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The existence of cross-linguistic universals in color naming is
currently contested. Early empirical studies, based principally on
languages of industrialized societies, suggested that all languages
may draw on a universally shared repertoire of color categories.
Recent work, in contrast, based on languages from nonindustrial-
ized societies, has suggested that color categories may not be
universal. No comprehensive objective tests have yet been con-
ducted to resolve this issue. We conduct such tests on color naming
data from languages of both industrialized and nonindustrialized
societies and show that strong universal tendencies in color nam-
ing exist across both sorts of language.

Do languages categorize colors similarly, or does color cat-
egorization vary freely across languages? This question pits

two contrasting views of linguistic meaning against each other.
In one view, meaning is constrained by universally shared aspects
of perception, cognition, or the environment; in the other, it is
determined principally by the arbitrary linguistic conventions of
a particular language. For this reason, the question of color
naming universality has attracted considerable attention (1–5)
and generated considerable controversy (6–13). Curiously, how-
ever, the core empirical question of whether there are genuine
universal tendencies in color naming has never been put to
objective test, and it remains contested (6–10). Our goal is to
resolve this issue.

In 1969 Berlin and Kay (BK) (1) advanced the hypothesis that
‘‘a total universal inventory of exactly 11 basic color categories
exists from which the 11 or fewer basic color terms of any given
language are always drawn.’’ They supported this hypothesis with
color naming data from 20 languages. In subsequent work, the
specific hypothesis of 11 universal basic color categories was
generalized to the hypothesis that there exist universal con-
straints on cross-language color naming related to these 11 basic
color percepts, particularly to the six Hering opponent primaries,
black, white, red, yellow, green, and blue (14–17). This hypoth-
esis, which we refer to as the universality hypothesis, has gained
considerable acceptance over the years (2–5).

However, it has also encountered considerable resistance
(6–10). A central concern has been the absence of any objective
test of the hypothesis (7). Color naming data have typically been
analyzed in an intuitive fashion, by determining through visual
inspection whether color categories from different languages
tend to cluster together in color space. A serious problem with
this means of analysis is that humans sometimes incorrectly
perceive clustering in points that are randomly distributed (18).
Thus, it is possible that the perceived clustering of color terms,
on which the claim of universality rests, is spurious.

Another concern is that the BK language sample (1) was small
and skewed: 17 of the 20 languages studied were written lan-
guages of industrialized societies. Thus, even if the results had
rested on an objective test, it is unclear how well they would
generalize to other sorts of languages. The results leave open the
possibility that color naming is similar primarily across those
languages that are linked to each other through the global
process of industrialization (6, 11, 12). There are also further
reasons to question the representativeness of the original data of
BK (1): no more than a single speaker was tested for most
languages, the data were gathered in the San Francisco Bay area

rather than in the native locale of the language, and all of the
speakers tested also spoke English (6, 7, 11–13).

The most damaging evidence against the universality hypoth-
esis is that there are languages that appear not to fit the proposed
universal pattern. Interestingly, these tend to be unwritten
languages of nonindustrialized societies, consistent with the idea
that similarities in color naming may be limited in cross-linguistic
scope. Most such languages do not have separate color terms for
green and blue but rather use a single term to cover these regions
of color space (17). Others, such as Hanunóo (19) and Zuni (7),
have color terms that have been interpreted as reflecting extra-
chromatic concepts such as dryness and freshness rather than the
proposed universal color categories (ref. 7, but see also ref. 20).
Another proposed counterexample is Berinmo, a Papua New
Guinea language with color term boundaries that disagree with
comparable boundaries in English (8, 9).

Significantly, these cross-linguistic differences in color naming
are sometimes correlated with differences in color cognition,
calling into question the idea of a fixed cognitive bedrock
underlying linguistic universals. Specifically, Berinmo speakers
exhibit enhanced color discrimination from memory across
Berinmo category boundaries, but not across English bound-
aries, whereas English speakers show the reverse pattern (8, 9).
Similar results have been obtained comparing English with
Tarahumara (21). These findings have been taken by some to
suggest that linguistic color categories may be largely arbitrary
constructs of specific languages, constrained only loosely by very
general principles, such as the principle that no single color
category may cover unconnected regions of color space (8).

Given this, are there genuine cross-linguistic universals in
color naming or not? To resolve this issue, we conducted
statistical tests on a comprehensive body of color naming data.

The central empirical focus of our study was the color naming
data of the Word Color Survey (WCS). The WCS was under-
taken in response to the above-mentioned shortcomings of the
BK data (1): it has collected color naming data in situ from 110
unwritten languages spoken in small-scale, nonindustrialized
societies, from an average of 24 native speakers per language
(mode: 25 speakers), insofar as possible monolinguals. Speakers
were asked to name each of 330 color chips produced by the
Munsell Color Company (New Windsor, NY), representing 40
gradations of hue at eight levels of value (lightness) and maximal
available chroma (saturation), plus 10 neutral (black-gray-white)
chips at 10 levels of value. Chips were presented in a fixed
random order for naming. The array of all color chips is shown
in Fig. 1. (The actual stimulus colors may not be faithfully
represented there.) In addition, each speaker was asked to
indicate the best example(s) of each of his or her basic color
terms. The original BK study used a color array that was nearly
identical to this, except that it lacked the lightest neutral chip.
The languages investigated in the WCS and BK are listed in
Tables 1 and 2.

Abbreviations: BK, Berlin and Kay; WCS, Word Color Survey.
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We approach the issue of whether there are universal ten-
dencies in color naming by asking two questions:

(i) Do color terms from different languages in the WCS cluster
together in color space to a degree greater than chance?

(ii) Do WCS color terms, all from unwritten languages of
nonindustrialized societies, fall near color terms of written
languages from industrialized societies, as represented by the BK
sample?

To test for clustering, we represented color terms as points
in color space, and then tested for clustering of those points.
Because the idea of clustering depends essentially on the
concept of distance, we required a color space in which
psychologically meaningful distances can be calculated. Con-
sequently we transformed our 330 color stimuli from Munsell
space, which lacks such a distance metric, to CIEL*a*b* space,
which has one (22). CIEL*a*b* is a 3D color space, in which
the L* dimension represents lightness, and the two remaining
dimensions, a* and b*, define a plane orthogonal to L*, such
that angle in that plane represents hue, and radius represents
saturation. We represented each color term T in each language
L by its centroid in this space. This was computed by first
finding, for each speaker of L who used term T, the centroid
in CIEL*a*b* space of the chips named T by that speaker.
These speaker centroids were then averaged together to yield
an overall term centroid for T. Finally, that term centroid was
coerced back to the chip most similar to it in the stimulus array,
so that our overall representation of the term resided within
the set of points out of which it was constructed. This coercion
was done by first selecting that row of the array with L* value
nearest that of the centroid [L* values are constant within each
value (i.e., lightness) row of the stimulus array]. We then
examined two chips, the chromatic (colored) chip in that row
with hue angle in the a*b* plane closest to the centroid, and
the neutral chip in that row, and selected the one that had hue
radius in the a*b* plane closest to the average radius of the
chips represented by the centroid. This selected chip was our
point representation of the color term.

Given such point representations of all color terms, we tested
whether these points were more clustered across languages than
would be expected by chance, through a Monte Carlo test. This
required first a measure of color-term clustering and then an
indication of how clustered one might expect color terms to be
by chance.

We defined a measure D of the dispersion of the terms in the
WCS data set: for each color term c in each language l, we found
the closest term c* in each other language l*, and added up those

distances. Distance between terms was defined as CIEL*a*b*
distance between their point representations.

D 5 O
l,l*[WCS

O
c[l

min
c*[l*

distance~c, c*!. [1]

Because D is a measure of dispersion, low values of D indicate
clustering.

To determine how much dispersion one would expect by
chance, we created a set of randomized hypothetical datasets
through computer simulation and measured dispersion in
them. Our randomization method was informed by the obser-
vation that general principles of categorization operating
within a given language can be expected to produce a certain
amount of dispersion in any natural system of categories. We
wanted to be certain that our randomized data sets obeyed
such within-language principles of categorization. To this end,
we started with the actual WCS data set and rotated each
language’s term centroids in the a*b* (hue) plane by a random
amount, the same random amount for all terms within a
language, but different random amounts for different lan-
guages, as shown in Fig. 2. These rotated centroids were then
coerced back to the WCS color array in the manner described
above. This process produced one hypothetical data set, which
preserved within-language structure while randomizing cross-
language structure, appropriately, as the latter is the central
focus of this study.

The process creating a randomized data set was repeated
independently 1,000 times, and the D dispersion measure was
calculated for each hypothetical data set. Fig. 3a shows the
distribution of D in the 1,000 hypothetical data sets compared
with D in the actual WCS data. The actual WCS D value is well
below the lower boundary of the hypothetical distribution.

Fig. 2. Creating a randomized data set.

Fig. 1. Color array from the WCS. For the Munsell notations of the colors in this stimulus array see ref. 1.
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Thus, the WCS data show significantly less dispersion, that is,
more clustering, than expected by chance, P , 0.001.

Our second question is whether the WCS color naming data
(from unwritten languages of nonindustrialized societies) bear
greater than chance similarity to the BK color naming data (1)
(primarily from written languages of industrialized societies.) To
test this, we used another Monte Carlo test in which 1,000
hypothetical data sets were created from the WCS data by using
the same random hue angle rotation technique as before (see
Fig. 2). However, this time, rather than measuring dispersion
within a single data set, we measured distances across data sets,
yielding an overall measure S of the separation between the WCS
data (either real or hypothetical) and the BK data. Specifically,
for each color term c in each language l in the WCS data set

Table 1. Languages in the WCS

Index Language Where spoken
No. of

subjects

1 Abidji Ivory Coast 25
2 Agarabi Papua New Guinea 24
3 Agta Philippines 25
4 Aguacatec Guatemala 25
5 Amarakaeri Peru 06
6 Ampeeli Papua New Guinea 27
7 Amuzgo Mexico 25
8 Angaatiha Papua New Guinea 25
9 Apinaye Brazil 30

10 Arabela Peru 25
11 Bahinemo Papua New Guinea 25
12 Bauzi Indonesia 25
13 Berik Indonesia (Irian Jaya) 25
14 Bete Ivory Coast 25
15 Bhili India 25
16 Buglere Panama 25
17 Cakchiquel Guatemala 30
18 Campa Peru 25
19 Camsa Columbia 25
20 Candoshi Peru 11
21 Cavineña Bolivia 25
22 Cayapa Ecuador 24
23 Chácobo Bolivia 25
24 Chavacano (Zamboangueño) Philippines 25
25 Chayahuita Peru 25
26 Chinantec Mexico 25
27 Chiquitano Bolivia 25
28 Chumburu Ghana 25
29 Cofán Ecuador 20
30 Colorado Ecuador 25
31 Cree Canada 25
32 Culina Peru, Brazil 25
33 Didinga Sudan 25
34 Djuka Surinam 25
35 Dyimini Ivory Coast 25
36 Ejagam Nigeria, Cameroon 25
37 Ese Ejja Bolivia 25
38 Garifuna (Black Carib) Guatemala 28
39 Guahibo Colombia 25
40 Guambiano Columbia 27
41 Guarijío Mexico 25
42 Guaymí (Ngäbere) Panama 25
43 Gunu Cameroon 25
44 Halbi India 25
45 Huastec Mexico 25
46 Huave Mexico 25
47 Iduna Papua New Guinea 25
48 Ifugao (Keley-i) Philippines 25
49 Iwam (Sepik) Papua New Guinea 25
50 Jicaque Honduras 10
51 Kalam Papua New Guinea 25
52 Kamano-Kafe Papua New Guinea 25
53 Karajá Brazil 19
54 Kemtuik Indonesia (Irian Jaya) 25
55 Kokni (Kokoni) India 25
56 Konkomba Ghana 25
57 Kriol Australia 25
58 Kuku-Yalanji Australia 20
59 Kuna Panama 25
60 Kwerba Indonesia (Irian Jaya) 25
61 Lele Chad 15
62 Mampruli Ghana 24
63 Maring Papua New Guinea 25
64 Martu Wangka Australia 25

Table 1. (continued)

Index Language Where spoken
No. of

subjects

65 Mawchi India 25
66 Mayoruna Peru 25
67 Mazahua Mexico 25
68 Mazatec Mexico 25
69 Menye Papua New Guinea 25
70 Micmac Canada 25
71 Mikasuki United States 25
72 Mixtec Mexico 25
73 Mundu Sudan 18
74 Múra Pirahá Brazil 25
75 Murle Sudan 25
76 Murrinh-Patha Australia 25
77 Nafaanra Ghana 29
78 Nahuatl Mexico 06
79 Ocaina Peru 25
80 Papago (O’odham) United States,

Mexico
25

81 Patep Papua New Guinea 24
82 Paya Honduras 20
83 Podopa Papua New Guinea 14
84 Saramaccan Surinam 25
85 Seri Mexico 25
86 Shipibo Peru 25
87 Sirionó Bolivia 25
88 Slave Canada 24
89 Sursurunga Papua New Guinea 26
90 Tabla Indonesia (Irian Jaya) 25
91 Tacana Bolivia 08
92 Tarahumara (Central dialect) Mexico 09
93 Tarahumara (Western dialect) Mexico 06
94 Tboli Philippines 25
95 Teribe Panama 26
96 Ticuna Peru 25
97 Tifal Papua New Guinea 25
98 Tlapanec Mexico 25
99 Tucano Colombia 25

100 Vagla Ghana 25
101 Vasavi India 25
102 Waorani (Auca) Ecuador 25
103 Walpiri Australia 25
104 Wobé Ivory Coast 25
105 Yacouba Ivory Coast 27
106 Yakan Philippines 25
107 Yaminahua Peru 25
108 Yucuna Colombia 25
109 Yupik United States 25
110 Zapotec Mexico 25
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(either real or hypothetical), we found the closest term c* in each
language l* in the BK data set and added up those distances to
obtain the sum S.

S 5 O
l[WCS,
l*[BK

O
c[l

min
c*[l*

distance~c, c*!. [2]

Comparing the value for S observed in the WCS data set to the
distribution of values obtained in 1,000 hypothetical randomiza-
tions of that data set, Fig. 3b shows that the value of S for the
actual WCS data is well below the lower limit of the hypothetical
distribution. Thus, the WCS data are significantly closer to the
BK data than expected by chance, P , 0.001. We then removed
from the BK data set the only unwritten languages of nonin-
dustrialized societies in that data set (Ibibio, Pomo, and Tzeltal),
reran this test, and obtained the same qualitative result, P ,
0.001. This finding indicates a similarity in color naming across
languages of industrialized and nonindustrialized societies.

These universal tendencies are shown in Fig. 4a. The floor
plane of this display corresponds to the 320 chromatic (non-
neutral) colors in the stimulus array of Fig. 1, and the height of
the surface at each position represents the number of WCS
speaker centroids falling at that point in color space [MacLaury
(23) displays a comparable histogram, restricted to the hue
dimension]. This distribution of color terms from nonindustri-
alized languages is shown from above in the contour plot of Fig.

Fig. 3. Monte Carlo tests. (a) Clustering within the WCS. The distribution of
dispersion values shown in gray was obtained from 1,000 randomized data
sets. The arrow indicates the dispersion value obtained from the WCS data. (b)
Comparing the WCS with BK. The distribution of separation values shown in
gray was obtained from 1,000 randomized data sets. The arrow indicates the
separation value obtained by comparing the WCS data with BK data (1).

Table 2. Languages studied by BK (1)

Index Language Where spoken

1 Arabic (Lebanese colloquial) Lebanon
2 Bahasa Indonesia Indonesia
3 Bulgarian Bulgaria
4 Cantonese China
5 Catalan Spain
6 (American) English United States
7 Hebrew Israel
8 Hungarian Hungary
9 Ibibio Nigeria

10 Japanese Japan
11 Korean Korea
12 Mandarin China
13 (Mexican) Spanish Mexico
14 Pomo United States
15 Swahili Tanzania
16 Tagalog Philippines
17 Thai Thailand
18 Tzeltal Mexico
19 Urdu Pakistan
20 Vietnamese Vietnam

Data reported from one subject per language.

Fig. 4. Distribution of color terms from nonindustrialized languages. (a) The
floor plane corresponds to the chromatic (non-neutral) portion of the color
stimulus array. The height of the surface at each point in the plane denotes the
number of speaker centroids in the WCS data set that fall at that position in
color space. (b) The distribution of a is viewed from above by a contour plot.
The outermost contour represents a height of 100 centroids, and each subse-
quent contour represents an increment in height of 100 centroids. English
color terms fall near the peaks of the WCS distribution.
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4b, compared with naming centroids for English color terms
(24). The English terms blue, green, purple, and brown fall at or
very near peaks of the WCS distribution, whereas yellow, orange,
pink, and red fall in the neighborhood of WCS peaks. There is
also a WCS peak between English green and blue. This peak may
reflect the fact that the majority of the languages in the WCS
span green and blue with a single term, whose naming centroid
would be expected to fall between those for green and blue (17).
Similarly, the apparent deviation of the English red and yellow
naming centroids from the closest WCS centroid peaks is
plausibly attributable to the fact that almost all WCS languages
lack terms for pink and orange; instead, they include pink with
red in a single broader term and orange with yellow. A term
spanning yellow and orange would be expected to have a naming
centroid somewhere between yellow and orange and a term
spanning red and pink would be expected to have a naming
centroid somewhere between red and pink, as may be observed
with regard to the relevant centroid peaks in Fig. 4b.

Do more WCS centroids fall at the 11 positions named by these
English color terms, together with black, gray, and white, than
would be expected by chance? We defined the ‘‘location’’ of an
English color term to be that cell of the stimulus array on which
its centroid fell and found that the mean number of WCS
centroids per cell falling on these 11 English-named locations
(M 5 153.3) was more than the corresponding number falling on
the remaining 319 cells of the stimulus array (M 5 61.4), t(328) 5

3.7, P , 0.0005. Thus, although languages vary considerably in
the number of major color terms they contain (1) and can also
vary significantly in the location of the boundaries between terms
(8, 9), certain privileged points in color space appear to anchor
the color naming systems of the world’s languages, viewed as a
statistical aggregate, and these universally privileged points are
reflected in the basic color terms of English.

The application of statistical tests to the color naming data of
the WCS has established three points: (i) there are clear
cross-linguistic statistical tendencies for named color categories
to cluster at certain privileged points in perceptual color space;
(ii) these privileged points are similar for the unwritten lan-
guages of nonindustrialized communities and the written lan-
guages of industrialized societies; and (iii) these privileged points
tend to lie near, although not always at, those colors named red,
yellow, green, blue, purple, brown, orange, pink, black, white,
and gray in English.
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Paris, Paris), pp. IX–LI.
13. Conklin, H. C. (1973) Am. Anthropol. 75, 931–942.
14. Kay, P. & McDaniel, C. K. (1978) Language 54, 610–646.
15. Kay, P., Berlin, B. & Merrifield, W. (1991) J. Ling. Anthropol. 1, 12–25.
16. Kay, P., Berlin, B., Maffi, L. & Merrifield, W. (1997) in Color Categories in

Thought and Language, eds. Hardin, C. L. & Maffi, L. (Cambridge Univ. Press,
Cambridge, U.K.), pp. 21–58.

17. Kay, P. & Maffi, L. (1999) Am. Anthropol. 101, 743–760.
18. Clarke, R. D. (1946) J. Inst. Actuaries 72, 481.
19. Conklin, H. C. (1955) Southwestern J. Anthropol. 11, 339–344.
20. Kay, P. (1999) Anthropol. Soc. 23, 135–151.
21. Kay, P. & Kempton, W. M. (1984) Am. Anthropol. 86, 65–79.
22. Wyszecki, G. & Stiles, W. S. (1967) Color Science (Wiley, New York), 2nd Ed.
23. MacLaury, R. E. (1997) Behav. Brain Sci. 20, 202–203.
24. Sturges, J. & Whitfield, T. W. A. (1995) Color Res. Appl. 20, 364–376.

Kay and Regier PNAS u July 22, 2003 u vol. 100 u no. 15 u 9089

PS
YC

H
O

LO
G

Y
A

N
TH

RO
PO

LO
G

Y


