
1 
 

 1 

 2 

 3 

Supersampling Enables Accurate 4 

Microstructural Bone Adaptation 5 

Simulations in Human in vivo HR-pQCT 6 

Images 7 

 8 

Authors: Nicholas Ohs (1), Duncan C. Tourolle né Betts  (1), Penny R. Atkins (1), 9 

Stephanie Sebastian (1),  Bert van Rietbergen (2), Michael Blauth (3), Patrik Christen 10 

(1,4), Ralph Müller (1)  11 

Affiliations: 12 

1. Institute for Biomechanics, ETH Zurich, Zurich, Switzerland 13 

2. Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of 14 

Technology, Eindhoven, The Netherlands 15 

3. Department for Trauma Surgery, Innsbruck University Hospital, Innsbruck, Austria 16 

4. Institute for Information Systems, FHNW, Brugg, Switzerland 17 

  18 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 15, 2020. . https://doi.org/10.1101/2020.05.13.093328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093328
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Abstract 19 

In silico trials of treatments in a virtual physiological human (VPH) would revolutionize research in 20 

the biomedical field. Hallmarks of bone disease and treatments can already be simulated in pre-21 

clinical models and in ex vivo data of humans using microstructural bone adaptation simulations. The 22 

increasing availability of in vivo high resolution peripheral quantitative computed tomography (HR-23 

pQCT) images provides novel opportunities to validate and ultimately utilize microstructural bone 24 

adaptation simulations to improve our understanding of bone diseases and move towards in silico 25 

VPH decision support systems for clinicians.  26 

In the present study, we investigated if microstructural bone adaptation simulations of in vivo human 27 

HR-pQCT images yielded accurate results. Since high-resolution ground truth images cannot be 28 

obtained in vivo, we applied an ex vivo approach to study resolution dependence and the effect of 29 

super-sampling on morphometric accuracy. To address simulation initialisation issues, we developed 30 

an input regularisation approach to reduce initialisation shocks observed in microstructural bone 31 

adaptation simulations and evaluated supersampling as a way to improve the accuracy of model 32 

inputs. Finally, we compared our ex vivo results to simulations run on in vivo images to investigate 33 

whether in vivo image artefacts further affect simulation outcomes. 34 

 35 
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Introduction 38 

Simulations are considered the third pillar of modern science next to models and experiments. In the 39 

biomedical field the creation of a virtual physiological human (VPH) is seen as one of the most 40 

important goals [1]. The vision of the VPH is to provide researchers with a model that allows rapid 41 

hypothesis testing via in silico trials and provides doctors with a virtual patient as a decision-support 42 

system for their daily work [2]. The role of bone, both structurally and physiologically, indicates that a 43 

validated model for microstructural bone adaptation and (re)modelling is a significant component to 44 

any VPH model. Previous studies have shown that various aspects of bone diseases and their 45 

treatments can be simulated in pre-clinical models [3–6]. Importantly, these models can produce 46 

results comparable to population data when ex vivo images are used as an input [7]. However, the 47 

translation of microstructural simulations to clinical image data has largely been constrained by the 48 

availability of high quality images and validation data. 49 

With the introduction and increased use of HR-pQCT, large amounts of clinically relevant data have 50 

been gathered which provide the basis to validate and parameterise in silico models of bone [8–17]. 51 

However, combining current microstructural bone adaptation simulations with HR-pQCT is non-52 

trivial. Existing simulations either utilize synthetic images [4] or high-resolution micro-CT images 53 

which cannot be obtained clinically [3,5–7]. Furthermore, HR-pQCT images tend to have more noise 54 

[18] and other potential imaging artefacts, such as those due to movement [19].  55 

The reduction in resolution is a known obstacles for the translation of computational techniques 56 

from the lab into the clinical setting [20–22]. Thus, the use of clinical images in microstructural bone 57 

adaptation simulations requires us to first understand the convergence of existing algorithms with 58 

respect to image resolution [22,23] and second, evaluate whether supersampling of HR-pQCT data to 59 

the resolution of desktop micro-CT images on which the algorithms have been validated produces 60 

accurate results [18,24]. Supersampling of magnetic resonance imaging (MRI) data has been shown 61 

to produce micro-FE results  in good agreement with those from micro-CT images of a higher 62 
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resolution [18]. While it is clear that supersampling does not yield the same effects as scanning at a 63 

higher resolution [25], as supersampling cannot compensate for information missing in the image, 64 

techniques, like mesh refinement, are widely used in numerical applications to improve simulation 65 

accuracy by providing a better digital representation of the information contained in the images.  66 

While several models exist [4,5,26–28], we chose the advection based remodelling simulation of 67 

Adachi [28] to test the appropriateness of HR-pQCT data input as it has been used previously on pre-68 

clinical data [3,6] and ex-vivo large data [7]. In comparison to Ruimerman et al. [4], the model 69 

simulation is also deterministic which simplifies the comparison of results.  70 

In previous studies using the algorithm by Adachi et al. [28], initial iterations, which showed aberrant 71 

results, were regarded as part of the model initialization and excluded from analysis [3,7]. However, 72 

the exclusion of the initial iterations leads to a divergence between the clinical in vivo and the in silico 73 

baseline models, which precludes direct comparison. The aberrant results of the initial iterations are 74 

caused by an initialisation shock, which is common when modelling coupled systems, like that of 75 

advection and finite-element methods by Adachi [28] or in coupled ocean-climate models, and are 76 

related to mismatches between experimental input data and simulation parameters [29,30]. In the 77 

context of microstructural bone adaptation simulations, the results of these mismatches can be 78 

observed in the large sudden changes in parameters, such as the total bone volume or the overall 79 

structural stiffness. Reducing this shock behaviour allows for the inclusion of all simulation iterations, 80 

such that identical baseline models can be used for the clinical and in silico models and results can be 81 

directly compared. 82 

The second initialisation issue stems from the fact that  a single threshold cannot yield both correct 83 

morphometric indices and mechanical properties on HR-pQCT images [31]. However, in silico 84 

microstructural bone adaptations rely on having correct digital representations of morphometrics 85 

and mechanics as the simulation couples these two properties. 86 
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The goal of the present study is to determine if microstructural simulations of in vivo human HR-87 

pQCT images yield accurate results, such that they could be used as part of a VPH. Since we cannot 88 

obtain high-resolution ground truth images in vivo, we applied an ex vivo approach to study the 89 

resolution dependence and the effects of super-sampling on morphometric accuracy. However, we 90 

first had to address the two initialisation issues: initialisation shocks and disagreement of mechanics 91 

and morphometrics in model inputs. Thus, we developed an input regularisation approach to reduce 92 

initialisation shocks observed in microstructural bone adaptation simulations and studied 93 

supersampling as a method to improve accuracy of model inputs with respect to both mechanics and 94 

morphometry. Finally, we compared our in silico results to simulations run on in vivo images to 95 

investigate whether additional in vivo image artefacts affect simulation outcomes. 96 

Materials 97 

High Resolution Ex Vivo Micro-CT Images 98 

Five distal radii were obtained from female cadavers at the Amsterdam Medical Center as part of a 99 

previous study [32]. The donors’ ages varied between 58 and 95 years and the bone volume fraction 100 

(BV/TV) of the samples varied from 7 to 20% where BV/TV was inversely related with age. The 101 

medical history of the cadaveric specimens was unknown. High resolution CT images were obtained 102 

at an isotropic voxel-size of 25 µm with a vivaCT 80 (70 kV, 114 µA, 300 ms integration time), a micro-103 

CT device by Scanco Medical AG (Switzerland).  Images were Gauss-filtered (sigma = 1.2, support = 1) 104 

and the trabecular region was hand-contoured by a trained operator for each scan using the 105 

software of the scanner manufacturer. 106 

In Vivo HR-pQCT Images 107 

Five patients (four female, one male) were recruited at Innsbruck Medical University as part of a 108 

radius fracture study. Patients provided informed consent and participated in a study approved by 109 

the ethics committee of the Medical University of Innsbruck. The age of the patients ranged from 26 110 

to 80 and their BV/TV from 21 to 7%. In this study, images of the unfractured, contralateral radius 111 
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were used. Scans were performed with an isotropic voxel-size of 61 µm using an XtremeCT II (68 kV, 112 

1470 µA, 43 ms integration time), a clinical HR-pQCT device by Scanco Medical AG (Switzerland). 113 

Images were Gauss-filtered (sigma = 1.2, support = 1) and the trabecular region was hand-contoured 114 

by a trained operator using the software of the scanner manufacturer.  115 

Generation of Low-Resolution Images 116 

The high-resolution ex vivo micro-CT grey-scale images were downscaled to resolutions of 40, 61, and 117 

82 µm. These three resolutions will be referred to as low-resolutions in this paper. Currently, 61 and 118 

82 µm are the highest resolutions available for clinical CT scanners (Xtreme CT I and II, Scanco 119 

Medical AG, Switzerland), these resolutions will be referred to as the clinically relevant resolutions. 120 

Resizing was performed using the scikit-image [33] rescale function in Python [34] with third-order 121 

interpolation and anti-aliasing enabled. The binary hand-contoured masks for the high-resolution 122 

images were converted to a floating-point data-type and resized like the micro-CT images. Finally, a 123 

threshold of 50% of the maximum image value was applied to obtain binary masks for the low-124 

resolution images. 125 

Generation of Supersampled Images 126 

Supersampled images were created from the low-resolution images by applying the scikit-image 127 

resize Python function, again with third-order interpolation and anti-aliasing enabled, to a resolution 128 

of 25 µm. When creating the supersampled images, the conversion of image dimensions between 129 

the different resolutions was not unique (i.e. due to rounding of the integer image dimensions after 130 

scaling with a floating point number, differences in size of one voxel could occur). To ensure that the 131 

supersampled images have the exact same dimensions as the original images, the scikit image resize 132 

function was used. The resize function is identical to the rescale function with the exception that it 133 

resizes images to a target image dimension instead of resizing using a target scaling factor. For the 134 

supersampled images, the same hand-contoured masks for the trabecular region were used as for 135 

the high-resolution ex vivo micro-CT grey-scale images to avoid influences of differences in masks on 136 
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our results. Herein, the images supersampled from 40, 61, and 82 µm to 25 µm are referred to as s40 137 

µm, s61 µm, and s82 µm, respectively. 138 

The 61 µm clinical in vivo HR-pQCT images were re-sampled using the scikit-image rescale function, 139 

as was used for the ex vivo micro-CT images, to generate datasets at resolutions of 25, 40, and 82 140 

µm. The masks of the HR-pQCT images were similarly rescaled. 141 

Methods 142 

Remodelling Simulations 143 

Micro-FE Analysis 144 

For the micro-FE analysis, we used the parallel octree solver parOsol [35] on the supercomputer Piz 145 

Daint at the Swiss National Supercomputing Centre (CSCS, Lugano, Switzerland). Output parameters 146 

of strain energy density (SED) and the apparent compressive stiffness along the longitudinal axis 147 

were evaluated. Boundary conditions were determined using a load estimation algorithm developed 148 

by Christen et al. [36]. This algorithm tries to linearly combine three different load cases to achieve 149 

the most homogeneous SED distribution possible across the given bone structure. The target mean 150 

SED value was  0.02 MPa, as has been used previously [22]. Furthermore, soft pads were added to 151 

the distal and proximal ends of the images with a pad-thickness of 246 µm and a Young’s modulus of 152 

15 MPa, which has previously been found to improve the load estimation [36]. For all experiments, 153 

we computed the load-estimation using the high-resolution files and applied the same loading 154 

conditions to the low-resolution and supersampled files. This method of load-estimation removes the 155 

voxel-size dependency of the algorithm as a confounding factor. 156 

The micro-FE simulations for images with resolutions higher than 50 µm were run on a 50 µm 157 

hexahedral mesh since the mechanical signalling implemented in the microstructural bone 158 

adaptation simulation is roughly equivalent to a blurring with a sigma of 100 µm. Therefore, the 159 

additional resolution in the SED would not yield differing results. The use of the 50 µm hexahedral 160 
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mesh also reduced the computational resources required to run simulations (i.e. for the 25 µm 161 

images, this reduction was an order of magnitude).  162 

Remodelling Algorithm 163 

The strain-adaptive in silico microstructural bone adaptation simulation by Adachi et al. [28] was re-164 

implemented in Python using NumPy [37] and pybind11 [38]. In short, this algorithm is iterative; for 165 

each step, SED (a result of the micro-FE simulation) is translated, via a mechanostat, into the velocity 166 

field of an adapted advection equation. Within this advection equation, the mass transfer is 167 

constrained within a proximity of the bone surfaces, which results in changes to the bone 168 

microstructure. Due to the implementation, all changes are limited to the trabecular region of the 169 

simulated structure. 170 

Binary Model Generation from Micro-CT Data 171 

The high-resolution images were segmented using a threshold of 450 mg HA/cm3 [22] and the bone 172 

volume over total volume (BV/TV) for the trabecular regions was computed for reference. Finally, 173 

voxels identified as bone were set to 750 mg HA / cm3 and background voxels were set to 0 mg HA / 174 

cm3. 175 

Regularized Model Generation 176 

To ensure that the remodelling simulation operates only on the bone surface, the input to the 177 

algorithm is required to be binary except for surface voxels that can be represented with 178 

intermediate values. To compare the effects of using a conventional binary input or using an input 179 

allowing partially filled voxels at the surface layer, we implemented a regularization method that 180 

preserves information of the grey-scale image at the surface of bone structures (Figure 1, left). First, 181 

a regularization threshold was applied to each high-resolution grey-scale image. Then, surface voxels 182 

(empty voxels in direct face-to-face contact with full voxels) of the intermediate binary structure 183 

were identified using a Von Neumann neighbourhood. For each surface voxel, grey-scale values from 184 

the original grey scale image were converted to a value in the range of zero to one relative to the 185 
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regularization threshold. The regularization threshold was chosen such that the grey-scale BV/TV of 186 

the resulting structure was identical to the one computed for the respective conventional binary 187 

structure.  Finally, the entire structure was multiplied by the same density value as the conventional 188 

binary input (750 mg HA / cm3). 189 

Parameters for Microstructural Bone Adaptation Simulation 190 

Simulation parameters were chosen such that both formation and resorption were observed in the 191 

simulations and were used for all samples and resolutions. For this reason, a narrow lazy zone 192 

(0.0196 MPa to 0.0204 MPa) was chosen. The maximum velocity of the mechanostat was set to an 193 

arbitrary value of 12 µm/month. The slopes of the mechanostat were set to 8000 µm/year/MPa. The 194 

chosen value for slope resulted in generally high velocities and greater changes per time unit, due to 195 

the very narrow linear regime of the mechanostat. The choice of simulation parameters allowed for 196 

large differences between the different resolutions.  197 

To ensure that the choice of time step between consecutive micro-FE calls did not alter the results, a 198 

time step of approximately 1.9 months was chosen. The simulated time period was set to 5 years, 199 

resulting in a shorter final iteration step. 200 

Study Design 201 

The validity of using in vivo HR-pQCT data as an input for advection based microstructural bone 202 

adaptation simulations was investigated using four virtual experiments. Experiment A addresses the 203 

issue of initialisation shocks and compares the current approach of generating simulation input 204 

models with a novel regularization method. The regularized approach retains grey-scale information, 205 

allowing the simulation to initialise with a structure closer to the original one. The goal was to 206 

compare the behaviour of the two approaches during the initial iteration steps to identify the 207 

approach that exhibits the least amount of initialization shock. Experiment B compared the 208 

mechanical and morphological properties of regularized input models generated from high-209 

resolution images, which had been downsampled or down- and then supersampled, that were bone 210 
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volume fraction matched to the original high-resolution image. The aim of this experiment was to 211 

quantify differences between regularized input models with respect to mechanics and 212 

morphometrics that may confound simulations. In experiment C, microstructural bone adaptation 213 

simulations were run on models of all three ex vivo image sets (high-resolution, downsampled, and 214 

down- plus supersampled) to assess if observed differences in the simulations were due to a lack of 215 

fidelity in the input data or the numerical grid. Finally, in experiment D, the in vivo images were 216 

rescaled to the same resolutions used in experiment C and the convergence was quantified with 217 

respect to resolution. The results were compared to those from experiment C to assess what effect 218 

differences in image quality and factors other than resolution have on the outcome of the simulation. 219 

Experiment A: Effect of Regularized Input Models on Initialisation Shock 220 

Two simulation input model generation approaches were compared (Figure 1, right), the current 221 

state of the art through binary representation and a regularized model with partially filled voxels at 222 

the surface. Both models were generated from the high resolution ex vivo micro-CT image data set. 223 

The partially filled voxels approximate a bone surface with sub-voxel precision. Microstructural bone 224 

adaptation simulations were run and the discontinuity in BV/TV and compressive stiffness for the 225 

initial simulation steps were quantified for both methods. 226 

Experiment B: Effect of Supersampling on Mechanical and Morphometric Accuracy 227 

For experiments B, regularized input models were produced for all three micro-CT image sets: high-228 

resolution, low-resolution, and supersampled low-resolution images. In the following, these are 229 

called reference, low-resolution, and supersampled regularized input models. For all images, the 230 

reference BV/TV was always the one obtained from the respective binary high-resolution image. 231 

To quantify the agreement in mechanical properties between reference, low-resolution, and 232 

supersampled regularized input models of the same bone structure, micro-FE analyses were 233 

performed on the data set at each of these resolutions, respectively (Figure 2). SED distributions, 234 

mean SED, mean static parameters (BV/TV, trabecular number (Tb.N), trabecular thickness (Tb.Th), 235 
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trabecular spacing (Tb.Sp), and structural model index (SMI)), and standard deviations for all mean 236 

values were computed for comparison between the three regularized input model types. 237 

Additionally, the Kolmogorov-Smirnov statistic was computed between the SED of each sample of 238 

the low-resolution and supersampled regularized input models and the corresponding reference 239 

regularized input model to quantify mechanical agreement. Finally, the adequacy of the chosen 240 

threshold was assessed through comparison of the SED distribution from FE analysis of the low-241 

resolution regularized input models for a range of thresholds (575 - 775 mg HA/cm3). The magnitudes 242 

of the peak SED were compared to the reference SED distribution. 243 

Experiment C: Effect of Supersampling on Morphometric Accuracy throughout a 244 

Microstructural Bone Adaptation Simulation 245 

Microstructural bone adaptation simulations were run on the input models generated for 246 

experiment B. The simulations run on the reference regularized input models were considered the 247 

best approximations of the in vivo remodelling process and were used as reference to quantify 248 

errors. These simulations are referred to as the reference simulations (Figure 3). Static parameters 249 

(BV/TV, Tb.N, Tb.Th, Tb.Sp, and SMI) and formed and resorbed volume over time were computed.  250 

Experiment D: Effect of In Vivo Image Artefacts on Convergence of Supersampled HR-pQCT 251 

Simulation 252 

Microstructural bone adaptation simulations were run on regularized input models of the in vivo HR-253 

pQCT images and their rescaled version (Figure 3) using the same simulation parameters and 254 

calculating the same static parameters as in experiment C. The reference BV/TV for the regularized 255 

input model generation for all resolutions was based on the respective original HR-pQCT resolution 256 

binary structure. 257 

Evaluation and Statistics 258 

All simulations and evaluations were performed within the trabecular mask. SED was evaluated for 259 

non-empty voxels. SED distributions were represented using the SciPy Gaussian kernel density 260 
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approximation [39]. NumPy [37] was used to compute the Kolmogorov-Smirnov (KS) statistic, mean 261 

and standard deviations, as well as BV/TV, which was computed through integration of the model 262 

density within the trabecular mask. All other static parameters (Tb.N, Tb.Th, Tb.Sp, SMI) were 263 

computed using the scanner manufacturer’s image processing language (IPL) [40]. Before calling the 264 

IPL functions, models were up-scaled to 25 µm to remove the voxel-size dependency of IPL functions 265 

as a confounding factor. Finally, formed and resorbed volume over time was computed by 266 

integration of positive and negative density changes using NumPy.  267 

Comparisons for experiment A were done using a paired Student t-test. For experiments B and C, to 268 

determine significance, two-way analysis of variance (two-way ANOVA) was performed for each 269 

measured parameter as an omnibus test with the two categorical groups: resolution and 270 

supersampling. If heteroscedasticity was detected using a Levene test, heteroscedasticity consistent 271 

covariance matrices of type HC3 were used. Post-hoc group comparisons were done using paired 272 

Student t-tests and p-values were corrected using the Holm-Bonferroni correction for multiple 273 

comparisons. For experiment D, paired Student t-tests were performed and p-values were corrected 274 

using the Holm-Bonferroni correction for multiple comparisons. The level of significance was set to 275 

0.05. For the Student t-tests and Levene tests, scipy 1.3.1 was used. The ANOVA was done using 276 

statsmodels [41] 0.10.2.  277 

Results 278 

Experiment A: Effect of Regularized Input Models on Initialisation Shock 279 

For the conventional binary input models, the change in apparent compressive stiffness after the first 280 

iteration was a factor of 5.9±0.8 larger than the maximum of all other iteration steps (Figure 4). For 281 

BV/TV, a factor of 2.3±1.6 increase was observed in the first iteration (Figure 4). Visually, we observe 282 

that for some samples a clear shock in BV/TV was present. In contrast, for the first iteration of the 283 

regularized input model approach, the change in apparent compressive stiffness is indistinguishable 284 

from the rest of the simulation with a computed factor of 0.5±0.5 increase, which is significantly 285 
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lower than for the threshold method (p<0.001). For BV/TV, we obtained a factor of 2.1±0.6 increase 286 

(Figure 4) which is not significantly different from the threshold method. 287 

Since the regularized input model approach removed the re-initialization shock in apparent stiffness 288 

across all samples, we performed all other experiments using this approach. 289 

Experiment B: Effect of Supersampling on Mechanical and Morphometric Accuracy 290 

For all tested thresholds, the SED distributions for the low-resolution regularized input models did 291 

not visually match the SED distribution of the reference regularized input models (Figure 5). 292 

Qualitatively, the difference in SED distribution increased with voxel-size. For a BV/TV matched 293 

threshold, the peaks of the distributions aligned visually. The agreement with the reference SED 294 

distributions for supersampled regularized input models was almost an order of magnitude better 295 

than for the low-resolution regularized input models (p<0.05 (40 µm), p<0.01 (61 µm and 82 µm); 296 

Table 1) with deviations in mean SED of less than 5% and the KS statistic being below 0.03 (Table 1).  297 

Resolution, applied supersampling, and the interaction between resolution and supersampling had a 298 

significant effect on all measured static parameters, except for the interaction of the effects for SMI 299 

and the effect of supersampling on Tb.Th (Table 1).  300 

Without supersampling, significant deviations in the mechanical and static parameters were 301 

observed for all lower resolutions (40, 61, and 82 µm) (Table 1). The only exception being SMI which 302 

showed no significant differences. No differences in BV/TV were observed, as BV/TV was matched. 303 

With supersampling, deviations in the static parameters were significantly lower for each of the 304 

lower resolutions (s40, s61, and s82 µm, respectively) (Table 1). 305 

The average regularization threshold for the high-resolution images was 563.6±6.6 mg HA / cm3. The 306 

average regularization threshold for the supersampled images were 561.7±6.8, 530.9±9.6, and 307 

496.6±13.7 mg HA / cm3 for the three supersampled resolutions (s40, s61, and s82 µm), respectively. 308 

For the images without supersampling, the average regularization thresholds were 601.8±10.0, 309 

605.2±14.7, and 590.6±18.9 mg HA / cm3 for 40, 61, and 82 µm, respectively. 310 
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Therefore, the regularization thresholds obtained for the supersampled regularized input models 311 

were roughly linearly related to resolution. This linear relationship did not hold true for the 312 

regularization thresholds for the low-resolution regularized input models.  313 

In summary, without supersampling we observed deviations of more than 10% (up to 27%) for all 314 

static parameters, except Tb.Th, for the clinically relevant voxel-sizes for the regularized input 315 

models. In contrast, using super-sampling, deviations were less than 8% for all static parameters for 316 

the highest available clinical voxel-size (61 µm). Agreement with the reference SED improved an 317 

order of magnitude when using super-sampling. 318 

Experiment C: Effect of Supersampling on Morphometric Accuracy Throughout a 319 

Microstructural Bone Adaptation Simulation 320 

For the reference simulations, BV/TV was initially reduced by 1.8 to 14.8%, followed by an increase in 321 

BV/TV of 3.8 to 38.8% (Figure 7). Tb.N decreased by 5.2 to 22.8%. Trabecular thickness increased by 322 

29.1 to 42.4%, except for one sample for which it decreased by 8.8%. SMI changed by -15.0 to 18.5%; 323 

two samples experienced an increase and three samples a decrease in SMI. Overall the range in SMI 324 

across all samples was reduced over the course of the simulation by 34.7%. 325 

Resolution, supersampling, and their interaction had a significant effect (p<0.001) on all measured 326 

static and dynamic parameters for the maximum deviations observed during the simulation.  327 

Low-Resolution Simulations 328 

Differences in bone-structure between the reference simulation and the low-resolution simulation 329 

were visible and increased over the course of the simulation (Figure 6). Deviations in static 330 

parameters significantly increased over the course of the simulation (Table 1). BV/TV, and Tb.N were 331 

underestimated for all low-resolution simulations compared to the reference simulations (p<0.01). 332 

SMI and Tb.Sp were both overestimated (p<0.05), while Tb.Th did not follow a clear trend (Figure 8).  333 
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Bone formation and resorption rates were significantly different between reference and low-334 

resolution simulations (Table 1). Visually, the formation rate for the low-resolution simulations 335 

peaked at a later time point and had lower peak values compared to the reference simulation (Figure 336 

9). For the resorption rate, peak delay and widening was also observed for the low-resolution 337 

simulations (Figure 9). However, the magnitude of the resorption rate peaks increased with voxel-338 

size and the initial resorption rate decayed slower compared to formation rates, for which the 339 

opposite was observed.  340 

In summary, deviations in static parameters doubled over the course of the simulation for most 341 

parameters. For the dynamic parameters, we noticed a delay from the start of the simulation to 342 

when peak formation and resorption occur. Additionally, a lower change in formation and resorption 343 

rates was observed for all low-resolution simulations compared to the reference simulations.  344 

Supersampled Simulations 345 

Visually, differences in bone structure over the course of the simulation compared to the reference 346 

simulations were drastically reduced for the supersampled simulations (Figure 6). Accuracy in BV/TV 347 

was improved by an order of magnitude for the highest available clinical resolution (s61 µm) 348 

compared to the low-resolution simulations. The accuracy of all other static parameters was also 349 

significantly improved (Table 1, Figure 8). The maximum deviations in static parameters were not 350 

significantly greater than those of the input models for all supersampled resolutions. 351 

For the dynamic parameters, accuracy of bone formation and resorption per time unit was 352 

significantly increased for the supersampled images (Table 1). The formation and resorption rates 353 

peaked at the same time-point across all resolutions, within the temporal resolution of the 354 

simulation. The peaks of both rates were of similar magnitude across all resolutions. Visually, the 355 

overall shapes of the formation and resorption curves were similar across all resolutions for the 356 

duration of the simulation period, with no noticeable widening or shift of peaks (Figure 9).  357 
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In summary, the deviations in static parameters did not increase beyond the initial standard 358 

deviation throughout the duration of the simulation for the highest clinical resolution when using 359 

supersampling. The behaviour of the dynamic parameters was very similar across all resolutions and 360 

matched the behaviour of the reference simulation.  361 

Experiment D: Effect of In Vivo Image Artefacts on Convergence of Supersampled HR-362 

pQCT Simulations 363 

After an initial drop in BV/TV of 7.2 to 24.2%, the simulations on the in vivo HR-pQCT data 364 

supersampled to 25µm showed varying behaviour. Three samples showed an increase in BV/TV, one 365 

sample had a close to stable BV/TV over time and one sample experienced a further reduction in 366 

BV/TV before BV/TV began increasing after half of the simulation time. Tb.N. decreased for all 367 

samples over time by 12.0 to 42.9%, whereas Tb.Th. increased over time by 13.8 to 65.1%. Tb.Sp also 368 

increased by 13.6 to 78%. SMI decreased for all samples from 7.8 to 21.8%. The spread of SMI values 369 

across all samples decreased over the course of the simulation by 47.8%. 370 

Comparing the convergence of the different static parameters with respect to resolution between 371 

the low-resolution simulations from experiment C and the simulations from experiment D, no 372 

significant differences could be found except for Tb.Th at 61 and 82 µm resolutions (p<0.001) (Figure 373 

10). Hence, the effects of noise and other additional imaging artefacts from in vivo HR-pQCT were 374 

smaller than the effects of model resolution, which dominated the convergence errors observed in 375 

the static parameters (Figure 10). 376 

Discussion 377 

The objectives of this study were to investigate whether microstructural simulations of in vivo human 378 

HR-pQCT images yielded accurate results and were a viable tool as part of a VPH.  379 
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Experiment A:  Effect of Regularized Input Models on Initialisation Shock 380 

Since one of the ideas of the VPH is to provide doctors with a decision support system [2], the goal of 381 

every microstructural bone adaptation simulation must be to achieve parity between the simulated 382 

structure and the structure observed in vivo. We observed that when using conventional model 383 

inputs, the apparent compressive stiffness showed an initialization shock behaviour (Figure 4), with a 384 

change approximately six times larger than any other change in stiffness over the course of the 385 

simulation. While initialisation shocks have not been studied in the context of microstructural bone 386 

adaptation simulations, Mulholland et al. [30] has defined a cause of initialisation shocks in the 387 

context of ocean-climate models that can be related to microstructural bone adaptation algorithms. 388 

They describe how the removal of certain model components can result in abrupt changes in the 389 

dynamics of the system. The analogy for microstructural bone adaptation simulations are the 390 

mismatch of applied boundary conditions and the true, but unknown, in vivo boundary conditions. 391 

This mismatch can also be interpreted as the removal of certain boundary condition forces at the 392 

beginning of the in silico adaptation. We tackled this challenge by employing the load estimation 393 

algorithm by Christen et al. [36] which tries to estimate the in vivo applied loads more closely than 394 

the uniaxial compression boundary conditions typically used with HR-pQCT radius data [42]. Another 395 

potential cause for initialisation shocks could be the abrupt change of surface geometry from in vivo 396 

microstructural bone adaptation to in silico bone adaptation simulations. Using a regularized input, 397 

we used information in the grey-scale image that is normally cut off, improving the input model 398 

generation to reduce the initialisation shock and the associated effect on the results. For all 399 

simulations, the developed regularized input model approach removed the shock behaviour in 400 

apparent compressive stiffness (Figure 4). While the magnitude of the change in BV/TV for the initial 401 

iteration step did not change with the new regularized input model, change in BV/TV looks smoother 402 

using this approach (Figure 4), and larger changes in BV/TV are expected for this type of simulation, 403 

as over the course of the simulation the structure adapts more and more to the applied boundary 404 

conditions, yielding less changes as the structure reaches a local minimum. We conclude that the first 405 
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iteration step does not have to be excluded if this new approach is used, allowing direct comparisons 406 

to in vivo measurements. Furthermore, the fact that the initialisation shock was removed might 407 

indicate that the regularized input model is a better representation mechanically of the in vivo bone 408 

structure than the conventional binary version.  409 

Experiment B: Effect of Supersampling on Mechanical and Morphometric Accuracy 410 

Another obstacle to overcome when running microstructural bone adaptation simulations on in vivo 411 

HR-pQCT images was finding an accurate digital representation of a bone captured in vivo with HR-412 

pQCT with respect to mechanics and morphometry [31], which is an obvious requirement of bone 413 

adaptation simulations. We found that with the use of supersampling, the choice of a single 414 

threshold provided regularized input models that agreed well for BV/TV, mechanical properties, and 415 

other tested morphometric parameters (Tb.N, Tb.Sp, SMI). Furthermore, the thresholds for the 416 

different supersampled resolutions followed roughly a linear trend. Therefore, even in the absence of 417 

a high resolution ground truth, an appropriate threshold for accurate morphometrics and mechanics 418 

can be chosen based on this linear relationship. Our results for images that were not supersampled 419 

agreed with previous research [31], which showed no agreement between mechanics and 420 

morphometrics for various thresholds (Figure 5). This also holds true for thresholds optimized to 421 

match BV/TV (Figure 5) which has been used in a previous study by Christen et al. in which they 422 

investigated the voxel size dependence of a micro-FE based load estimation algorithm [22]. 423 

Therefore, supersampling might also prove to be useful in other studies using images with HR-pQCT 424 

resolution.  425 

Experiment C: Effect of Supersampling on Morphometric Accuracy Throughout a 426 

Microstructural Bone Adaptation Simulation 427 

To study the accuracy of microstructural bone adaptation simulations for images with HR-pQCT 428 

resolutions, we used high-resolution micro-CT images as ground truth, as realistic bone structures 429 

have already been simulated using such images [7]. The use of different low-resolution voxel-sizes 430 
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(40, 61, and 82 µm), resulted in deviations in morphometric parameters of more than 30% in 431 

comparison to the reference simulations, even for the highest clinically available resolution (Table 1). 432 

This is relevant, because deviations of even 15 %, e.g. in BV/TV, would indicate different diseases 433 

with opposing effects on BV/TV [43]. Importantly, differences in parameters were not pure smooth 434 

offsets which could be corrected via calibration curves as is possible with other computational 435 

techniques [23]. In comparison to the static parameters, the deviations were greater for the dynamic 436 

parameters. A previous study, by Schulte et al. which evaluated capabilities of bone adaptation 437 

simulations to predict dynamic rates on pre-clinical models, similarly found that  dynamic parameters 438 

were more challenging to capture than static morphometric parameters [44]. Our results confirmed 439 

that microstructural bone adaptation simulations run on native clinical scanner resolutions suffer 440 

from poor accuracy in morphometric parameters, limiting future use as a model for human bone 441 

adaptation. 442 

Running the same simulations on the supersampled images (s40, s61, s82 µm) resulted in a drastic 443 

reduction in static parameter deviations to less than 10%. For BV/TV, these deviations were near 1% 444 

(Table 1), which is similar to the reproducibility limit of BV/TV for the clinical setting (0.84-1.14%) 445 

[45,46]. These deviations may have been much smaller than for the simulations without 446 

supersampling since the regularized input model generated from the supersampled images captured 447 

the reference model more closely, than the low-resolution regularized input model (Table 1). Any 448 

deviations of the regularized input model lead to error accumulation throughout the simulation, 449 

which ultimately lead to larger morphometric deviations of the final structure (Figure 8). Only the 450 

dynamic parameters obtained from the supersampled simulations closely followed the temporal 451 

profile of the high-resolution simulations capturing peak positions, width, height, and overall curve 452 

profile, indicating that there may have also been an intrinsic voxel-size dependence of the algorithm 453 

independent of the initial model.  454 
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Supersampling improved the accuracy of microstructural bone adaptation simulations run on images 455 

with clinical resolutions. This improved accuracy allowed for accurate predictions of static and 456 

dynamic parameters relative to the reference simulations run on micro-CT images.  457 

Experiment D: Effect of In Vivo Image Artefacts on Convergence of Supersampled HR-458 

pQCT Simulations 459 

Finally, we investigated the effects of clinically observed image artefacts, e.g. higher noise levels, by 460 

using in vivo HR-pQCT images. Comparing the simulations run on these images to those run on 461 

supersampled versions of the same images, no significant difference was observed in the 462 

convergence of the different static parameters (Figure 10), except for Tb.Th. Since the ex vivo and in 463 

vivo dataset are not identical, it is possible that this difference in Tb.Th is due to unknown 464 

physiological differences between the subject groups. Furthermore, with respect to the overall 465 

deviation observed in Tb.Th, the observed significant difference is still small. On top of that, Tb.Th is 466 

known to be difficult to capture with HR-pQCT resolution [21,47]. Our findings support this as 467 

supersampling does not significantly improve the accuracy of Tb.Th for the regularized input models 468 

we generated, indicating that the image resolution of HR-pQCT images is not sufficient to contain 469 

enough information to extract Tb.Th as accurate as other morphometric parameters. Hence, the 470 

observed significant difference could be due to the limitations of the method to extract trabecular 471 

thickness. Irrespective of the cause, the small deviations in Tb.Th are likely not clinically relevant, due 472 

to the aforementioned limited accuracy with which Tb.Th can be measured with HR-pQCT. 473 

In Conclusion, image resolution dominates the accuracy of morphological simulation outcomes of 474 

microstructural bone adaptation simulations with no other effects having a significant influence. 475 

Since we have demonstrated that the effects of voxel-size can be drastically reduced with 476 

supersampling in experiment C, we conclude that within the variation of our data, supersampling on 477 

HR-pQCT data improves accuracy comparably to supersampled down-scaled micro-CT data. 478 
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Limitations 479 

This study is, however, not without limitations. One limitation of this study was the lack of a high 480 

resolution ground truth scan of the patient radii. However, images of cadaveric specimens do not 481 

capture the artefacts associated with in vivo HR-pQCT images, such as motion artefact. Further, 482 

micro-CT images cannot be obtained from patients due to the radiation dosage. Thus, we utilized 483 

both high-resolution cadaveric images and clinically acquired in vivo HR-pQCT images of patients to 484 

assess these factors independently. 485 

An additional limitation of this study is the sample size (n=5 for both ex vivo and in vivo experiments). 486 

However, the small spread in deviations across subjects observed from the results of the 487 

supersampled simulations indicates that a larger sample size may not be warranted. Importantly, the 488 

inclusion of additional samples would have required an excess of computational resources due to the 489 

high resolution of the simulations. 490 

Conclusions 491 

In conclusion, we found model resolution to be the dominating image property which drove 492 

convergence errors in microstructural bone adaptation simulations. Importantly, supersampling 493 

drastically reduced this dependency, resulting in simulation outcomes that, even for clinically 494 

available resolutions, were similar to those from high-resolution images. Initialisation errors were 495 

avoided with the use of supersampling and the proposed regularization method, which generated 496 

model input that closely represented the true bone structure with respect to both mechanics and 497 

morphometry. With these results, we conclude that microstructural bone adaptation simulations can 498 

be run on in vivo HR-pQCT images and yield realistic results, given a validated set of parameters. 499 

These simulations provide a powerful tool to study disease related bone microstructure changes in 500 

patients as part of the VPH vision. 501 
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Tables 649 

Table 1 650 
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Table 1: Comparison of microstructural bone adaptation simulation outcomes for regularized model 652 

inputs of micro-CT images that were downsampled to 40, 61, and 82 µm (left) and additionally 653 

supersampled back to 25 µm (s40, s61, and s82 µm) (right). Parameters were compared against the 654 

high-resolution micro-CT image reference simulation and relative deviations in percent are shown. 655 

Parameters were compared relative to the regularized input model before running the adaptation 656 

simulations (top) and for the maximum deviation over the duration of the simulation per parameter 657 

(bottom). We observe significantly less deviations of supersampled simulations across almost all 658 

parameters for the initial model as well as a drastically reduced increase in deviations over the 659 

course of the simulation. Strain-energy-density (SED), the Kolmogorov Smirnov statistic (KS) of the 660 

normalized SED distributions, trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular 661 

thickness (Tb.Th), and the structure model index (SMI). Statistical significance is indicated as follows: 662 

Difference from zero (the reference simulation) (*), differences between the same resolution with 663 

and without super-sampling (‡), difference between 40 and 61 µm (#), difference between 61 and 82 664 

µm (†), and difference between initial and maximum deviations (¥).  665 
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Figures 666 

Figure 1 667 

 668 

Experiment A evaluated the reduction of initialisation shock behaviour in bone volume fraction and 669 

compressive stiffness due to a novel input regularization approach compared to the conventional 670 

input approach. Left: Illustration of the two different threshold approaches used to convert a CT 671 

image into a valid input for the load adaptation simulation. The conventional threshold approach, 672 

and the regularization approach. Right: Overview of experiment A. Each picture per box represents a 673 

bone sample captured by micro computed tomography, and each card in the simulation boxes 674 

represent one full simulation of such a bone sample, respectively.  675 

  676 
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Figure 2 677 

 678 

Experiment B evaluated the mechanical agreement between the different resolutions for matched 679 

BV/TV. For each micro-CT image, high-, low-resolution, and supersampled images were created (left 680 

column). Low-resolution: 40 µm, 61 µm, and 82 µm and supersampled images: Same downsampled 681 

resolutions as the low-resolution image but supersampled back to 25 µm. Micro-finite-element 682 

(micro-FE) models were generated using the regularization model generation approach of 683 

experiment A (Figure 1) and matching bone volume fraction (BV/TV) for each image to the reference 684 

(25 µm). A micro-FE analysis was run and strain energy density (SED) (shown in the jet colour-map) 685 

and static parameters were computed for each model. SED distributions between low and 686 

supersampled resolution images were compared using the Kolmogorov-Smirnov statistic to see 687 

which one more closely matches the reference high-resolution regularized input model mechanically. 688 

Mean static parameters were compared to see which one more closely matches the reference model 689 

morphologically. 690 
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Figure 3  691 

 692 

Overview of experiments C and D. Top: Regularized input models from experiment B were taken and 693 

microstructural bone adaptation simulations were run for all input models. Bottom: A separate HR-694 

pQCT dataset was also converted to regularized input models and simulations were run for all input 695 

models. Each simulation is represented by one card in the four boxes of the middle column. For 696 

experiment C, static parameters and dynamic parameters were computed. The goal of experiment C 697 

was to compare how accurate low-resolution versus supersampled resolution simulations were 698 

relative to the reference simulations. For experiment D, static parameters were computed as well. 699 

The goal of experiment D was to compare the voxel size dependency of down-scaled micro-CT and 700 

resampled HR-pQCT images to determine if additional artefacts introduced by the HR-pQCT images 701 

had a strong influence on the outcome of the bone-adaptation simulation.  702 
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Figure 4 704 

 705 

Results of experiment A for a representative sample. Comparison of relative change in bone volume 706 

fraction (BV/TV) and relative apparent stiffness. The initialization shock visible in BV/TV and stiffness 707 

(left) for the conventional model generation (Figure 1) was not present when using the regularization 708 

approach (Figure 1) (right).  709 

  710 
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Figure 5 711 

 712 

Results of experiment B for a representative sample. Top: The strain energy density (SED) 713 

distributions for the reference resolution (25 µm) (blue) was flatted compared to  the down-scaled 714 

61 µm model (green), which used a threshold chosen to match the bone volume fraction (BV/TV) of 715 

the reference resolution model. Thresholds corresponding to BV/TV values between 7 and 23% are 716 

shown in different shades of grey with a worse agreement with the reference SED distribution. 717 

Bottom: Comparing across all resolutions, the supersampled resolutions clearly captured the 718 
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distribution of the reference model across all resolutions, with deviations being an order of 719 

magnitude smaller compared to models generated without supersampling. 720 
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Figure 6 722 

 723 

Visual difference after 0, 33, 66, and 100% of the simulated time for a representative sample of 724 

experiment C. Top: comparison of reference to low-resolution simulation. Bottom: comparison of 725 

reference to supersampled simulation. Blue: more bone in reference simulation. Orange: less bone in 726 

reference simulation. For the supersampled simulation, very small structures were still lost, due to 727 

very thin trabeculae that cannot be captured in a 61 µm image, but the major part of the bone 728 

structure remodelled identical to the reference simulation for supersampled images. 729 
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Figure 7 730 

 731 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 15, 2020. . https://doi.org/10.1101/2020.05.13.093328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093328
http://creativecommons.org/licenses/by-nd/4.0/


40 
 

Static parameter results for experiment C. Static parameters over the course of the simulation for 732 

low-resolution (left) and supersampled regularized input models (right) are shown. Computed static 733 

parameters are: Bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), 734 

trabecular thickness (Tb.Th), and structure model index (SMI). BV/TV was matched for the initial 735 

model, which is why initially we got perfect agreement between the resolutions. Overall we see for 736 

the different samples that supersampling improves the agreement with the reference (25 µm) 737 

simulations.  738 
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Figure 8 740 
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Static parameter results for experiment C. Deviations in static parameters from the reference 742 

simulation (25 µm) over the course of the simulation for low-resolution (left) and supersampled 743 

regularized input models (right) are shown. Computed static parameters are: Bone volume fraction 744 

(BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), and 745 

structure model index (SMI). BV/TV was matched for the initial model, resulting in perfect agreement 746 

between the resolutions. Generally, for the different samples, supersampling improves the 747 

agreement with the reference (25 µm) simulations. Deviations were more predictable after 748 

supersampling of the image. 749 

 750 
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Figure 9 752 

 753 

Dynamic parameter results of experiment C. Dynamic parameter results of simulation run on low-754 

resolution (left) and supersampled regularized input models (right) are shown. Bone formation and 755 

resorption over time (top), and deviations of these parameters from the reference simulation (25 756 

µm) (bottom). Reference simulation results were aligned with the use of supersampled regularized 757 

input models with respect to the amount and time-point of formation and resorption events. 758 

Deviations were an order of magnitude smaller for the simulations run on supersampled regularized 759 

input models.  760 
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Figure 10 762 

 763 

Experiment D. Convergence behaviour of low-resolution simulations from experiment C and from 764 

rescaled HR-pQCT image simulations. Maximum mean deviations from the reference (25 µm) 765 

simulations and corresponding standard deviations are shown for all computed static parameters. 766 

Significant differences were observed for trabecular thickness (Tb.Th); the mean maximum 767 

deviations of all other parameters are not significantly different, indicating that voxel-size was the 768 

dominating factor on the simulation outcomes. 769 
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