneously

to trigger the interrupt, then Bit 15 would need to be set. While

REG_KEYCNT is not necessary for use to read in input, it can be used

to do some impressive things, for example, the REG_KEYCNT can

cause a software reset as demonstrated in Code 4.11.

Libnds name: REG_KEYCNT, Address: 0x04000132

F E D C B A 9 8 7 6 5 4 3 2 1 0

Op I Lid Touch Y X L R Down Up Left Right Start Select B A

Register 4.10: The register in memory that holds the settings for a

key-based interrupt.

Bit Name Definition Description

0-D Keys
KEY_x The same keys that are in REG_KEYINPUT.

These are the keys that will set off the

interrupt

E I BIT(14) Enables the keypad interrupt.

F Op

BIT(15) Boolean operator to decide which way the

keys will be evaluated to cause the

interrupt. If clear, it uses an OR (raise the
interrupt if any of the keys selected are

down). If set, it uses an AND (raise the
interrupt if all of the keys selected are

down).

Table 4.13: Listing of bits in the REG_KEYCNT register.

- 90 -

irqSet(IRQ_KEYS, swiSoftReset); // Enable Keypad interrupt and set it to run
 //swiSoftReset upon interrupt. irqSet is a libnds function.

// sets the key interrupt and triggers it when Select, Start, A, and B are pressed
//BIT(14) makes sure the key interrupt is set
//BIT(15) makes it so the interrrupt is triggered when all the
// keys are pressed and not just any of the keys

//The rest sets the interrupt to be triggered by pressing select + start + A + B
REG_KEYCNT |= KEY_A | KEY_B | KEY_SELECT | KEY_START | BIT(14) | BIT(15);

Code 4.11: This is an example of the use of the REG_KEYCNT register

to set up a key press interrupt.

TOUCH SCREEN INPUT Section 4.17

 In both REG_KEYINPUT and REG_KEYCNT, Bit 12 just represents

if the screen is touched. Unlike the other inputs on the NDS, the touch

screen is not just a Boolean that is either on or off. The touch screen

records the coordinates of the touch and in this way the developer can

make the objects on the screen interactive to the user. However, to

actually use the data of what was touched (or more appropriate, the

coordinate on the screen that is being touched), more information is

needed. Fortunately, libnds also has built-in structs to handle this

data and make it easy for a developer to interact with it. This struct is

called touchPosition and holds the px and py variables. The variables

px and py hold coordinates on the touch screen. To update the struct

to the currently touched position on the touch screen, the developer

simply has to call the other libnds function touchReadXY() (for a

simple code demonstration of this, refer to Code 4.12). Then the

- 91 -

developer can use the touchPosition struct to interact with the

REG_KEYINPUT state of the KEY_TOUCH variable (see Code 4.13).

//To read from the touch screen, declare a variable and set it to touchReadXY()

touchPosition touch = touchReadXY();
touch->px; // This contains the x pixel location.
touch->py; // This contains the y pixel location.

Code 4.12: This is a simple example of how the coordinates of the

touch screen are loaded into a variable.

//Variable to hold the current X and Y values on the touch screen.

int XTouch = 0;
int YTouch = 0;

//Set the current coordinates on the touch screen to a touchPosition struct
touchPosition touchXY = touchReadXY();

//If the touch is being held and not recently down or up

if(keysHeld() & KEY_TOUCH)
{
 XTouch = touchXY.px; // This contains the x pixel location.

 YTouch = touchXY.py; // This contains the y pixel location.
}
else
{

 XTouch = 0;
 YTouch = 0;
}

//Top answer box
if(10 <= XTouch && XTouch <= 100 &&
 10 <= YTouch && YTouch <= 100)

{
 //Do something depending on what the user touched on the screen
}

Code 4.13: This is an example of how to use the coordinates received

from a call to touchReadXY().

- 92 -

 After learning how to interact with the touch screen, some

interesting input possibilities open up. For example, in the open

source, user created PALib there is a function to do character

recognition of the Graffiti PDA language (see Figure 4.8). Using this

function a developer can create a new text entry process for users that

allows them to enter letters and words with the stylus instead of

navigating through the letter menu systems found on most video

game consoles. Through the use of the PA_CheckLetter() function, the

input from the stylus can be recorded and matched to an alphabet

letter. To see this function in action, refer to Code 4.14. Note that in

this case the return symbol is being used as an exit from the text

entering.

Figure 4.8: The PA Graffiti alphabet (22). Note the last three

characters are backspace, forward space, and the return characters.

- 93 -

bool EndGraffiti = false;

// Until the user is done, stay in loop
while (EndGraffiti == false)
{
 scanKeys();

 // Reset the screen when we start a new character
 if(keysDown() & KEY_TOUCH)
 PA_Clear8bitBg(0);

 PA_8bitDraw(0, 1);

 char letter = PA_CheckLetter(); // Returns the letter

 // there is a new letter
 if (letter > 31)

 {
 Name[NameLength] = letter;
 NameLength++;

 }
 // Backspace is entered
 else if ((letter == PA_BACKSPACE) && NameLength)
 {

 NameLength--;
 Name[NameLength] = ' '; // Erase the last letter
 }
 //return symbol is entered

 else if (letter == '\n')
 {
 EndGraffiti = true;

 }

 PA_OutputText(1, 2, 5, Name); // Write the text

 PA_OutputSimpleText(1, 2, 0,
 "Welcome to the NDS IBL system. Please enter your name.");

 swiWaitForVBlank();
}

Code 4.14: A simple while loop that shows how PA_Graffiti can be

used through the PA_CheckLetter() function.

 Another common use of the touch screen as input is a keyboard

application. Many keyboard applications are available for the NDS in

the homebrew community, some through the open source PALib and

- 94 -

others through user-created experiments shared with the community.

The keyboard application used in this project was borrowed from

HeadKaze's webpage (http://headkaze.drunkencoders.com/). The

keyboard used in particular is Extended Keyboard Example 5.

HeadKaze allows his programs to be used by the community at large

as long as credit is given. This is how much of the homebrew

community works. The community, generally, wishes that people

would make progress as a collective and not as individuals, so sharing

code and applications is very common. All that was necessary to get

HeadKaze's keyboard functions to work in this project was the

inclusion of a few files and a few simple function calls (see Code 4.15

for an example).

- 95 -

//Keyboard functions and graphic provided by HeadKaze
#include “keyboard.c”

//A bool to decide when typing is done
bool EndTyping = false;

//While not done typing
while(EndTyping == false)
{
 //Scankeys for input

 scanKeys();

 //Set test to a character returned by the keyboard function

 test = processKeyboard(&str[0], MAX_TEXT, ECHO_ON);

 //If test is 0 do nothing.
 if(test == 0)

 {}
 //else if test is the return character
 else if(test=='\n')

 {
 //Clear the line being outputed to the current line on string
 strcpy(str, ““);

 //Add a return character to the string
 Question1[Question1Length] = test;
 Question1Length++;
 }

 //else if the close application button was touched
 else if(test == '\x1')
 {

 //end typing for the user
 EndTyping = true;
 }
 //else some other key was pressed

 else
 {
 //Add the character to the string

 Question1[Question1Length] = test;
 Question1Length++;
 }

 swiWaitForVBlank();
}

Code 4.15: A simple example of how the keyboard functions can be

used to collect data.

- 96 -

 As shown throughout this section there are many ways to collect

data on the NDS. Like many other video game console systems,

buttons provide much of the input to the system. However, the NDS is

unique in that it is equipped with a touch screen. This touch screen

allows many unique and interesting opportunities for interactivity by

both the developer and the use. Not only can users touch objects, but

they can draw, enter text like on a PDA system, and even type on a

virtual keyboard.

GRAPHIC EFFECTS - MOSAIC Section 4.18

 The NDS has hardware support for graphic effects such as

mosaic, alpha blending, and windowing. Mosaic is a graphics effect

that became popular in the 1990s both in video games and other

media like television and film. Mosaic effects were introduced on the

Super Nintendo hardware first with the release of the launch title

Super Mario World. Mosaic effects were used as a transition effect and

have since become a staple of what is considered the “look” of the

1990s.

 The effect works by taking in two dimensions with parameters w

and h. These numbers divide the sprite or background into blocks of

size w x h pixels. These blocks act like pixels on a much larger scale

by using the top-left pixel of each block and using it to fill the rest of

the block, which is what causes the “blocky” effect. To see the effect

- 97 -

in action, refer to Figure 4.9. Figure 4.9 shows a normal sprite on the

left and a sprite that has been put through a 2x2 mosaic (stretched 2

times both horizontally and vertically). The black lines in the pictures

indicate the vertical block-boundaries of the mosaic effect in the

sprite. In the picture that is mosaiced, the top-left pixel is copied

down into the 2x2 matrix in each block.

Figure 4.9: A normal sprite on the left and a 2x2 mosaiced version on

the right.

- 98 -

 This effect is not trendy anymore; however it still can be used on

the NDS very easily on either screen. First, on any background or

sprite, mosaic needs to be enabled. To do this in background x, Bit 6

of BGx_CR (see Register 4.2 and Table 4.5) needs to be enabled. To

enable mosaic on a sprite, Bit 12 of attribute 0 needs to be set for

each sprite to which the mosaic effect applies (see Register 4.5 and

Table 4.7). The values that the sprites or backgrounds need to be

mosaiced by are entered in MOSAIC_CR (see Register 4.9 and Table

4.13). Each portion of MOSAIC_CR is divided into a four bit section.

This means that both backgrounds and sprites have up to 16 different

mosaic states in each direction. Generally a cycle takes place to go

from state zero to state 16 or vice versa (see Code 4.16 for an

example).

Libnds name: MOSAIC_CR, Address: 0x0400004C,
Sub name: SUB_MOSAIC_CR, Sub Address: 0x0400104C

F E D C B A 9 8 7 6 5 4 3 2 1 0

Ov Oh Bv Bh

Register 4.11: The contents of the Mosaic control register.

Bit Name Description

0-3 Bh The horizontal stretch of the backgrounds.

4-7 Bv The vertical stretch of the backgrounds.

8-B Oh The horizontal stretch of sprites or objects.

C-F Ov The vertical stretch of sprites or objects.

Table 4.14: Listing of bits in MOSAIC_CR.

- 99 -

void MosaicFunc()
{

 int MosaicState = 0; //The current mosaic state

 for(MosaicState = 0; MosaicState < 16; MosaicState++)
 {

 MOSAIC_CR = 0; //Clears the current Mosaic state

 MOSAIC_CR = (((MosaicState)) | //Sets the BG horizontal stretch
 (((MosaicState))<<4) | //Sets the BG vertical stretch

 (((MosaicState))<<8) | //Sets the sprite horizontal stretch
 (((MosaicState))<<12)); //Sets the sprite vertical stretch

 swiWaitForVBlank(); //Wait for the screen to be drawn
 }

 return;

}

Code 4.16: Example of a function that effects both sprite and

background mosaic levels.

GRAPHIC EFFECTS – ALPHA BLENDING Section 4.19

 Another graphic effect that is used frequently on the NDS is

alpha blending. Alpha blending allows the combination of color values

of two overlapping layers, which creates a semi-transparency of one of

the layers. For example, if there are two layers, A and B, that overlap

each other, and consider A to be on top of B, then the color value of a

pixel in this region is defined as

C = WA * A + WB * B

where WA and WB are the weights of the layers. Usually these

weights are normalized between the values of 0 and 1, where 0 would

represent a layer being fully transparent and 1 would represent a layer

being fully visible. These values allow either of the layers being fully

- 100 -

transparent or a mixture of the two layers being combined as shown in

Table 4.18. Note that in these values the sum of the weights is 1 so

that the final color of C is between 0 (black) and 1 (white) as well.

 On the NDS, backgrounds are always enabled for blending.

However, to allow blending in sprites, the sprite's Attribute 0 Bit A has

to be set (as seen in Register 4.5 and Table 4.7). Three registers

control blending on the NDS; these registers are defined in libnds as

BLEND_CR, BLEND_AB, and BLEND_Y (Registers 4.12-4.14 and Tables

4.15-4.17). BLEND_CR defines which parts of the graphics system

(Backgrounds, sprites, and backdrop) are in which layers of the blend.

This register also defines which type of blend mode is in use.

BLEND_AB defines the weights for the A and B layers to use when

blending. Finally BLEND_Y defines the weight that is being used while

fading to black or white, which are two of the modes defined in

BLEND_CR. Note that since the NDS does not compute floating point

numbers, the weights in BLEND_AB and BLEND_Y are fixed-point

numbers in 1.4 format. Because of this, and the fact that they are

binary values, there are 17 blend levels in each of these registers.

Libnds name: BLEND_CR, Address: 0x04000050,

Sub name: SUB_BLEND_CR, Sub Address: 0x04001050

F E D C B A 9 8 7 6 5 4 3 2 1 0

- bBD bSpr bBG3 bBG2 bBG1 bBG0 BM aBD aSpr aBG3 aBG2 aBG1 aBG0

Register 4.12: The blend control register.

- 101 -

Bit Name Definition Description

0 aBG0
BLEND_SRC_BG0 Use BG0 as part of the A layer

of the blend.

1 aBG1 BLEND_SRC_BG1 Use BG1 as part of the A layer

of the blend.

2 aBG2 BLEND_SRC_BG2 Use BG2 as part of the A layer
of the blend.

3 aBG3 BLEND_SRC_BG3 Use BG3 as part of the A layer

of the blend.

4 aSpr BLEND_SRC_SPRITE Use all blend enabled sprites

as part of the A layer of the
blend.

5 aBD BLEND_SRC_BACKDROP Use the backdrop as part of

the A layer of the blend. The
backdrop is a solid plane of

color 0 (black).

6-7 BM

BLEND_NONE
BLEND_ALPHA

BLEND_FADE_WHITE
BLEND_FADE_BLACK

The type of blending being
used ie off, standard alpha

blending, fade to white, or
fade to black.

8 bBG0
BLEND_DST_BG0 Use BG0 as part of the B layer

of the blend.

9 bBG1
BLEND_DST_BG1 Use BG1 as part of the B layer

of the blend.

A bBG2
BLEND_DST_BG2 Use BG2 as part of the B layer

of the blend.

B bBG3
BLEND_DST_BG3 Use BG3 as part of the B layer

of the blend.

C bSpr BLEND_DST_SPRITE Use all blend enabled sprites

as part of the B layer of the
blend.

D bBD BLEND_DST_BACKDROP Use the backdrop as part of

the B layer of the blend. The
backdrop is a solid plane of

color 0 (black).

Table 4.15: Listing of all the bits in the BLEND_CR register.

- 102 -

Libnds name: BLEND_AB, Address: 0x04000052,

Sub name: SUB_BLEND_AB, Sub Address: 0x04001052

F E D C B A 9 8 7 6 5 4 3 2 1 0

- evb - eva

Register 4.13: The A and B weight blend control register.

Bit Name Definition Description

0-4 eva
(no libnds
definition)

The top blend weight used for layer A.
Only used in alpha blend mode.

8-C evb (no libnds

definition)

The bottom blend weight used for layer B.

Only used in alpha blend mode.

Table 4.16: Listing of all the bits in the BLEND_AB register.

Libnds name: BLEND_Y, Address: 0x04000054,

Sub name: SUB_BLEND_Y, Sub Address: 0x04001054

F E D C B A 9 8 7 6 5 4 3 2 1 0

- evy

Register 4.14: The Y weight blend control register.

Bit Name Definition Description

0-4 evy
(no libnds

definition)

The weight used in fades to black and

white in layers.

Table 4.17: Listing of all the bits in the BLEND_Y register.

WA WB Effect

1 0 Layer A is fully visible and Layer B is hidden.

0 1 Layer B is fully visible and Layer A is hidden.

a 1-a Alpha blending, a is the opacity in this case.

Table 4.18: Listing of all the different uses of weighted layers in alpha

blending.

 A few minor rules must be followed for alpha blending to work

correctly on the NDS. All elements in Layer A must be in front of the

elements in Layer B. This means that all elements in Layer A need to

- 103 -

have a higher priority than the elements in Layer B to blend properly.

Also, when in alpha-blend mode, the blend will only occur on the pixels

that are overlapping and non-transparent in Layers A and B. Any

pixels that are non-overlapping will not be affected by the blend.

Finally, if windows are in use the correct bits need to be enabled in the

WIN_IN or WIN_OUT registers or else no blend effects will work

correctly (please refer to Bits 5 and D in Registers 4.15-4.16 and

Tables 4.20-4.21). For a brief example of how blending works please

refer to Code 4.17 for an example of fading out to black and then

fading in from black.

- 104 -

// void FadeOut(void)
// This function takes the current screen and fades to black.

//
// Input: None
// Output: None (Fades screen to black.)
void FadeOut(void)

{
 int y; //loop variables

 //Set fade control register to fade to black BG0, BG1, and sprites

 BLEND_CR = BLEND_SRC_BG0 | BLEND_SRC_BG1 | BLEND_SRC_SPRITE |
 BLEND_FADE_BLACK;

 for(y = 0; y < 17; ++y) //cycle through all 16 modes of fading
 {
 BLEND_Y = y;

 swiWaitForVBlank(); //Wait for the screen to be drawn
 }

 return;
}

// void FadeIn(void)
// This function loads the new screen and then fades from black.
//
// Input: None

// Output: None (Loads new screen and then fades screen from black.)
void FadeIn(void)
{

 int y; //loop variables

 //Set fade control register to fade to black BG0, BG1, and sprites
 BLEND_CR = BLEND_SRC_BG0 | BLEND_SRC_BG1 | BLEND_SRC_SPRITE |

BLEND_FADE_BLACK;

 for(y = 16; y >= 0; --y) //cycle through all 16 modes of fading

 {
 BLEND_Y = y;

 swiWaitForVBlank(); //Wait for the screen to be drawn

 }
 return;}

Code 4.17: Example functions of how to fade out to black and fade in

from black.

- 105 -

GRAPHIC EFFECTS – WINDOWING Section 4.20

 One more graphic effect that is used by the NDS is windowing.

Windowing allows the developer to divide the screen into separate

regions. Two basic windows are known as Win0 and Win1 and a lesser

used window is called the Sprite Window. While Win0 and Win1 can be

used to show a portion of the display screen, the Sprite Window is a

window created out of the visible pixels of all the sprites on screen.

These windows are enabled in the DISPLAY_CR register as seen in

Register 4.1 and Table 4.4. Win0 and Win1 are defined by their left,

right, top, and bottom boundaries. These boundaries are represented

by the X and Y coordinates of the line that is the limit of the side of the

window.

As shown in Table 4.19 each window has 8 bits for each

coordinate with a value range of 0 to 255, which is enough for the

screen width and a little extra for the screen height. The NDS

hardware does not support any types of overlap or out-of-range values

for the windows. If either of these two scenarios occurs, the NDS will

not render the window. For example, if a bottom coordinate of a

window is placed above a top coordinate, then the NDS will not

render. The same thing would happen if either the top or bottom

coordinate went over 192, which is the screen height of the NDS. In

addition to the size of the window, a developer needs to determine

- 106 -

which elements of the graphical system will be rendered inside and

outside of the window. In this way, windows can be used as masks to

show parts of a lower priority background or sprite. Finally, the

windows have their own priority structure. Win0 takes priority over

Win1, which takes priority over WinOut. Refer to Code 4.18 for a

simple demonstration of opening, expanding, collapsing, and then

closing a window.

- 107 -

Libnds
name

Address Sub name Sub
Address

Description

WIN0_X0 0x04000041 SUB_WIN0_X0 0x04001041 The left

boundary of
Win0.

WIN0_X1 0x04000040 SUB_WIN0_X1 0x04001040 The right

boundary of
Win0.

WIN0_Y0 0x04000045 SUB_WIN0_Y0 0x04001045 The top

boundary of
Win0.

WIN0_Y1 0x04000044 SUB_WIN0_Y1 0x04001044 The bottom

boundary of
Win0.

WIN1_X0 0x04000042 SUB_WIN1_X0 0x04001042 The left

boundary of

Win1.

WIN1_X1 0x04000043 SUB_WIN1_X1 0x04001043 The right
boundary of

Win1.

WIN1_Y0 0x04000047 SUB_WIN1_Y0 0x04001047 The top
boundary of

Win1.

WIN1_Y1 0x04000046 SUB_WIN1_Y1 0x04001046 The bottom
boundary of

Win1.

Table 4.19: A list of all the window registers.

Libnds name: WIN_IN, Address: 0x04000048,
Sub name: SUB_WIN_IN, Sub Address: 0x04001048

F E D C B A 9 8 7 6 5 4 3 2 1 0

- Bld Spr BG3 BG2 BG1 BG0 - Bld Spr BG3 BG2 BG1 BG0

- Win1 - Win0

Register 4.15: The WIN_IN register.

- 108 -

Bit Name Description

0-5 Win0

Select which elements render inside Win0.

0-3 are backgrounds, 4 is sprites, and 5 is if blending is
allowed.

8-D Win1 Select which elements render inside Win1.
8-B are backgrounds, C is sprites, and D is if blending is

allowed.

Table 4.20: Listing of the bits in the WIN_IN register.

Libnds name: WIN_OUT, Address: 0x0400004A,
Sub name: SUB_WIN_OUT, Sub Address: 0x0400104A

F E D C B A 9 8 7 6 5 4 3 2 1 0

- Bld Spr BG3 BG2 BG1 BG0 - Bld Spr BG3 BG2 BG1 BG0

- WinSpr - WinOut

Register 4.16: The WIN_OUT register.

Bit Name Description

0-5 WinOut
Select which elements render outside Win0 and Win 1.
0-3 are backgrounds, 4 is sprites, and 5 is if blending is

allowed.

8-D WinSpr Select which elements render inside the Sprite Window.

8-B are backgrounds, C is sprites, and D is if blending is
allowed.

Table 4.21: Listing of the bits in the WIN_OUT register.

- 109 -

//Shows BG0, BG1, Sprites, and Blends in Win0
WIN_IN = WIN0_BG0 | WIN0_BLENDS

//make the text box appear to expand from a central point
for(x = ((Bottom - Top) >> 1); x >= 0; x--)
{

 //Store the Text Box Window's Left boundary in it's register
 WIN0_X0 = LEFT((Left + (2 * x)));
 //Store the Text Box Window's Right boundary in it's register
 WIN0_X1 = RIGHT((Right - (2 * x)));

 //Store the Text Box Window's Top boundary in it's register
 WIN0_Y0 = TOP((Top + x));
 //Store the Text Box Window's Bottom boundary in it's register

 WIN0_Y1 = BOTTOM((Bottom - x));

 //wait for end of draw for syncing, sync a few times for a delay
 swiWaitForVBlank();

 swiWaitForVBlank();
 swiWaitForVBlank();
}

//wait for screen to stop drawing to sync
swiWaitForVBlank();

//make the text box appear to shrink to a central point
for(x = 0; x <= ((Bottom - Top) >> 1); x++)
{
 //Store the Text Box Window's Left boundary in it's register

 WIN0_X0 = LEFT((Left + (2 * x)));
 //Store the Text Box Window's Right boundary in it's register
 WIN0_X1 = RIGHT((Right - (2 * x)));

 //Store the Text Box Window's Top boundary in it's register
 WIN0_Y0 = TOP((Top + x));
 //Store the Text Box Window's Bottom boundary in it's register
 WIN0_Y1 = BOTTOM((Bottom - x));

 //wait for screen to stop drawing to sync
 swiWaitForVBlank();

}

//Shows just BG0, BG1, Sprites, and Blends in Win0 (excludes BG0)
WIN_IN = WIN0_BG1 | WIN0_SPRITES | WIN0_BLENDS;

Code 4.18: Example of how to use the Window registers.

- 110 -

WI-FI Section 4.21

 As discussed previously, the NDS has built-in Wi-Fi IEEE 802.11b

and g support with WEP encryption. The NDS has built-in firmware

that allows the user to set up access points through Wi-Fi enabled

games. Access points can be completely open or have basic WEP

encryption; however the NDS does not support WPA or more

complicated types of encryption. The NDS also supports a special

wireless format created by Nintendo and secured using RSA security

signing which is used by the built-in chatting program, PictoChat. Wi-

Fi on the NDS can be used to play games on a wireless LAN with

people in the same physical area, or to play games through the

Nintendo Wi-Fi Connection service. The Nintendo Wi-Fi Connection

service is a free service provided by Nintendo, which allows users to

connect to other users to play games.

 The first breakthrough for NDS Wi-Fi homebrew was when Steve

Stair released his dswifi library (13). Since then, the library has been

added to devkitPro and has become open source; many users in the

homebrew community provide support for the library. Furthermore,

the library has been adapted into other, more comprehensive NDS

homebrew libraries, such as PALib. The majority of the dswifi library is

low-level in regards to how closely it works with Wi-Fi protocols

directly and does not have extensive documentation. PALib has built

- 111 -

upon dswifi and provides a much more high-level use of Wi-Fi

functions to enable developers access to some of the more basic Wi-Fi

functionality. Because of this, the PALib Wi-Fi functions are used in

this project.

 Since the NDS does not have a direct way to connect to a server

or a database, a website is needed to take input through a string of

Request variables in the URL and then store the data into a database.

Unfortunately, the NDS does not support a built-in web browser. A

third-party web browser made by Opera can be purchased; however, it

is run through the NDS game slots, which would mean that no other

program (like PBL) could be run at the same time. Because of this,

the NDS can only interact with this website by sending a URL built of

the data that is to be stored over the Wi-Fi. In order for the NDS to be

able to do this, the program must initiate the Wi-Fi, connect to the Wi-

Fi Connection service, and send the URL request over the Wi-Fi (see

Code 4.19 for an example).

- 112 -

//if the Wi-Fi has not been initialized yet
if(WifiInitialized == false)

{
 PA_InitWifi(); //Run the PALib Init Wi-Fi to turn it on
 PA_ConnectWifiWFC(); //Connect to the Nintendo Wi-Fi Connection Service

 WifiInitialized = true; //Flip the flag so that Wi-Fi is on
}

//A variable to build the request URL to send

string request_text = “http://umhc-
stgprodw.umh.edu/IBLDS/Default.aspx?Username=Student&Question1=Test”;

//Create a const char * that points to the URL
const char *WebSite = request_text.c_str();
//Create a char * that points to the URL
char * Address = const_cast<char*>(WebSite;)

//Create a buffer for the returned data
char *buffer2 = (char*)malloc(256*256);

//Call the PALib function that sends a URL and reads back data
PA_GetHTTP(buffer2, Address);

Code 4.19: This demonstrates a brief example of how to send data to

a website over the NDS Wi-Fi.

- 113 -

DEVELOPMENT PROCESS Chapter 5

DEVELOPMENT ENVIRONMENT Section 5.1

The production of the prototype was a long and difficult process,

mostly because of the lack of a true development environment. The

homebrew programmer does not have access to expensive and useful

IDEs and debugging tools for NDS programming. The IDE of choice for

the average homebrew programmer is Visual C++ Express Edition

2005 which is freely available for download through Microsoft (15).

There are tutorials that exist online which claim it is possible to add

IntelliSense compatibility for libnds to any Microsoft Visual Studio

product, although the instructions rarely work as well as the authors

claim.

Standard C or C++ is used to build homebrew NDS games;

however, the developer needs to keep efficiency in mind because of

the slower speed processors inside the NDS and the amount of graphic

computations the NDS processes. Because of this efficiency need,

Object Oriented Programming (OOP), functions within functions, and

recursion are to be kept to a minimum. In fact, on the GBA, because

of the even slower processor, most homebrew developers decided to

program only in C with no OOP and optimizing often used sub-routines

- 114 -

in assembly language. Fortunately, the NDS's hardware has advanced

enough to allow for richer programming options to be used sparsely.

Visual C++ Express does not have libnds or other NDS

homebrew libraries built-in, for that a developer requires devkitPro.

DevkitPro (16) is a combination of libraries and toolchains for many

homebrew developers including NDS, GBA, PSP, Nintendo GameCube,

and more. DevkitPro also includes examples for development on

various video game systems, MSYS (a Unix-like shell environment),

gcc /g++ (an open source collection of compilers), installs path

variables for development, enables the use of the “Make” commands in

Windows, and installing many smaller tools that convert files to be

used at compile. Further libraries like PALib can be installed with

devkitPro for more development options.

The majority of homebrew developers use templates that are

provided by devkitPro or PALib to build NDS projects. These templates

use Make files to build many different files into a compiled final

product. The Make command is not natively supported on Windows

and is one of the many reasons to install devkitPro. By running a

Make file, a developer can take standard program files (.c, .cpp, .h)

from various folders, input various data files (images, audio, flat files),

turn all of them into .obj files, and compile them into a final product of

a .nds file (the NDS file type) with one simple command. Setting up a

- 115 -

Make file by hand is a rather difficult and extensive task; however the

template Make files work very easily out of the box with little

configuration, so most developers will never need to edit their Make

files. There are also tutorials online to have Microsoft Visual Studio

products compile NDS code so that make files and the gcc /g++

compiler are not necessary. However, these solutions usually leave

out a lot options that running a full Make file can provide.

After programming and building a NDS game, a developer will

need some way to test it. The easiest way to do this immediately is to

use an emulation program. An emulator duplicates the functions of

one system using a different system, so that a computer can behave in

a way similar to an older computer or a piece of hardware, for instance

the NDS. The most robust emulator currently available is No$gba

(17), which emulates both GBA and NDS games. No$gba provides the

most realistic emulation of the NDS hardware and is free to download.

The developer of No$gba even offers a developer version of the

emulator that contains special tools like a debugger, the ability to see

what is currently loaded into OAM and backgrounds, and the contents

of registers; however, these extra features need to be purchased

directly through the developer of the software (18).

In order to test a homebrew game on the NDS hardware, a

developer will need additional software and hardware. There are many

- 116 -

options for how to play homebrew software on the NDS (19). The

solution that was used for the development of this project was to

purchase a CycloDS Evolution game card (20). A microSD memory

card containing the homebrew software is placed inside the CycloDS

card and then the CycloDS card is placed inside the SD game slot of

the NDS, known as SLOT-1. The CycloDS runs software directly in

SLOT-1 without any other types of hardware, software, or cracks like

some other SLOT-1 and SLOT-2 (GBA cartridge slot) solutions.

HIGH-LEVEL LIBRARIES Section 5.2

This project has produced the beginnings of what could be a

high-level library that limits developer interaction with registers.

Some of these examples can be seen throughout this paper in code

such as the Background struct (Code 4.1), Background functions (Code

4.2-4.4), and graphical fade functions (Code 4.17). These functions

are rather diverse and hard to narrow down to just one library.

However, this project has produced a few smaller libraries that have a

narrower range of utility. One of these libraries is the Questions

library which contains a struct for questions that are asked in multiple

choice quizzes and two functions that allow the asking and answering

of questions.

- 117 -

typedef struct
{

 int QuestionNumber; //The number of the current question
 char *QuestionText; //The question text

 char *Answer1Text; //First choice in the multiple choice window

 char *Answer2Text; //Second choice in the multiple choice window
 char *Answer3Text; //Third choice in the multiple choice window
 char *Answer4Text; //Fourth choice in the multiple choice window

 int CorrectAnswer; //Correct answer

 char *CorrectAnswerExplanation; //Text explaining the correct answer

 char *IncorrectAnswerExplanation; //Text explaining the incorrect answer
}Question;

void AskQuestion(int QuestionBoxLeft, int QuestionBoxRight, int QuestionBoxTop,

int QuestionBoxBottom, Bg BgQuestion, Bg BgAnswers, bool Transp,
bool Box, int QuestionNumber)

int AnswerQuestion(int QuestionNumber, Bg QuestionBg, Bg AnswerBg)

Code 5.1: This is the contents of Questions.h which contains the

Question struct and the function definitions of two functions that ask

and answer questions.

The Question struct allows for multiple choice questions that

have question text, up to 4 answers, a correct answer, and text for

when a user give a correct or an incorrect answer. The AskQuestion()

function takes the window coordinate bounds of the box that will hold

the question; the backgrounds the question and answers will be

displayed on; a Boolean if there will be a bounding box around the

question text; another Boolean if that bounding box will be

transparent; and the QuestionNumber of the question to be asked.

With this information the code will select the Question and load all of

- 118 -

the relevant data in the correct locations on the screen without the use

of any registers, all that is required is the developer send the proper

variables and define the data in the Questions array in Questions.cpp.

The function AnswerQuestion() waits for an answer from the user

using the same variables from AskQuestion() and then outputs

whether the answer was correct or incorrect from the Questions array.

Another example of a library produced during this project that

allows developers to not have to deal with registers is the Text library

(contained in the Text.h and Text.cpp files), which outputs windows to

the screen with formatted text and can contain optional bounding

boxes. The Question library uses the Text library to format the boxes

it outputs and the control of flow through the dialog by the user. A

developer can implement the Question library without knowledge of

the Text library and still have a functioning portion of a project. Of

course the libraries that were made for this project are not as robust

or extensive as the open source PALib library. If a developer wanted

to truly be independent of dealing with registers, it could possibly be

achieved through PALib.

However to program without registers completely seems rather

problematic because of the depth of knowledge required of the

hardware while programming would be necessary in order to know

how to program advanced tasks like bit shifting and creating new

- 119 -

functions and features. Because of this level of expertise it is doubtful

that someone with very little programming background could develop

NDS games after setting up the developer's environment. Developing

for the NDS might even require at least a rudimentary knowledge of C

or C++ before beginning and a willingness to learn about more

advanced features such as bit manipulation. NDS development cannot

easily be picked up by a teacher that is just “computer savvy” even

with PALib. However, a library similar to mine or PALib could be

picked up by an experienced programmer or a small video game shop

and be used to make NDS programs rather easily.

- 120 -

Figure 5.1: A demonstration of a

multiple choice question being

asked in the prototype.

Figure 5.2: The user has selected

an answer and it is the correct

answer in the prototype.

PROTOTYPE Section 5.3

 The prototype that was built for this project did successfully

connect to a website to store data in the database. Unfortunately,

every time the program is run, it takes a rather long time to connect

to Wi-Fi and then the database. However, every successive

connection after the initial connection is so quick that the output

message to the user that the program is saving is flashed across the

- 121 -

screen so fast that the user may miss it and just see the “Saved”

message (see Figure 5.3).

The Graffiti text function works well enough, but it is prone to

excessive errors and might not be ideal for major amounts of text

entry. On the other hand, the keyboard functionality worked

extremely well and would probably make a much better text entry

system for the user than the Graffiti system. If the Graffiti system is

desired from the developer it could be done better through a tighter

tuned recognition function; however the sensitivity of the NDS's touch

screen could be the problem.

Unfortunately this prototype did not have the capabilities of

testing a chat like system between multiple NDSes. However, a chat

system would be overly complex to develop and probably require so

many database calls that it would have to be a program in and of itself

and could not be built-in to another game or program like the PBL

prototype. It is probably possible to make a chatting client for the

NDS, but in the context of the PBL program it is probably not feasible.

- 122 -

Figure 5.3: Screen capture of the

prototype saving to the database.

Figure 5.4: Screen capture of the

prototype using the Graffiti

system. Note how the use of the

Graffiti “e” sometimes results in

incorrect letters like “c” and “s”.

- 123 -

Figure 5.5: A demonstration of the keyboard module working inside

the prototype.

- 124 -

CONCLUSION Chapter 6

 Problem-Based Learning (PBL) can be a very powerful tool for

learning in the classroom. This tool promotes self-learning and

motivation that may produce better students who can discover for

themselves the love of independent learning and learning strategies

that may be a benefit to their future learning. Unfortunately, today's

K-12 classrooms are overstressed due to insufficient school budgets

which could make PBL teaching a dangerous gamble for most. PBL

may become even more problematic if taught in a standard “pen and

paper” style because the differences between it and standard teaching

are less pronounced and the benefits are less dramatic.

As a result, a more technological approach to PBL may make the

learning experience better for the learners through the use of

multimedia and game type learning. Most students in K-12 are

accustomed to using video games, the Internet, and multimedia like

video, audio, and interactives. If these tools can be harnessed to

teach students in a more dynamic, interactive, and enjoyable way, not

only would students learn more, they would be able to retain it better

and have a zest to learn independently. Since a technological PBL

model has these added benefits to offer over the “pen and paper” PBL

model, more schools may be willing to embrace technology such as a

- 125 -

PBL tool, which could lead to PBL being used more frequently in the K-

12 curriculum.

 Although a technological approach could add value to the

learner's experience, it also could add more cost to the school's

budget. The NDS is a relatively less expensive alternative to provide a

technological PBL solution. The cost of having a massively functioning

website and a computer for every student to log onto the website

would be enormous. However, the NDS is priced at about one fifth or

even one tenth as much as a computer. The NDS is more affordable

for schools to try to teach students in a new way. Not only that, but

many children are accustomed to using the NDS or playing other video

games. There are many products available today that are specifically

built to emulate other video games while educating users, such as the

line of products from LeapFrog Enterprises. A full curriculum built

around the idea of combining PBL and video game play could be a very

powerful educational tool.

 Unfortunately, programming for the NDS is not an easy task.

Building modules for classroom use will not be something that the

average teacher can just easily accomplish. Furthermore, most major

video game developers (like Nintendo itself) will probably not see

enough profit in this venture to make it economically attractive. If a

smaller, more independent third-party developer were to build these

- 126 -

games closely with a small school district though, this program could

be successful. The video game developer could work with the school's

administration and faculty to develop a curriculum and decide how the

students should interact with different problems. This video game

developer could then manufacture different modules for each problem

for different grades or curricula and still stay in the bounds of what the

school district believes is important for students of a particular grade

to learn. The video game developer could even work with a small

website or Internet company to provide online supplements to the

curriculum that the NDS cannot handle, such as High Definition

content or talking to live experts for case wrap-up.

Many factors would have to be considered, including the relative

cost-benefit ratio. But, if the PBL system proves to be successful in

the first school district, perhaps the video game company could

expand to more schools nationwide. If a school district could work

closely with a small video game developer, PBL could find a successful

back door into our K-12 schools.

- 127 -

REFERENCES

1) Norman, G. & Schmidt, H. (1992). The psychological basis of
problem-based learning: A review of the evidence. Academic Medicine

67(9), 557-565.

2) Savery, John R. “Overview of Problem-Based Learning: Dentitions
and Distinctions.” The Interdisciplinary Journal of Problem-Based

Learning 1.1 (2006): 9-20.

3) Boud, D., & Feletti, G. (1997). The challenge of problem-based

learning (2nd Ed.). London: Kogan Page.

4) Barrows, H. S., & Tamblyn, R. M. (1980). Problem-based learning:
An approach to medical education. New York: Springer.

5) Duch, B. J., Groh, S. E., & Allen, D. E. (2001). Why problem-based

learning? A case study of institutional change in undergraduate
education. In B. Duch, S. Groh, & D. Allen (Eds.), the power of

problem-based learning (pp. 3-11). Sterling, VA: Stylus.

6) Ertmer, P. A., & Simons, K. D. (2006). Jumping the PBL
implementation hurdle: Supporting the efforts of K–12 teachers.

Interdisciplinary Journal of Problem-based Learning, 1 (1), 40-54.

7) Stepien, W. J., & Gallagher, S. (1993). Problem-based learning: As

authentic as it gets. Educational Leadership, 50(7), 25-28.

8) Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, J. G., Holbrook,
J., Puntambekar, S., & Ryan, M. (2003). Problem-based learning

meets case-based reasoning in the middle school science classroom:
Putting learning by design into practice. Journal of the Learning

Sciences, 12, 495-547.

9) Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in
problem solving. Journal of Child Psychology and Psychiatry and Allied

Disciplines, 17, 89-100.

10) Caplow, Julie, and Mark Ryan. “Teaching At Mizzou: a Guide for

New Faculty, Graduate Instructors and Teaching Assistants.”
Teachandlearn.Missouri.Edu. 13 Mar. 2008. University of Missouri. 13

June 2008
<http://teachandlearn.missouri.edu/guide/chapters/pbl.htm>.

- 128 -

11) Korth, Martin. “Specifications.” GBATEK. 2007. 13 June 2008

<http://nocash.emubase.de/gbatek.htm#dstechnicaldata>.

12) “Libnds.” Wikipedia. 17 Apr. 2008. 13 June 2008
<http://en.wikipedia.org/wiki/Libnds>.

13) “DS Wi-Fi Bounty.” 9 July 2006. 13 June 2008 <http://sc.tri-

bit.com/dswfb>.

14) “Nintendo DS Lite - ARM Powered Product.” www.arm.com. 22
June 2008

<http://www.arm.com/markets/home_solutions/armpp/11961

15) "Visual Studio 2005 Express Editions." Microsoft. 2008. 25 June
2008 <http://www.microsoft.com/express/2005/>.

16) "DevkitPro." DevkitPro. 24 June 2008. 25 June 2008
<http://www.devkitpro.org/>.

17) "No$Gba - Nocash Gameboy Advance / Nintendo Ds Emulator."

2008. 25 June 2008 <http://nocash.emubase.de/gba.htm>.

18) "No$Gba - Nocash Gameboy Advance / Nintendo Ds Debugger."
2008. 25 June 2008 <http://nocash.emubase.de/gba-dev.htm>.

19) "Nintendo DS Homebrew." Wikipedia. 24 June 2008. 25 June 2008

<http://en.wikipedia.org/wiki/Nintendo_DS_homebrew>.
20) "CycloDS...a World Far Beyond the Realm of Just Gameplay."

CyclopsDS. 2008. 25 June 2008 <http://www.cyclopsds.com/cgi-
bin/cyclods/engine.pl?page=products-cyclodsevolution>.

20) "Image:Dov DS MemoryMap.Png." Dev-Scene.Com. 17 Oct. 2006.
25 June 2008 <http://www.dev-

scene.com/Image:Dov_DS_MemoryMap.png>.

21) "Image: Nds 2D Background Memory.Png." Dev-Scene.Com. 4
Jan. 2007. 1 July 2008 <http://www.dev-

scene.com/Image:Nds_2D_background_memory.png>.

22) "Fetch.Php (GIF Image, 160x160 Pixels)." www.palib.info. 20 July
2008

<http://www.palib.info/wiki/lib/exe/fetch.php?cache=cache&media=ht
tp%3A%2F%2Fwww.palib.info%2FScreens%2FPAGraffiti.gif>.

for PAGraffiti image (Figure 4.8)

