
sensors

Article

A Deep Learning Framework for Driving Behavior
Identification on In-Vehicle CAN-BUS Sensor Data

Jun Zhang 1,2,* , ZhongCheng Wu 1,2, Fang Li 1, Chengjun Xie 3,*, Tingting Ren 1, Jie Chen 1,2

and Liu Liu 3

1 High Magnetic Field Laboratory, and Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China; zcwu@iim.ac.cn (Z.C.W.); lif@hmfl.ac.cn (F.L.); ttren@hmfl.ac.cn (T.R.);
cj2016@mail.ustc.edu.cn (J.C.)

2 University of Science and Technology of China, Hefei 230026, China
3 Institute of Intelligent Machines, and Hefei Institute of Physical Science, Chinese Academy of Sciences,

Hefei 230031, China; liuliu66@mail.ustc.edu.cn
* Correspondence: zhang_jun@hmfl.ac.cn (J.Z.); cjxie@iim.ac.cn (C.X.); Tel.: +86-139-6678-6519 (J.Z.)

Received: 23 December 2018; Accepted: 13 March 2019; Published: 18 March 2019
����������
�������

Abstract: Human driving behaviors are personalized and unique, and the automobile fingerprint
of drivers could be helpful to automatically identify different driving behaviors and further be
applied in fields such as auto-theft systems. Current research suggests that in-vehicle Controller Area
Network-BUS (CAN-BUS) data can be used as an effective representation of driving behavior for
recognizing different drivers. However, it is difficult to capture complex temporal features of driving
behaviors in traditional methods. This paper proposes an end-to-end deep learning framework by
fusing convolutional neural networks and recurrent neural networks with an attention mechanism,
which is more suitable for time series CAN-BUS sensor data. The proposed method can automatically
learn features of driving behaviors and model temporal features without professional knowledge in
features modeling. Moreover, the method can capture salient structure features of high-dimensional
sensor data and explore the correlations among multi-sensor data for rich feature representations of
driving behaviors. Experimental results show that the proposed framework performs well in the real
world driving behavior identification task, outperforming the state-of-the-art methods.

Keywords: driving behavior identification; deep learning; attention mechanism; CNN; LSTM; GRU

1. Introduction

Everyone has unique driving habits such as fixed speed, acceleration and braking habits, which
could be considered as a fingerprint [1]. Thus, drivers’ characteristics under driving conditions could be
extracted through the analysis of driving behaviors. Considering different sources of data, we classify
most current driving behavior identification models into three classes, that is, visual image or
video-based, simulation data-based [2–4] and CAN-BUS(Controller Area Network-BUS)/smartphone
multi-sensors data-based [5]. Among these, the visual data can be viewed as a special case of
“multi-sensors data”, and the third one, which is more effective and favorable, is our focus in this
paper. Specifically, we neglect analyzing visual data due to the poor amount of training data.

Generally, multi-sensors data are made up of in-vehicle’s CAN data and Smartphone data.
The in-vehicle’s CAN data include the steering wheel, vehicle speed, engine speed, brake position, etc.,
while the smartphone data include speed, orientation, three-axis accelerometer, etc. Several works
proposed driver identification methods based on in-vehicle’s CAN-BUS data [1,6–8]. In [9,10], deep
sparse autoencoder (DSAE) was developed to extract hidden features for visualization of driving
behavior, which was helpful to recognize distinctive driving behavior patterns in continuous data.

Sensors 2019, 19, 1356; doi:10.3390/s19061356 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1321-6022
https://orcid.org/0000-0003-4218-8008
http://dx.doi.org/10.3390/s19061356
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/6/1356?type=check_update&version=2

Sensors 2019, 19, 1356 2 of 17

Some researchers adopted the three-axis accelerometer of an Android-based smart phone to record
and analyze various driver behaviors, external road conditions [11], the degree of aggressiveness of
each driver [12], and accident detection [13]. From the above works, it was concluded that driving
pattern analysis is an efficient method for driver identification.

With the rapid development of Internet of Vehicles (IoV) technology and the popularization of
smart terminal devices like car onboard diagnostic (OBD) devices, multi-dimensional CAN-BUS data
can be easily captured for driving behavior recognition and vehicle owner identification. Driving
behavior identification is essentially a classification task based on in-vehicle’s CAN-BUS data. It is
important to choose key features from these driving data, and find the combination of features.
For instance, driver A likes to accelerate quickly at startup while driver B is used to driving at a
slow speed. However, previous works developed complex feature selection techniques to improve
the performance of driving behavior identification. Among them, there exist several difficulties in
manual feature combination. The first one is feature explosion difficulty, which is hard for experts
to explore exhaustively, especially when the number of raw features is huge. The second one is that
features are difficult to design, where part of the available training data has been desensitized due to
individual privacy protection, leading to impossibility in simply performing feature engineering based
on common sense. Third, combined features are difficult to identify and recognize, since generally
most feature interactions are hidden behind numerous data and difficult to mine, which can only be
captured automatically by machine learning. Fourth, the temporal dynamics of feature activations is
difficult to model explicitly. Moreover, the issue of how to effectively train the model is also a challenge,
since CAN-BUS data sometimes are massive and high-dimensional, therefore large feature space will
lead to a growth of parameter number, increasing the complexity of model training.

Generally, the activity recognition or identification of drivers relies on the combinations of
different CAN-BUS sensor data. However, traditional feature extraction methods for driving behavior
identification adopt sliding window for static and periodic activities modeling [14]. In driving behavior
identification, complex high level behaviors (e.g., trip-long, day-long or more) are usually scaled up
since engineering features are not related to “units of driving behaviors” but to the results of complex
sequences of motor movements. However, in CAN-BUS data, multiple sensors yield multivariate
time series, for instance, a single 3-axis accelerometer produces a 3-dimensional time series. Thus,
it is desirable to consider the spatial dependency among multiple sensors or across the axes of
accelerometers and gyroscopes, as well as the dependency along the temporal dimension.

In this paper, we propose a deep learning framework by fusing deep convolutional and recurrent
neural network, denoted as attention-based DeepConvGRU and DeepConvLSTM respectively,
for driving behavior identification. The outline of our approach is illustrated in Figure 1. First,
in-vehicle CAN-BUS sensor data are collected for each driver to characterize the drivers’ driving
behaviors. Second, the time series CAN-BUS data are split into fragments by normalization and sliding
window. Finally, the annotated data are fed into our proposed deep learning framework for driver
behavior identification.

The main contributions are summarized as follows:
Our framework can perform automatic activity recognition on real-time multi-dimensional

in-vehicle CAN-BUS sensor data, capturing local dependency among the data in temporal dimension
as well as across spatial locations.

By introducing the attention mechanism, our model can capture salient structures of
high-dimensional sensor data and explore the correlations among multi-channel sensor data for
rich feature representations, improving the learning performance of the model.

Our framework can perform end-to-end training without any feature selection and work directly
on the raw sensor data with simple pre-processing, making it universally applicable.

Sensors 2019, 19, 1356 3 of 17Sensors 2019, 19, 1356 3 of 17

Figure 1. The outline of our approach.

The main contributions are summarized as follows:

Our framework can perform automatic activity recognition on real-time multi-dimensional in-vehicle
CAN-BUS sensor data, capturing local dependency among the data in temporal dimension as
well as across spatial locations.

By introducing the attention mechanism, our model can capture salient structures of high-
dimensional sensor data and explore the correlations among multi-channel sensor data for rich
feature representations, improving the learning performance of the model.

Our framework can perform end-to-end training without any feature selection and work directly on
the raw sensor data with simple pre-processing, making it universally applicable.

2. Materials and Methods

2.1. Related Works

Many state-of-the-art models were used in modeling individual driving behaviors, such as
Gaussian Mixture Model (GMM) [2,6,15,16], Hidden Markov Model (HMM) [4,6,17], K-means [8],
Support Vector Machine (SVM), Random Forest, Naive Bayes (NB), K-Nearest Neighbor (KNN) [1,8],
Multilayer Perceptron (MLP), Fuzzy-Neural-Network (FNN), statistical method [3], Decision Tree
(DT) and Symbolic Aggregate Approximation (SAX). However, most of them had various
shortcomings. HMM was limited to contextual information representation, based on the hypothesis
that the output observations were strictly independent and the current state was only related to the
previous state (first-order Markov model). In addition, KNN was affected by unbalanced training
data, which resulted in higher time complexity when calculating the distance from the unknown
sample to all known samples. Moreover, the model of NB was based on the hypothesis that sample
attributes were independent from each other. Therefore, NB might yield a lower classification
performance when the number of sample attributes or the correlation between attributes became
larger, which required enough samples to calculate the overall distribution of each class and the
probability distribution of each sample. For the DT model, it had to scan and sort the data set
repeatedly during model construction, which would increase the complexity and reduce the
classification accuracy.

Deep learning has a great advantage in feature learning. For example, Convolutional Neural
Network (CNN) [18] is mainly used for data with dense feature learning such as images and speech,
while RNN and Long Short-Term Memory (LSTM) are popular choices in text homogenization and
serialization of high-dimensional sparse features [19]. Driving behavior recognition involves

Figure 1. The outline of our approach.

2. Materials and Methods

2.1. Related Works

Many state-of-the-art models were used in modeling individual driving behaviors, such as
Gaussian Mixture Model (GMM) [2,6,15,16], Hidden Markov Model (HMM) [4,6,17], K-means [8],
Support Vector Machine (SVM), Random Forest, Naive Bayes (NB), K-Nearest Neighbor (KNN) [1,8],
Multilayer Perceptron (MLP), Fuzzy-Neural-Network (FNN), statistical method [3], Decision Tree (DT)
and Symbolic Aggregate Approximation (SAX). However, most of them had various shortcomings.
HMM was limited to contextual information representation, based on the hypothesis that the output
observations were strictly independent and the current state was only related to the previous state
(first-order Markov model). In addition, KNN was affected by unbalanced training data, which
resulted in higher time complexity when calculating the distance from the unknown sample to all
known samples. Moreover, the model of NB was based on the hypothesis that sample attributes were
independent from each other. Therefore, NB might yield a lower classification performance when
the number of sample attributes or the correlation between attributes became larger, which required
enough samples to calculate the overall distribution of each class and the probability distribution
of each sample. For the DT model, it had to scan and sort the data set repeatedly during model
construction, which would increase the complexity and reduce the classification accuracy.

Deep learning has a great advantage in feature learning. For example, Convolutional Neural
Network (CNN) [18] is mainly used for data with dense feature learning such as images and speech,
while RNN and Long Short-Term Memory (LSTM) are popular choices in text homogenization and
serialization of high-dimensional sparse features [19]. Driving behavior recognition involves classifying
time series data captured from inertial sensors such as 3-axis accelerometers or gyroscopes. Recently,
CNN has established itself as a powerful technique for activity recognition, where convolution and
pooling operations were applied along the temporal dimension of sensor signals [20]. Furthermore,
in most of the state-of-the-art works on CNN for activity recognition, 1D/2D convolution was
employed in individual time series to capture local dependency along the temporal dimension of
sensor signals [21,22]. The combination of CNN and LSTM had already offered state-of-the-art results
in speech recognition, wearable activity recognition, online defect recognition of CO2 welding, etc.,
where modeling temporal information was required [14,23–26]. This kind of architecture was able to
capture time dependencies on features extracted by convolution operations. In this work, we focused
on extracting key features using an end-to-end deep learning approach without the requirement of

Sensors 2019, 19, 1356 4 of 17

feature selection. In addition, features characterizing both driving behaviors and automotive running
were used to represent a driver’s personality.

2.2. Problem Formulation

2.2.1. In-Vehicle CAN-BUS Sensor Data Preparation and Analysis

Our models are evaluated on Ocslab driving dataset [27,28]. The dataset is used for the AI/ML
based driver classification challenge track in the 2018 Information Security R&D dataset challenge held
in South Korea [29]. The dataset holds a total of 94,401 records, which are created from an experiment
where ten drivers labeled from “A” to “J” completed two round trips in a similar time zone from 8 p.m.
to 11 p.m. on weekdays. The On Board Diagnostics 2 (OBD-II) and CarbigsPare are used as OBD-II
scanner for data collection at 1 Hz sampling rate.

Originally, there are 51-Dimensional (51D) features in the dataset and the data structure of Ocslab
driving dataset is depicted in Figure 2.

Sensors 2019, 19, 1356 4 of 17

classifying time series data captured from inertial sensors such as 3-axis accelerometers or
gyroscopes. Recently, CNN has established itself as a powerful technique for activity recognition,
where convolution and pooling operations were applied along the temporal dimension of sensor
signals [20]. Furthermore, in most of the state-of-the-art works on CNN for activity recognition,
1D/2D convolution was employed in individual time series to capture local dependency along the
temporal dimension of sensor signals [21,22]. The combination of CNN and LSTM had already
offered state-of-the-art results in speech recognition, wearable activity recognition, online defect
recognition of CO2 welding, etc., where modeling temporal information was required [14,23–26]. This
kind of architecture was able to capture time dependencies on features extracted by convolution
operations. In this work, we focused on extracting key features using an end-to-end deep learning
approach without the requirement of feature selection. In addition, features characterizing both
driving behaviors and automotive running were used to represent a driver's personality.

2.2. Problem Formulation

2.2.1. In-Vehicle CAN-BUS Sensor Data Preparation and Analysis

Our models are evaluated on Ocslab driving dataset [27,28]. The dataset is used for the AI/ML
based driver classification challenge track in the 2018 Information Security R&D dataset challenge
held in South Korea [29]. The dataset holds a total of 94,401 records, which are created from an
experiment where ten drivers labeled from “A” to “J” completed two round trips in a similar time
zone from 8 p.m. to 11 p.m. on weekdays. The On Board Diagnostics 2 (OBD-II) and CarbigsPare are
used as OBD-II scanner for data collection at 1 Hz sampling rate.

Originally, there are 51-Dimensional (51D) features in the dataset and the data structure of
Ocslab driving dataset is depicted in Figure 2.

Figure 2. The data structure of Ocslab driving dataset.

Some features are visualized in driver’s driving pattern. Figure 3 shows the difference of
revolutions per minute (RPM) when drivers B and C drove the car in the experiment.

Figure 3. The visualization of revolutions per minute (RPM) of drivers B and C.

Figure 2. The data structure of Ocslab driving dataset.

Some features are visualized in driver’s driving pattern. Figure 3 shows the difference of
revolutions per minute (RPM) when drivers B and C drove the car in the experiment.

Sensors 2019, 19, 1356 4 of 17

classifying time series data captured from inertial sensors such as 3-axis accelerometers or
gyroscopes. Recently, CNN has established itself as a powerful technique for activity recognition,
where convolution and pooling operations were applied along the temporal dimension of sensor
signals [20]. Furthermore, in most of the state-of-the-art works on CNN for activity recognition,
1D/2D convolution was employed in individual time series to capture local dependency along the
temporal dimension of sensor signals [21,22]. The combination of CNN and LSTM had already
offered state-of-the-art results in speech recognition, wearable activity recognition, online defect
recognition of CO2 welding, etc., where modeling temporal information was required [14,23–26]. This
kind of architecture was able to capture time dependencies on features extracted by convolution
operations. In this work, we focused on extracting key features using an end-to-end deep learning
approach without the requirement of feature selection. In addition, features characterizing both
driving behaviors and automotive running were used to represent a driver's personality.

2.2. Problem Formulation

2.2.1. In-Vehicle CAN-BUS Sensor Data Preparation and Analysis

Our models are evaluated on Ocslab driving dataset [27,28]. The dataset is used for the AI/ML
based driver classification challenge track in the 2018 Information Security R&D dataset challenge
held in South Korea [29]. The dataset holds a total of 94,401 records, which are created from an
experiment where ten drivers labeled from “A” to “J” completed two round trips in a similar time
zone from 8 p.m. to 11 p.m. on weekdays. The On Board Diagnostics 2 (OBD-II) and CarbigsPare are
used as OBD-II scanner for data collection at 1 Hz sampling rate.

Originally, there are 51-Dimensional (51D) features in the dataset and the data structure of
Ocslab driving dataset is depicted in Figure 2.

Figure 2. The data structure of Ocslab driving dataset.

Some features are visualized in driver’s driving pattern. Figure 3 shows the difference of
revolutions per minute (RPM) when drivers B and C drove the car in the experiment.

Figure 3. The visualization of revolutions per minute (RPM) of drivers B and C.
Figure 3. The visualization of revolutions per minute (RPM) of drivers B and C.

2.2.2. Data Processing

This work used all 51 original features in the dataset without complex feature selection. Before
feeding to our classification model, the data was normalized and processed using sliding window
technique. The input data is defined as χ ∈ RNχ×Mχ . The data at time step t is defined as:

χt =
(

χ1
t , χ2

t , . . . , χNx−1
t , χNx

t

)T
(1)

Sensors 2019, 19, 1356 5 of 17

where Nχ denotes the dimensionality of χt, and Mχ represents the amount of dataset χ, that is, the
total number of χ in all time steps.

Since the scales of features in the dataset are different, they are needed to be normalized in a
classification algorithm. Specifically, the normalization process for unifying data scales is defined as:

χn
t =

(χn
t −mean(χn))

std(χn)

χt =
(

χ1
t , χ2

t , . . . , χNx−1
t , χNx

t

)T (2)

where mean(χn) and std(χn) represent the mean and standard deviation of the nth dimension of
dataset χ, respectively.

Driving behavior is a continuous process, so sliding window technique is adopted to divide the
entire data set into multiple discrete data segments by time period. In order to extract contextual
features and ensure the continuity of data segments, presuming Tx is window size, data segments
are extracted by the sliding window method with overlapping window. For the dataset with Nχ

dimensions, the windowed sample xi holds Dx = Tx × Nx dimensions, which are generated by

xi =
(

χt−Tχ+1, χt−Tχ+2, . . . , χt

)T
∈ RNx , (t = Tχ, Tχ + ∆t, Tχ+2∆t, . . .) (3)

As shown in Figure 4, the windowing dataset X ∈ RNx×Mx is generated when xi moves at the
time axis by the time step ∆t, where Nx = Nχ and Mx is the amount of the windowing dataset X.

Sensors 2019, 19, 1356 5 of 17

2.2.2. Data Processing

This work used all 51 original features in the dataset without complex feature selection. Before
feeding to our classification model, the data was normalized and processed using sliding window
technique. The input data is defined as N Mχ χχ ×∈ . The data at time step t is defined as:

()11 2, , , ,x x
TN N

t t t t tχ χ χ χ χ−= (1)

where Nχ denotes the dimensionality of tχ , and Mχ represents the amount of dataset χ ,that is,
the total number of χ in all time steps.

Since the scales of features in the dataset are different, they are needed to be normalized in a
classification algorithm. Specifically, the normalization process for unifying data scales is defined
as:

()()
()

()11 2, , , ,x x

n n
tn

t n

TN N
t t t t t

mean

std

χ χ
χ

χ

χ χ χ χ χ−

−
=

=

 (2)

where ()nmean χ and ()nstd χ represent the mean and standard deviation of the thn dimension

of dataset χ , respectively.
Driving behavior is a continuous process, so sliding window technique is adopted to divide the

entire data set into multiple discrete data segments by time period. In order to extract contextual
features and ensure the continuity of data segments, presuming xT is window size, data segments
are extracted by the sliding window method with overlapping window. For the dataset with Nχ

dimensions, the windowed sample ix holds x x xD T N= × dimensions, which are generated by

() ()1 2= , , , , + , +2 ,x
T N

i t T t T tx t T T t T t
χ χ χ χ χχ χ χ− + − + ∈ = Δ Δ ， (3)

As shown in Figure 4, the windowing dataset x xN MX ×∈ is generated when ix moves at the
time axis by the time step tΔ , where xN Nχ= and xM is the amount of the windowing dataset
X .

Figure 4. Overlapping sliding window method. Four windows (1w, 2w, 3w, 4w) were obtained from the
300 samples when setting the window size xT to 120 samples and time step tΔ to 60 samples.

2.3. Our Proposed Framework

2.3.1. Main Procedure of Our Proposed Architecture

Compared to the structure of DeepConvLSTM proposed in [14,23–26], we introduce an attention
mechanism in [30], and redesign the convolutional and recurrent layer referring to [31,32]. As shown
in Figure 5, the proposed model for driving behavior identification using in-vehicle CAN-BUS sensor

Figure 4. Overlapping sliding window method. Four windows (w1, w2, w3, w4) were obtained from
the 300 samples when setting the window size Tx to 120 samples and time step ∆t to 60 samples.

2.3. Our Proposed Framework

2.3.1. Main Procedure of Our Proposed Architecture

Compared to the structure of DeepConvLSTM proposed in [14,23–26], we introduce an attention
mechanism in [30], and redesign the convolutional and recurrent layer referring to [31,32]. As shown
in Figure 5, the proposed model for driving behavior identification using in-vehicle CAN-BUS sensor
data consists of an input layer, middle layers and a classifier layer. Dx is the dimension of input data
sample in input layer and Ny is the output categories in output layer.

The middle layers consist of convolutional layers, pooling layers, recurrent layers and a fully
connected layer.

Figure 5 shows the flowchart of our model. First, a window series extracted from the CAN-BUS
sensor data is passed into convolutional layers. Next, attention-based recurrent layers are used for
time series feature extraction, whose inputs are the feature maps of the last convolutional layer. Lastly,
the output layer, followed by the recurrent layers, is used to yield class probability distribution for
driving behavior identification.

Sensors 2019, 19, 1356 6 of 17

Sensors 2019, 19, 1356 6 of 17

data consists of an input layer, middle layers and a classifier layer. xD is the dimension of input
data sample in input layer and yN is the output categories in output layer.

The middle layers consist of convolutional layers, pooling layers, recurrent layers and a fully
connected layer.

Figure 5 shows the flowchart of our model. First, a window series extracted from the CAN-BUS
sensor data is passed into convolutional layers. Next, attention-based recurrent layers are used for
time series feature extraction, whose inputs are the feature maps of the last convolutional layer. Lastly,
the output layer, followed by the recurrent layers, is used to yield class probability distribution for
driving behavior identification.

Figure 5. The main procedure of our proposed model.

2.3.2. Convolutional and Pooling Layers for Feature Extraction

Our model contains depth-wise separable convolutional layers [33] and a pooling layer in the
beginning, which take convolutional operations on the input time series data. Each group of outputs
of a convolutional layer is called feature map, which are regarded as features extracted from input

signals. It is supposed that the number of feature map from the ()1 thl − convolutional layer is 1ln − ,

and the size of each feature map is 1 1 1l l lm w h− − −= × . The total number of neurons in the 1thl− layer

is 1 1l ln m− −× . The thk feature map output from the thl convolutional layer is:

() () () ()
1

, , , 1, ,

1

ln
l k l k p l p l k

p
X W X bσ

−
−

=

= ⊗ +

 (4)

where σ is the ReLU activation function, (), ,l k p u vW ×∈ , which is the 2D filter mapping from the
thp feature map of the 1thl− layer to the thk feature map of the thl layer. In addition,
(), l ll k w hX ×∈ , 1 1l l fw w w−= − + , 1 1l l fh h h−= − + , where fw and fh are the width and height of

the filter, respectively.
Generally, the convolutional layers are followed by pooling operations , which could greatly

reduce the dimension of feature maps and avoid over-fitting. The output of the pooling layer is as
follow:

() ()()1l lX down X+ = (5)

Figure 5. The main procedure of our proposed model.

2.3.2. Convolutional and Pooling Layers for Feature Extraction

Our model contains depth-wise separable convolutional layers [33] and a pooling layer in the
beginning, which take convolutional operations on the input time series data. Each group of outputs
of a convolutional layer is called feature map, which are regarded as features extracted from input
signals. It is supposed that the number of feature map from the (l − 1)th convolutional layer is nl−1,
and the size of each feature map is ml−1 = wl−1 × hl−1. The total number of neurons in the l − 1th

layer is nl−1 ×ml−1. The kth feature map output from the lth convolutional layer is:

X(l,k) = σ

(
nl−1

∑
p=1

W(l,k,p) ⊗ X(l−1,p) + b(l,k)
)

(4)

where σ is the ReLU activation function, W(l,k,p) ∈ Ru×v, which is the 2D filter mapping from
the pth feature map of the l − 1th layer to the kth feature map of the lth layer. In addition,
X(l,k) ∈ Rwl×hl , wl = wl−1 − w f + 1, hl = hl−1 − h f + 1, where w f and h f are the width and height of
the filter, respectively.

Generally, the convolutional layers are followed by pooling operations, which could greatly
reduce the dimension of feature maps and avoid over-fitting. The output of the pooling layer is
as follow:

X(l+1) = down
(

X(l)
)

(5)

where down(Xl) is down-sampling function for the lth convolutional layer X(l), which generally takes
the maximum (Maximum Pooling) or average (Average Pooling) of all neurons in pooling region.

From equation (4) and equation (5), we can see that the first convolutional layer operates
sensor data with Dx dimensions into c f1 × m f1 feature maps by applying 2D filters with shape[

h f1 , w f1 , c f1 , m f1

]
, where h f1 , w f1 , c f1 , m f1 are respectively the filter height, filter width, input channel

and channel multiplier of the 1st convolutional layer. The following pooling layer uses a kernel with
shape

[
1, hk1 , wk1 , 1

]
to down-sample feature maps, where hk1 , wk1 are respectively the 1st pooling layer

kernel height and width.
The window inputs are split into Nx instances in time dimension. This Nx instances data is then

fed into recurrent layers, in which each layer owns Nh hidden nodes.

2.3.3. Attention Based Recurrent Layer

There are two extended Recurrent Neural Network (RNN): Long Short-Term Memory (LSTM) [34]
and Gated Recurrent Unit (GRU) [35]. They all use purpose-built memory cells to store information,

Sensors 2019, 19, 1356 7 of 17

which is helpful to find and exploit long range dependencies in time series data and thus can be
further leading to more efficient driving pattern recognition. Thus, LSTM and GRU are adopted
as the recurrent components that make use of the concept of gating, a mechanism based on the
component-wise multiplication of inputs, which defines the behavior of each individual memory cell
and decides whether to retain the state of the last moment or not, as well as to receive external inputs
at this moment. LSTM is done with forget gates and input gates while GRU adopts update gates.

Time series sensor data contains more complex temporal information. Not all feature maps
have the equal contribution in the identification of driving behaviors. With an attention mechanism,
encoding the full input sequences into a fixed-length vector is no longer required. Thus the attention
mechanism (see Figure 6) introduced by [30] is extended to capture salient structures of data, extracting
more valuable feature maps than others for classification. The attention unit can also be viewed
as a weighted average of output over time, where the weights could be learned automatically
through context.

Sensors 2019, 19, 1356 7 of 17

where ()ldown X is down-sampling function for the thl convolutional layer ()lX , which
generally takes the maximum (Maximum Pooling) or average (Average Pooling) of all neurons in
pooling region.

From equation (4) and equation (5), we can see that the first convolutional layer operates sensor
data with xD dimensions into

1 1f fc m× feature maps by applying 2D filters with shape

1 1 1 1
, , ,f f f fh w c m , where

1f
h ,

1f
w ,

1f
c ,

1f
m are respectively the filter height, filter width, input channel

and channel multiplier of the 1st convolutional layer. The following pooling layer uses a kernel with

shape
1 1

1, , ,1k kh w to down-sample feature maps, where
1k

h ,
1k

w are respectively the 1st pooling

layer kernel height and width.
The window inputs are split into xN instances in time dimension. This xN instances data is

then fed into recurrent layers, in which each layer owns hN hidden nodes.

2.3.3. Attention Based Recurrent Layer

There are two extended Recurrent Neural Network (RNN): Long Short-Term Memory (LSTM)
[34] and Gated Recurrent Unit (GRU) [35]. They all use purpose-built memory cells to store
information, which is helpful to find and exploit long range dependencies in time series data and
thus can be further leading to more efficient driving pattern recognition. Thus, LSTM and GRU are
adopted as the recurrent components that make use of the concept of gating, a mechanism based on
the component-wise multiplication of inputs, which defines the behavior of each individual memory
cell and decides whether to retain the state of the last moment or not, as well as to receive external
inputs at this moment. LSTM is done with forget gates and input gates while GRU adopts update
gates.

Time series sensor data contains more complex temporal information. Not all feature maps have
the equal contribution in the identification of driving behaviors. With an attention mechanism,
encoding the full input sequences into a fixed-length vector is no longer required. Thus the attention
mechanism (see Figure 6) introduced by [30] is extended to capture salient structures of data,
extracting more valuable feature maps than others for classification. The attention unit can also be
viewed as a weighted average of output over time, where the weights could be learned automatically
through context.

(a) (b)

Figure 6. The attention unit.

As depicted in Figure 6 (a), the attention unit takes input vector { }1 , ..., hNh h , which is the hidden

state of the recurrent layer, and outputs a contextual attention-based vector v , which is a weighted
arithmetic mean of the input vector where the weights are learned based on the importance of each
element of the vector. As depicted in Figure 6 (b), the output of the attention model tv , which

Figure 6. The attention unit.

As depicted in Figure 6a, the attention unit takes input vector
{

h1, . . . , hNh
}

, which is the hidden
state of the recurrent layer, and outputs a contextual attention-based vector v, which is a weighted
arithmetic mean of the input vector where the weights are learned based on the importance of each
element of the vector. As depicted in Figure 6b, the output of the attention model vt, which remains the
importance of the representation of feature maps, is used as the input vector for the following classifier.

For each segment feature xi at tth time step, the context information is calculated by:
si

t = Wstanh
(
Whhi

t + bs
)

αi
t =

exp(si
t)

Nx
∑

i=1
exp(si

t)
,

Nx
∑

i=1
αi

t = 1 (6)

where Ws, Wh and bs are parameters to be learned, αi
t is the attention weight at tth time step describing

the importance of the input vector. Given the current hidden state ht of the decoder, it returns
un-normalized score si

t. Once the scores St for all the nodes
{

h1, . . . , hNh
}

are computed, the RNN is
able to obtain αi

t at tth time step. The contextual attention-based output is:

vt =
Nh

∑
i=1

αi
th

i
t (7)

where vt represents context vector which is a dynamic representation of the feature map at tth time step.

Sensors 2019, 19, 1356 8 of 17

Next, vt is augmented to the basic LSTM and the basis formulation of LSTM [34] is below:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ottanh(ct)

vt = ∑ αtht

(8)

where σ is logistic sigmoid function, and i, f , o and c are respectively the input gate, forget gate, output
gate, and cell input activation vectors, which are the same size as the hidden vector h and could be
updated at every time step t. Whi is the weight matrix of hidden-input gate and Wxo is the matrix of
input–output gate.

Similarly, vt is added into GRU referred to [35] and the outputs are calculated by:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wtxt + Utht−1 + br)

ht = tanh(Wxt + U(rt ◦ ht−1))

ht = (1− zt) ◦ ht−1 + zt ◦ ht

vt = ∑ αtht

(9)

where ◦ is an element-wise multiplication, zt, rt, ht and ht are the update gate, reset gate, candidate
activation and output activation, respectively.

2.3.4. Classifier Layer for Driving Behavior Identification

Then the output of recurrent layer Xr =
{

x1, . . . , xNh
}

is fed into a classifier layer to generate the
prediction ŷ. In the classifier layer, a learnable matrix Wo with a bias term bo are used to decode Xr

into ŷ, such that ŷ = WoXr + bo. Therefore, the classifier layer is a fully connected layer with sharing
parameter Wo and bo.

2.4. Model Training

(A) Learning:

Since our model is a multi-class classification model, the most commonly used objective function
is cross-entropy cost function, which is similar to the K-L divergence between two distributions:

J(w) = −
m

∑
i=1

(
y(i) log

(
ŷ
(

x(i)
))

+
(

1− y(i)
)

log
(

1− ŷ
(

x(i)
)))

(10)

where
(

x(i), y(i)
)

represents the input sample with label i, and ŷ
(

x(i)
)

is the prediction of the

instance x(i).

(B) Overfitting:

An overfitting model performs poorly since it overreacts to the given training data. Therefore,
dropout is adopted to DeepConvLSTM/DeepConvGRU framework.

2.5. Model Evaluation

In order to compare our models with the state-of-the-art methods, three evaluation metrics are
selected to evaluate our experiments: Accuracy, AUC [36] and weighted F1 score. Previous related

Sensors 2019, 19, 1356 9 of 17

work used the weighted F1 score as the primary performance metric [14]. The weighted F1 score is
defined as:

F1 = ∑
i

2 ∗ωi
precisionirecalli

precisioni + recalli
(11)

where i is class index and ωi = ni/N is the proportion of samples of the class i, with ni being the
number of samples of the ith class and N being the total number of samples.

3. Results

Our model is evaluated and compared with other two methods, which are variants of our
model created by removing the attention units from our model. It is also compared with some other
state-of-the-art models [27], which are described below:

DeepConvGRU–Attention: This model has two depth wise separable convolutional layers and a
pooling layer in CNN module, followed by stacked GRU with two attention-based layers.

DeepConvLSTM–Attention: Compared to DeepConvGRU–Attention, this model replaces GRU
with LSTM in the recurrent layers.

DeepConvGRU: This model is similar to DeepConvGRU–Attention without attention units in
model training.

DeepConvLSTM: Similarly, this model removes attention units from DeepConvLSTM–Attention.
CNN: This model owns two depth wise separable convolutional layers and a pooling layer with

a softmax classifier in the output. The baseline algorithm is used to verify the effectiveness of the
recurrent layers in finding and exploiting long range dependencies in time series data, which is suitable
for driving pattern recognition.

LSTM: This model has two stacked LSTM layers, referred to in [37,38].
DNN: This model has two stacked hidden layers, referred to in [38].
Our model used all original 51D features to identify driving behaviors. To show the power of our

end-to-end framework, feature selection referred to in [27] was implemented, selecting 15-Dimensional
(15D) features from the original 51D features and deriving three statistical features for original features.
In total, statistical 45-Dimensional (45D) features were obtained. Table 1 shows the selected original
features and statistical features. We chose the KNN, Decision Tree and Random Forest algorithms as
the baselines [27,38] as they have been proven to yield good performance.

Table 1. Selected original features and statistical features.

Selected 15D Features Statistical 45D Features

‘Long term fuel trim bank’, ’Intake air pressure’, ‘Accelerator pedal
value’, ‘Fuel consumption’, ‘Friction torque’, ‘Maximum indicated
engine torque’, ‘Engine torque’, ‘Calculated load value’, ‘Activation of
air compressor’, ‘Engine coolant temperature’, ‘Transmission oil
temperature’, ‘Wheel velocity front left-hand’, ‘Wheel velocity front
right-hand’, ‘Wheel velocity rear left-hand’, ‘Torque converter speed’

Mean
Median

Standard deviation

The Ocslab driving dataset was split into a training set and a test set with a ratio of 7:3 for
validating the model performance. To achieve the best performance for each model in the dataset,
the parameters of models were fully tuned. The hyper-parameters of compared deep models are
listed in Table 2, which shows the structure of layers, window size, dropout, activation function
and optimizer.

The window size Tx and ∆t were set referred to [39]. As shown in Table 3, for different models,
different features were chosen to get the best performance.

Sensors 2019, 19, 1356 10 of 17

Table 2. Hyper-parameters of models on Ocslab driving dataset.

Model Layers (l) 1 Dropout Activation
Function Optimizer

DeepConvGRU–Attention (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 − 10 0.5 ReLU Adam
DeepConvLSTM–Attention (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 − 10 0.5 ReLU Adam

DeepConvGRU (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 0.5 ReLU Adam
DeepConvLSTM (1 × 60) − 1 × 20 − 1 × 6 − 128 − 128 0.5 ReLU Adam

CNN (1 × 60) − 1 × 20 − 1 × 6 0.5 ReLU Adam
LSTM 128 − 128 0.5 ReLU Adam
DNN 1000 − 1000 0.5 ReLU Adam

1 ‘(1*60)’ represents the kernel size of input-to-state convolutional layer. ‘1*20’ and ‘1*6’ represent the corresponding
kernel sizes of state-to-state convolutional layer and pooling layer. ‘128’ refers to the number of hidden states in the
recurrent layers while ‘10’ represents the size of attention vector. ‘1000’ refers to the number of hidden states in the
hidden layers of DNN.

Table 3. Hyper-parameters of models on Ocslab driving dataset.

Model Window Size (Tx) Time Step (∆t) Selected Features

DeepConvGRU-Attention 90/60/60 45/10/6 original 51D features
DeepConvLSTM-Attention 90/60/60 45/10/6 original 51D features

DeepConvGRU 90/60/60 45/10/6 original 51D features
DeepConvLSTM 90/60/60 45/10/6 original 51D features

CNN 90/60/60 45/10/6 original 51D features
LSTM-51 90/60/60 45/10/6 original 51D features
LSTM-15 90/60/60 45/10/6 selected 15D features
DNN-51 90/60/60 45/10/6 original 51D features
DNN-15 90/60/60 45/10/6 selected 15D features
DNN-45 90/60/60 45/10/6 statistical 45D features

KNN 90/60/60 45/10/6 statistical 45D features
Decision Tree 90/60/60 45/10/6 statistical 45D features

Random Forest 90/60/60 45/10/6 statistical 45D features

In training stage, the effects of the attention and RNN units were investigated in terms of model
learning efficiency and generalization ability under Adam optimizer. The 5-fold cross-validation was
used to make sure the proposed model was generalized over the dataset, in which the total data
samples were divided into five parts, where four of them were used for the training model and the
remaining one was employed for validation. Figures 7–12 illustrate the evaluations of the first fold
training and the verification stage with respect to accuracy.

Sensors 2019, 19, 1356 11 of 17

The legends of Figures 7–9 are identical. From Figure 7 (a), LSTM and DNN could not be
converged if using all the original features without performing any feature selection. Other models
could automatically select features because of the convolutional layers. From Figure 7 (b),
DeepConvGRU and DeepConvLSTM gained better generalization ability, capturing local
dependency among the temporal dimension compared with CNN. DeepConvGRU yielded faster
learning efficiency than DeepConvLSTM because GRU has less parameters and therefore was easier
to be converged. In Figures 8,9, it can be seen that the attention based DeepConvGRU and
DeepConvLSTM also performed the best compared with other models. The attention mechanism
made the model easier to be converged.

(a) (b)

Figure 7. Performance comparison of different models in accuracy using 51 original features when
setting xT to 90 samples and tΔ to 45 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

(a) (b)

Figure 8. Performance comparison of different models in accuracy using 51 original features when
setting xT to 60 samples and tΔ to 10 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

Figure 7. Performance comparison of different models in accuracy using 51 original features when
setting Tx to 90 samples and ∆t to 45 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage.

Sensors 2019, 19, 1356 11 of 17

Sensors 2019, 19, 1356 11 of 17

The legends of Figures 7–9 are identical. From Figure 7 (a), LSTM and DNN could not be
converged if using all the original features without performing any feature selection. Other models
could automatically select features because of the convolutional layers. From Figure 7 (b),
DeepConvGRU and DeepConvLSTM gained better generalization ability, capturing local
dependency among the temporal dimension compared with CNN. DeepConvGRU yielded faster
learning efficiency than DeepConvLSTM because GRU has less parameters and therefore was easier
to be converged. In Figures 8,9, it can be seen that the attention based DeepConvGRU and
DeepConvLSTM also performed the best compared with other models. The attention mechanism
made the model easier to be converged.

(a) (b)

Figure 7. Performance comparison of different models in accuracy using 51 original features when
setting xT to 90 samples and tΔ to 45 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

(a) (b)

Figure 8. Performance comparison of different models in accuracy using 51 original features when
setting xT to 60 samples and tΔ to 10 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

Figure 8. Performance comparison of different models in accuracy using 51 original features when
setting Tx to 60 samples and ∆t to 10 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage.

Sensors 2019, 19, 1356 12 of 17

(a) (b)

Figure 9. Performance comparison of different models in accuracy using 51 original features when
setting xT to 60 samples and tΔ to 6 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

From the results in Figures 7–9, we can see that the attention based
DeepConvGRU/DeepConvLSTM consistently outperformed the baselines. It can be noticed that
DeepConvGRU made a striking performance improvement. This may be because that LSTM has
more parameters than GRU, which makes it more difficult to be converged on a small dataset. The
fact that DeepConvGRU/DeepConvLSTM obtained better performance than CNN may be due to the
ability of RNN cells to capture temporal dynamics within the data sequences. However, the baseline
CNN was only capable of modelling time sequences up to the length of the kernels. Moreover, LSTM
and DNN could not be converged if using all original features. So LSTM and DNN with selected 15D
features and statistical 45D features were investigated and compared with other models in Figures
10–12.

(a) (b)

Figure 10. Performance comparison of different models in accuracy using 51 original features when
setting xT to 90 samples and tΔ to 45 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, DeepConvGRU and DeepConvLSTM using
the original 51D features performed similar to LSTM and DNN using the selected 15D features and
statistical 45D features. In addition, DNN using selected 15D features also could not be converged.

Figure 9. Performance comparison of different models in accuracy using 51 original features when
setting Tx to 60 samples and ∆t to 6 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage.

Sensors 2019, 19, 1356 12 of 17

(a) (b)

Figure 9. Performance comparison of different models in accuracy using 51 original features when
setting xT to 60 samples and tΔ to 6 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage.

From the results in Figures 7–9, we can see that the attention based
DeepConvGRU/DeepConvLSTM consistently outperformed the baselines. It can be noticed that
DeepConvGRU made a striking performance improvement. This may be because that LSTM has
more parameters than GRU, which makes it more difficult to be converged on a small dataset. The
fact that DeepConvGRU/DeepConvLSTM obtained better performance than CNN may be due to the
ability of RNN cells to capture temporal dynamics within the data sequences. However, the baseline
CNN was only capable of modelling time sequences up to the length of the kernels. Moreover, LSTM
and DNN could not be converged if using all original features. So LSTM and DNN with selected 15D
features and statistical 45D features were investigated and compared with other models in Figures
10–12.

(a) (b)

Figure 10. Performance comparison of different models in accuracy using 51 original features when
setting xT to 90 samples and tΔ to 45 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, DeepConvGRU and DeepConvLSTM using
the original 51D features performed similar to LSTM and DNN using the selected 15D features and
statistical 45D features. In addition, DNN using selected 15D features also could not be converged.

Figure 10. Performance comparison of different models in accuracy using 51 original features when
setting Tx to 90 samples and ∆t to 45 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage. Here, DeepConvGRU and DeepConvLSTM using
the original 51D features performed similar to LSTM and DNN using the selected 15D features and
statistical 45D features. In addition, DNN using selected 15D features also could not be converged.

Sensors 2019, 19, 1356 12 of 17
Sensors 2019, 19, 1356 13 of 17

(a) (b)

Figure 11. Performance comparison of different models in accuracy using original 51D features when
setting xT to 60 samples and tΔ to 10 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM performed better than DNN using statistical 45D features.

(a) (b)

Figure 12. Performance comparison of different models in accuracy using original 51D features when
setting xT to 60 samples and tΔ to 6 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM also yielded good performance.

The legends of Figures 10–12 are identical. From Figures 10–12, it can be seen that the attention
based DeepConvGRU and DeepConvLSTM using original 51D features without any feature selection
gained similar good performance to LSTM and DNN using artificially designed features. The baseline
DNN using statistical 45D features yielded poor learning efficiency and generalization ability when
setting xT to 60 samples and tΔ to 10 samples. Furthermore, the baseline DNN using selected 15D
features could not be converged in all cases.

To fully show the performance comparison of the models, F1 scores of the models were explored
except for the models that could not be converged. The results are shown in Table 4.

Table 4. Driving behavior identification for different methods when setting xT to 60 samples and tΔ
to 10 samples.

Model
xT = 60, tΔ = 10

Accuracy AUC F1 Score
Mean Std Mean Std Mean Std

KNN 0.812 0 0.8986 0 0.8157 0
DecisionTree 0.7432 0.0966 0.8638 0.0502 0.7402 0.1002

Figure 11. Performance comparison of different models in accuracy using original 51D features when
setting Tx to 60 samples and ∆t to 10 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM performed better than DNN using statistical 45D features.

Sensors 2019, 19, 1356 13 of 17

(a) (b)

Figure 11. Performance comparison of different models in accuracy using original 51D features when
setting xT to 60 samples and tΔ to 10 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM performed better than DNN using statistical 45D features.

(a) (b)

Figure 12. Performance comparison of different models in accuracy using original 51D features when
setting xT to 60 samples and tΔ to 6 samples. (a) Performance comparison in the training stage. (b)
Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM also yielded good performance.

The legends of Figures 10–12 are identical. From Figures 10–12, it can be seen that the attention
based DeepConvGRU and DeepConvLSTM using original 51D features without any feature selection
gained similar good performance to LSTM and DNN using artificially designed features. The baseline
DNN using statistical 45D features yielded poor learning efficiency and generalization ability when
setting xT to 60 samples and tΔ to 10 samples. Furthermore, the baseline DNN using selected 15D
features could not be converged in all cases.

To fully show the performance comparison of the models, F1 scores of the models were explored
except for the models that could not be converged. The results are shown in Table 4.

Table 4. Driving behavior identification for different methods when setting xT to 60 samples and tΔ
to 10 samples.

Model
xT = 60, tΔ = 10

Accuracy AUC F1 Score
Mean Std Mean Std Mean Std

KNN 0.812 0 0.8986 0 0.8157 0
DecisionTree 0.7432 0.0966 0.8638 0.0502 0.7402 0.1002

Figure 12. Performance comparison of different models in accuracy using original 51D features when
setting Tx to 60 samples and ∆t to 6 samples. (a) Performance comparison in the training stage.
(b) Performance comparison in the validation stage. Here, the attention-based DeepConvGRU and
DeepConvLSTM also yielded good performance.

The legends of Figures 7–9 are identical. From Figure 7a, LSTM and DNN could not be converged
if using all the original features without performing any feature selection. Other models could
automatically select features because of the convolutional layers. From Figure 7b, DeepConvGRU
and DeepConvLSTM gained better generalization ability, capturing local dependency among the
temporal dimension compared with CNN. DeepConvGRU yielded faster learning efficiency than
DeepConvLSTM because GRU has less parameters and therefore was easier to be converged.
In Figures 8 and 9, it can be seen that the attention based DeepConvGRU and DeepConvLSTM also
performed the best compared with other models. The attention mechanism made the model easier to
be converged.

From the results in Figures 7–9, we can see that the attention based DeepConvGRU/
DeepConvLSTM consistently outperformed the baselines. It can be noticed that DeepConvGRU
made a striking performance improvement. This may be because that LSTM has more parameters
than GRU, which makes it more difficult to be converged on a small dataset. The fact that
DeepConvGRU/DeepConvLSTM obtained better performance than CNN may be due to the ability of
RNN cells to capture temporal dynamics within the data sequences. However, the baseline CNN was
only capable of modelling time sequences up to the length of the kernels. Moreover, LSTM and DNN

Sensors 2019, 19, 1356 13 of 17

could not be converged if using all original features. So LSTM and DNN with selected 15D features
and statistical 45D features were investigated and compared with other models in Figures 10–12.

The legends of Figures 10–12 are identical. From Figures 10–12, it can be seen that the attention
based DeepConvGRU and DeepConvLSTM using original 51D features without any feature selection
gained similar good performance to LSTM and DNN using artificially designed features. The baseline
DNN using statistical 45D features yielded poor learning efficiency and generalization ability when
setting Tx to 60 samples and ∆t to 10 samples. Furthermore, the baseline DNN using selected 15D
features could not be converged in all cases.

To fully show the performance comparison of the models, F1 scores of the models were explored
except for the models that could not be converged. The results are shown in Table 4.

Table 4. Driving behavior identification for different methods when setting Tx to 60 samples and ∆t to
10 samples.

Model

Tx = 60, ∆t = 10

Accuracy AUC F1 Score

Mean Std Mean Std Mean Std

KNN 0.812 0 0.8986 0 0.8157 0
DecisionTree 0.7432 0.0966 0.8638 0.0502 0.7402 0.1002

RandomForest 0.7049 0.0589 0.8541 0.0275 0.7565 0.0485
DeepConvGRU-Attention 0.9701 0.0052 0.9959 0.0007 0.9702 0.0052
DeepConvLSTM-Attention 0.9524 0.0138 0.9946 0.0015 0.9526 0.0137

DeepConvGRU 0.9565 0.0091 0.9959 0.0011 0.9563 0.0093
DeepConvLSTM 0.905 0.0062 0.9887 0.0008 0.9047 0.0064

CNN 0.9081 0.0096 0.993 0.0013 0.908 0.0096
LSTM-15 0.9774 0.012 0.9982 0.0008 0.9771 0.0124
DNN-45 0.9188 0.0301 0.9731 0.0164 0.9145 0.0337

Tables 4 and 5 illustrates the performance comparison of the proposed four variants of our
framework compared with traditional models including CNN, LSTM, KNN, Decision Tree and Random
Forest under different Tx and ∆t. Experimental results showed that our framework outperformed
traditional methods without any feature selection. Without feature selection, our framework also
performed better than DNN and gained similar good performance to LSTM using artificially designed
features. Moreover, the attention-based DeepConvGRU and DeepConvLSTM–Attention yielded better
improvements than DeepConvGRU and DeepConvLSTM, respectively. In conclusion, the attention
mechanism effectively helps to learn more discriminative features in time series data.

Table 5. Driving behavior identification for different methods when setting Tx to 60 samples and ∆t to
6 samples.

Model

Tx = 60, ∆t = 6

Accuracy AUC F1 Score

Mean Std Mean Std Mean Std

KNN 0.9033 0 0.947 0 0.9045 0
DecisionTree 0.8543 0.0062 0.9213 0.004 0.8537 0.0069

RandomForest 0.8739 0.0044 0.9359 0.0025 0.8934 0.0034
DeepConvGRU-Attention 0.9836 0.0015 0.9978 0.001 0.9836 0.0015
DeepConvLSTM-Attention 0.9786 0.0068 0.9978 0.0006 0.9787 0.0068

DeepConvGRU 0.9772 0.0062 0.9968 0.0008 0.9772 0.0062
DeepConvLSTM 0.9519 0.0186 0.9944 0.0013 0.9497 0.019

CNN 0.9568 0.0072 0.9984 0.0002 0.9567 0.0073
LSTM-15 0.993 0.0015 0.9996 0.0001 0.9929 0.0015
DNN-45 0.9395 0.0358 0.9682 0.0281 0.9315 0.0493

Sensors 2019, 19, 1356 14 of 17

4. Discussion

From the performance comparison of our attention based DeepConvGRU/DeepConvLSTM with
the baseline models without RNN unit and attention unit in the dense layer, several main findings
were obtained.

First, DeepConvGRU/DeepConvLSTM reaches a higher F1 score. It is significantly more
suitable for identifying disambiguate closely-related activities, which tend to differ with ordering
time series data, and it is applicable for the activities that are longer than the observation window.
The experimental results show that our framework can capture local dependency among the temporal
dimension as well as across spatial locations.

Second, the attention mechanism makes DeepConvGRU/DeepConvLSTM gaining better
generalization ability, which could automatically learn the weights of features and extract important
features for the driving behavior identification.

Third, our framework outperforms traditional methods without any feature selection.
Since CAN-BUS data sometimes are massive and high-dimensional, our framework is very
advantageous in the case of difficult feature selection.

Furthermore, since the driving activity duration is longer than the sliding window size,
experimental results showed that the model can nevertheless obtain a good performance. This might
be because long driving activities are made of several short characteristic patterns, allowing the model
to spot and classify the driving activity even without a complete view of the activity.

5. Conclusions

This paper presented a deep learning framework based on the combination of CNN and
GRU/LSTM recurrent network to identify driving behaviors using in-vehicle CAN-BUS sensor data.
In the framework, the GRU/LSTM cells were integrated into CNN to distinguish activities from
similar driving behaviors. The attention based DeepConvGRU/DeepConvLSTM took advantage of
learning temporal dynamics. Experimental results showed that our proposed method outperformed
the traditional methods on the Ocslab driving dataset.

From the experimental results, it was also obvious that the proposed framework is able to
learn features from original signals and fuse the learned features without any specific preprocessing.
Surprisingly but reasonably, the attention-based DeepConvGRU achieved competitive F1 scores (0.984
and 0.970 respectively) while directly using 51-channel original sensor data. This provided a path to
address a similar issue that sensor data from different sources must be automatically processed.

In the future, further researches can be conducted in the following aspects:
First, a multi-scale approach should be developed to achieve accurate activity recognition on

in-vehicle CAN-BUS sensor data.
Second, due to the individual privacy protection of some driving datasets, most datasets do

not disclose the complete time series data of driving behaviors from different drivers. Therefore,
our framework can only be verified on a public driving behavior dataset. In the future, we need to
investigate our model on more practical large-scale Naturalistic Driving Studies (NDS) datasets, such
as 100-CAR [40], SHRP2 NDS [41,42], etc.

Author Contributions: J.Z. conceptualized and implemented the deep frameworks, executed the experimental
work, analysed the results, drafted the original manuscript and revised the manuscript. F.L. and C.X.
conceptualized the deep frameworks, visualized and analysed the results, provided feedback. T.R. was in
charge of data curation and investigation. J.C. and L.L. were in charge of formal analysis and validation. Z.C.W.
acquired the funding, revised the manuscript and approved the final manuscript as submitted.

Funding: This research was funded by The Science and Technology Service Network (STS) Double Innovation
Project of the Chinese Academy of Sciences, the construction and application of the comprehensive management
service platform for urban intelligent business travel (Grant No. KFJ-STS-SCYD-017).

Sensors 2019, 19, 1356 15 of 17

Acknowledgments: The authors would like to thank Byung Il Kwak and Huy Kang Kim with Korea University,
and JiYoung Woo with Soonchunhyang University for their driving dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Enev, M.; Takakuwa, A.; Koscher, K.; Kohno, T. Automobile Driver Fingerprinting. Proc. Priv. Enhanc. Technol.
2016, 2016, 34–50. [CrossRef]

2. Nishiwaki, Y.; Ozawa, K.; Wakita, T.; Miyajima, C.; Itou, K.; Takeda, K. Driver identification based on
spectral analysis of driving behavioral signals. In Advances for in-Vehicle and Mobile Systems; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 25–34.

3. Wahab, A.; Quek, C.; Tan, C.K.; Takeda, K. Driving profile modeling and recognition based on soft computing
approach. IEEE Trans. Neural Netw. 2009, 20, 563–582. [CrossRef]

4. Zhang, X.; Zhao, X.; Rong, J. A study of individual characteristics of driving behavior based on hidden
markov model. Sens. Transducers 2014, 167, 194.

5. Kaplan, S.; Guvensan, M.A.; Yavuz, A.G.; Karalurt, Y. Driver Behavior Analysis for Safe Driving: A Survey.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 3017–3032. [CrossRef]

6. Choi, S.; Kim, J.; Kwak, D.; Angkititrakul, P.; Hansen, J.H. Analysis and classification of driver behavior
using in-vehicle can-bus information. In Proceedings of the ITS World Congress 2012, Vienna, Austria,
22–26 October 2012.

7. Kedar-Dongarkar, G.; Das, M. Driver classification for optimization of energy usage in a vehicle.
Procedia Comput. Sci. 2012, 8, 388–393. [CrossRef]

8. Van Ly, M.; Martin, S.; Trivedi, M.M. Driver classification and driving style recognition using inertial sensors.
In Proceedings of the Intelligent Vehicles Symposium IEEE, Gold Coast City, Australia, 23–26 June 2013;
pp. 1040–1045.

9. Liu, H.; Taniguchi, T.; Tanaka, Y.; Takenaka, K.; Bando, T. Visualization of Driving Behavior Based on Hidden
Feature Extraction by Using Deep Learning. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2477–2489. [CrossRef]

10. Liu, H.L.; Taniguchi, T.; Takano, T.; Tanaka, Y. Visualization of driving behavior using deep sparse
autoencoder. In Proceedings of the Intelligent Vehicles Symposium IEEE, Ypsilanti, MI, USA, 8–11 June 2014;
pp. 1427–1434.

11. Fazeen, M.; Gozick, B.; Dantu, R.; Bhukhiya, M.; González, M.C. Safe Driving Using Mobile Phones.
IEEE Trans. Intell. Transp. Syst. 2012, 13, 1462–1468. [CrossRef]

12. Dai, J.; Teng, J.; Bai, X.; Shen, Z.; Xuan, D. Mobile phone based drunk driving detection. In Proceedings of
the 4th International Conference on Pervasive Computing Technologies for Healthcare, Munich, Germany,
22–25 March 2010; pp. 1–8.

13. Zaldivar, J.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Providing accident detection in vehicular networks
through OBD-II devices and Android-based smartphones. In Proceedings of the IEEE Conference on Local
Computer Networks, Bonn, Germany, 4–7 October 2011; pp. 813–819.

14. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable
activity recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

15. Miyajima, C.; Nishiwaki, Y.; Ozawa, K.; Wakita, T.; Itou, K.; Takeda, K.; Itakura, F. Driver modeling based on
driving behavior and its evaluation in driver identification. Proc. IEEE 2007, 95, 427–437. [CrossRef]

16. Wakita, T.; Ozawa, K.; Miyajima, C.; Igarashi, K.; Itou, K.; Takeda, K.; Itakura, F. Driver identification using
driving behavior signals. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto,
ON, Canada, 17–20 September 2006; pp. 396–401.

17. Meng, X.; Lee, K.K.; Xu, Y. Human Driving Behavior Recognition Based on Hidden Markov Models.
In Proceedings of the IEEE International Conference on Robotics & Biomimetics, Sanya, China, 15–28
December 2007.

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105.

http://dx.doi.org/10.1515/popets-2015-0029
http://dx.doi.org/10.1109/TNN.2008.2007906
http://dx.doi.org/10.1109/TITS.2015.2462084
http://dx.doi.org/10.1016/j.procs.2012.01.077
http://dx.doi.org/10.1109/TITS.2017.2649541
http://dx.doi.org/10.1109/TITS.2012.2187640
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.1109/JPROC.2006.888405

Sensors 2019, 19, 1356 16 of 17

19. Foland, W.; Martin, J.H. CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-based Recurrent Neural
Networks. In Proceedings of the International Workshop on Semantic Evaluation, San Diego, CA, USA,
16–17 June 2016; pp. 1197–1201.

20. Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer
and gyroscope sensors. In Proceedings of the International Joint Conference on Neural Networks, Vancouver,
BC, Canada, 24–29 July 2016.

21. Duffner, S.; Berlemont, S.; Lefebvre, G.; Garcia, C. 3D gesture classification with convolutional neural
networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Florence, Italy, 4–9 May 2014.

22. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks
for Human Activity Recognition using Mobile Sensors. In Proceedings of the International Conference on
Mobile Computing, Applications and Services, Berlin, Germany, 12–13 November 2015.

23. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected
deep neural networks. In Proceedings of the IEEE International Conference on Acoustics, South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584.

24. Bilgera, C.; Yamamoto, A.; Sawano, M.; Matsukura, H.; Ishida, H. Application of Convolutional Long
Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas
Source Localization in Outdoor Environments. Sensors 2018, 18, 4484. [CrossRef] [PubMed]

25. Liu, T.; Bao, J.; Wang, J.; Zhang, Y. A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO2

Welding. Sensors 2018, 18, 4369. [CrossRef] [PubMed]
26. Nguyen, V.; Nguyen, M.; Choi, J.; Kim, Y. NLOS Identification in WLANs Using Deep LSTM with CNN

Features. Sensors 2018, 18, 4057. [CrossRef] [PubMed]
27. Kwak, B.I.; Woo, J.; Kim, H.K.; Huy, K. Know your master: Driver profiling-based anti-theft method.

In Proceedings of the 14th Annual Conference on Privacy, Security and Trust, Auckland, New Zealand,
12–14 December 2016.

28. Driving Dataset. Available online: http://ocslab.hksecurity.net/Datasets/driving-dataset (accessed on
19 November 2018).

29. AI/ML Based Driver Classification Challenge Track. Available online: http://datachallenge.kr/challenge18/
vehicle/introduction/ (accessed on 22 February 2019).

30. Attention Mechanism. Available online: https://blog.heuritech.com/2016/01/20/attention-mechanism/
(accessed on 19 November 2018).

31. Li, X. cnnPlusLSTM. Available online: https://github.com/lixiaoyu0575/cnnPlusLSTM (accessed on
19 September 2018).

32. Saeed, A. Implementing a CNN for Human Activity Recognition in Tensorflow. Available online: http:
//aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/ (accessed on 19 September 2018).

33. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

34. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
35. Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv 2014, arXiv:1412.3555.
36. Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2005, 27, 861–874. [CrossRef]
37. Jiménez, D.; Hernández, S.; Fraile-Ardanuy, J.; Serrano, J.; Fernández, R.; Álvarez, F. Modelling the Effect of

Driving Events on Electrical Vehicle Energy Consumption Using Inertial Sensors in Smartphones. Energies
2018, 11, 412. [CrossRef]

38. Wang, Y.; Ho, I.W. Joint Deep Neural Network Modelling and Statistical Analysis on Characterizing Driving
Behaviors. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30
June 2018; pp. 1–6.

39. Carvalho, E.; Ferreira, B.V.; Ferreira, J.; De Souza, C.; Carvalho, H.V.; Suhara, Y.; Pentland, A.S.; Pessin, G.
Exploiting the use of recurrent neural networks for driver behavior profiling. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017.

40. Guo, F.; Fang, Y. Individual driver risk assessment using naturalistic driving data. Accid. Anal. Prev. 2013, 61,
3–9. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s18124484
http://www.ncbi.nlm.nih.gov/pubmed/30567386
http://dx.doi.org/10.3390/s18124369
http://www.ncbi.nlm.nih.gov/pubmed/30544744
http://dx.doi.org/10.3390/s18114057
http://www.ncbi.nlm.nih.gov/pubmed/30463383
http://ocslab.hksecurity.net/Datasets/driving-dataset
http://datachallenge.kr/challenge18/vehicle/introduction/
http://datachallenge.kr/challenge18/vehicle/introduction/
https://blog.heuritech.com/2016/01/20/attention-mechanism/
https://github.com/lixiaoyu0575/cnnPlusLSTM
http://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
http://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.3390/en11020412
http://dx.doi.org/10.1016/j.aap.2012.06.014
http://www.ncbi.nlm.nih.gov/pubmed/22785091

Sensors 2019, 19, 1356 17 of 17

41. Antin, J.; Lee, S.; Hankey, J.; Dingus, T. Design of the In-Vehicle Driving Behavior and Crash Risk Study: In Support
of the SHRP 2 Naturalistic Driving Study; SHRP Report; Transportation Research Board: Washington, DC,
USA, 2011.

42. Bärgman, J.; Lisovskaja, V.; Victor, T.; Flannagan, C.; Dozza, M. How does glance behavior influence crash and
injury risk? A ‘what-if’ counterfactual simulation using crashes and near-crashes from SHRP2. Transp. Res. F
2015, 35, 152–169. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trf.2015.10.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Related Works
	Problem Formulation
	In-Vehicle CAN-BUS Sensor Data Preparation and Analysis
	Data Processing

	Our Proposed Framework
	Main Procedure of Our Proposed Architecture
	Convolutional and Pooling Layers for Feature Extraction
	Attention Based Recurrent Layer
	Classifier Layer for Driving Behavior Identification

	Model Training
	Model Evaluation

	Results
	Discussion
	Conclusions
	References

