Anaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategie

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 0000

Diversifying Risk Parity

Harald Lohre

Deka Investment GmbH

Northfield's 25th Annual Research Conference San Diego, August 7, 2012

.00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Risk-Based Portfolio Construction

- Given perfect foresight the Markowitz (1952) approach is the rationale of choice to generate efficient portfolios with an optimal risk-return trade-off
- Mean-variance optimization is confounded by estimation risk, especially the one in estimates of expected returns
- One solution: Refrain from estimating returns and resort to risk-based allocation techniques
- Minimum-variance portfolios are characterized by low volatility and still provide quite favorable return figures raising investors' interest in risk-based concepts

Aanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion 0000

Diversification Pays...but How to Diversify?

- Minimum-variance portfolios typically load on low-volatility assets rendering them rather concentrated in few assets
- What about diversification? How to define diversification?

Literature review

- Number of assets (Evans and Archer, 1968)
- Herfindahl Index (Persson, 1993)
- Entropy of portfolio weights (Bera and Park, 2008)

Diversifying weights versus diversifying risk

Using a PCA of the portfolio assets Meucci (2009) extracts the uncorrelated risk sources and determines the *effective number of uncorrelated bets*

Risk-Based Asset Allocation

Risk-based Equity Strategies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion 0000

Diversified Risk Parity Strategies

Maximum diversification obtains for a risk parity strategy along the uncorrelated risk sources which we dub *diversified risk parity (DRP)*

Lohre, Opfer, and Ország (2012)

- Asset allocation study
- Demystifying uncorrelated risk sources
- Horse race: *DRP* vs. 1/*N*, *minimum-variance*, *risk parity*, or the *most-diversified portfolio*

Lohre, Neugebauer, and Zimmer (2012)

- Equity portfolio selection within S&P 500
- Demystifying uncorrelated risk sources, horse race
- Link to equity factor portfolios

Managing Diversification •000000 Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Managing Diversification, Meucci (2009)

- Consider a portfolio of N assets with returns R. Given weights w the resulting portfolio return is R_w = w'R
- Diversification pays when combining low-correlated assets: Construct uncorrelated risk sources by applying a principal components analysis (PCA) to the VCV $\pmb{\Sigma}$
- · From the spectral decomposition theorem it follows that

$$\mathbf{\Sigma} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}'$$
 (1)

where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, ..., \lambda_N)$ consists of $\mathbf{\Sigma}$'s eigenvalues

 The columns of matrix E represent the eigenvectors of Σ which define a set of N uncorrelated *principal portfolios* with variance λ_i for i = 1, ..., N and returns Ř = E'R

Managing Diversification

Risk-Based Asset Allocation 0000

Risk-based Equity Strategies

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 0000

Multi-Asset Data

Standard multi-asset data ranging from Dec 1987 to Sep 2011:

- Government Bonds: Most favorable risk-adjusted return
- Remaining asset classes with similar return but higher volatility
- Correlations generally low but not zero

	Return	Vola	SR	Correlation Matrix				
	p.a.	p.a.						
				Bonds	Equ	uities	Comm.	Credit
					Dev.	Emg.		
JPM Global Bond	6.9%	3.8%	0.96	1.00				
MSCI World	5.9%	14.5%	0.18	0.01	1.00			
MSCI Emerging Markets	8.3%	24.2%	0.21	-0.05	0.74	1.00		
DJ UBS Commodities	5.7%	15.5%	0.16	-0.18	0.18	0.32	1.00	
Barclays U.S. Aggr. Credit	6.9%	5.3%	0.69	0.53	0.25	0.20	0.09	1.00

Apply PCA to generate uncorrelated principal portfolios

Managing Diversification

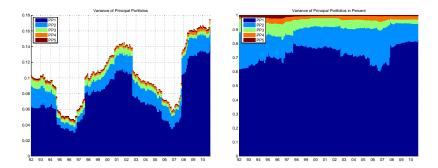
Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Demystifying Principal Portfolios

Asset Class	PP1	PP2	PP3	PP4	PP5
Panel A: December 1987 to S	September .	2011			
JPM Global Bond	-0.01	0.05	-0.04	0.51	0.86
MSCI World	0.43	0.23	-0.86	-0.13	0.03
MSCI Emerging Markets	0.87	0.16	0.47	0.02	0.01
DJ UBS Commodities	0.24	-0.96	-0.14	0.01	0.05
Barclays U.S. Aggr. Credit	0.04	0.01	-0.12	0.85	-0.51
Variance Percent Explained Cumulative	7.7% 69.8% 69.8%	2.2% 19.9% 89.7%	0.8% 6.9% 96.5%	0.3% 2.8% 99.3%	0.1% 0.7% 100.0%


Managing Diversification

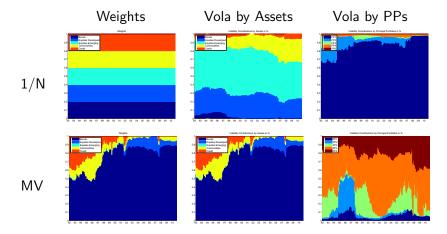
Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Variances of Principal Portfolios over Time

- PP1 fairly dominant, accounts for at least 60% of variation
- PP2 and PP3 represent some 20% and 10% of the variation, PP4 and PP5 account for a minor fraction
- At the end PP1 accounts for 80% of overall variability indicating contagion effects emanating from the 2008 crisis


Managing Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Decomposing Risk by Principal Portfolios

- 1/N is concentrated in the first principal portfolio
- MV is highly concentrated in low-volatility assets

Managing Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Effective Number of Uncorrelated Bets

Meucci (2009)

- A portfolio is well-diversified when the *p_i* are "approximately equal and the diversification distribution is close to uniform"
- Apply a dispersion metric to the diversification distribution:

$$\mathcal{N}_{Ent} = \exp\left(-\sum_{i=1}^{N} p_i \ln p_i\right)$$
(2)

• \mathcal{N}_{Ent} intuitively is the *effective number of uncorrelated bets*:

- $\mathcal{N}_{\textit{Ent}}=1$ holds for a completely concentrated portfolio
- $N_{Ent} = N$ holds for a portfolio that is completely homogenous in terms of uncorrelated risk sources

Managing Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Diversifying Risk Parity

- The maximum diversification portfolio is a risk parity strategy that is budgeting risk along the uncorrelated risk sources rather than the underlying portfolio assets
- We dub this strategy *diversified risk parity (DRP)* and its weights w_{DRP} obtain by solving

$$\mathbf{w}_{DRP} = \operatorname*{argmax}_{\mathbf{w} \in \mathcal{C}} \mathcal{N}_{Ent}(\mathbf{w}) \tag{3}$$

where the weights \boldsymbol{w} can be subject to a set of constraints $\mathcal C$

• Moreover, the framework allows for a litmus test of competing techniques like 1/*N*, *minimum-variance*, *risk parity*, or the *most-diversified portfolio* of Choueifaty and Coignard (2008)

Risk-Based Asset Allocation •000 Risk-based Equity Strategies

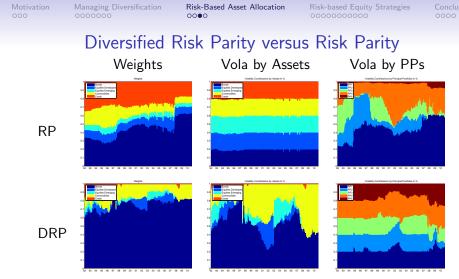
Conclusion 0000

Risk-based Asset Allocation

- Constructing the diversified risk parity strategy we determine the principal portfolios via rolling window estimation
- The first PCA consumes 60 months of data, thus, the strategy performance can be assessed from Jan 1993 to Sep 2011
- For benchmarking the diversified risk parity strategy we consider four alternatives
 - 1. 1/N
 - 2. Minimum-variance (MV)
 - 3. Risk parity (RP)
 - 4. Most-diversified portfolio (Choueifaty/Coignard, 2008) (MDP)
- We enforce full investment and positivity constraints and rebalance all strategies at a monthly frequency


anaging Diversification

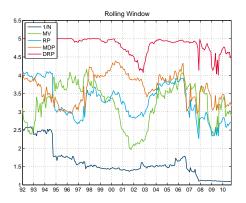
Risk-Based Asset Allocation


Risk-based Equity Strategies

Conclusion 0000

Performance of Risk-Based Strategies

- 1/N with highest return and volatility gives lowest SR, MV with reasonable return at lowest volatility gives high SR
- RP: Middle-ground between 1/N and MV, MDP still ok
- DRP: Highest SR and convincing MDDs!


- DRP reacts more timely to changes in risk structure
- · Despite constraints DRP is well meeting its objective
- RP is rendered highly concentrated in terms of PPs at the end of the sample period

lanaging Diversification 000000 Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

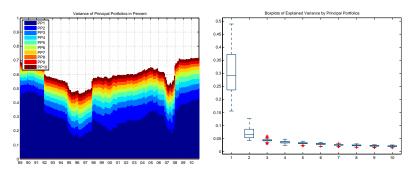
Diversification throughout Time

- 1/N dominated by the other strategies
- DRP maintains the highest number of bets throughout time
- MV and RP represent 3 bets, MDP close to 4, however, these strategies are losing ground at the end of the sample period

Diversified Risk Parity for Equity Portfolio Selection

- Diversifying *across* asset classes seems reasonable
- What about diversification within an asset class like equities?
- Significant exposure to a single (market) risk factor is a well-known issue which is usually addressed by means of diversification across sectors or styles
- The presented framework for achieving maximum diversification is highly appropriate
- We especially
 - determine the number of relevant risk sources
 - associate these principal portfolios to sectors and equity factors
 - document a dynamic DRP strategy to provide convincing performance and diversification characteristics

Managing Diversification

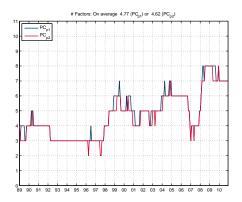

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Extracting Principal Portfolios from the S&P 500

- Determine principal portfolios from Oct 1989 to Sep 2011
- In a given month, the PCA is restricted to the then active 500 constituents of the S&P 500
- In total, we deal with 1037 companies over the sample period

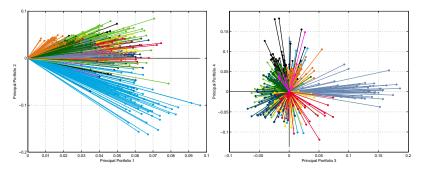

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

lanaging Diversification 000000 Risk-Based Asset Allocation 0000

Risk-based Equity Strategies

Conclusion 0000

How many risk sources are embedded in the S&P 500?


- Determine a reasonable number of principal portfolios using the PC_{p1} and PC_{p2} criteria of Bai and Ng (2002)
- It is hardly reasonable to allocate any risk budget to higher principal portfolios

lanaging Diversification 000000 Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Demystifying Principal Portfolios: Sectors?

- PPs arising from a PCA over the most recent 60 months
- PP1 qualifies for a common market factor, PP2 is short IT and long most of the remaining sectors
- PP3 is long Energy and short in Financials, Consumer Discretionary/Staples; PP4 is long Utilities, Health Care, and Telecoms and short Materials and Industrials

lanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Demystifying Principal Portfolios: Factors?

Characterize PPs in an extended Fama-French setting:

 $R_{PPi,t} = \alpha + \beta_1 R_{M,t} + \beta_2 R_{Size,t} + \beta_3 R_{Value,t} + \beta_4 R_{Mom,t} + \beta_5 R_{Vola,t} + \beta_6 R_{Liqui,t} + \varepsilon_t$

	PP1	PP2	PP3	PP4	PP5	PP6	PP7	PP8
Coefficien	its							
Alpha	-0.07	-0.19	-0.08	0.06	-0.03	0.04	0.03	0.05
Market	25.95	9.59	-2.21	2.15	2.23	0.33	0.42	-1.03
Size	-20.75	-10.41	-14.02	-2.31	-2.58	6.50	4.86	7.00
Value	16.61	35.79	20.62	-16.23	5.36	3.65	-8.87	-10.10
Mom	-4.05	-6.60	9.15	7.80	-0.35	-2.70	-1.49	-0.07
Vola	5.16	-30.63	8.36	-3.31	5.66	0.91	-0.95	2.48
Liqui	4.21	-23.96	2.07	4.89	-17.35	-19.04	4.43	7.61
Adj. R ²	94.0%	57.6%	13.0%	22.2%	34.6%	9.6%	8.3%	8.0%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

lanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Risk-based Equity Strategies

- Constructing the diversified risk parity strategy we obtain PPs by PCA estimation over a rolling 60 months window
- Strategy performance from Oct 1989 to Sep 2011
- For benchmarking the diversified risk parity strategy we consider four risk-based alternatives next to the S&P 500:
 - 1. 1/N
 - 2. Minimum-variance (MV)
 - 3. Risk parity (RP)
 - 4. Most-diversified portfolio (Choueifaty/Coignard, 2008) (MDP)
- We enforce full investment and positivity constraints together with maximum stock weights of 5% and rebalance all strategies at a monthly frequency

anaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

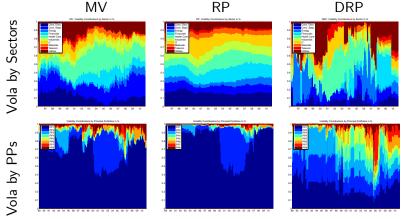
Conclusion 0000

Performance of Risk-Based Strategies

Statistic	Index	Risk-Based Allocations					
	S&P 500	1/N	MV	RP	MDP	DRP	
Risk and Retu	rn Figuros						
RISK and Retur	in riguies						
Return p.a.	7.5%	9.9%	8.1%	9.2%	7.9%	11.0%	
Vola p.a.	13.8%	17.2%	11.8%	14.0%	13.1%	15.1%	
Sharpe Ratio	0.28	0.36	0.38	0.39	0.33	0.49	
Max DD	-47.5%	-55.9%	-38.2%	-47.6%	-39.6%	-35.8%	
# Assets	500.0	500.0	36.2	500.0	38.1	43.4	
Turnover	0.4%	2.2%	14.7%	3.7%	16.2%	25.3%	

• 1/N: High return at the highest volatility gives medium SR

- MV: Reasonable return at the lowest volatility gives higher SR
- RP: In between 1/N and MV with large MDD
- MDP: MDP lags in terms of returns and SR
- DRP: Highest SR and smallest MDD!


anaging Diversification

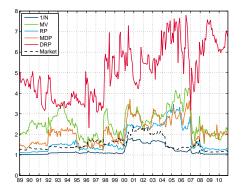
Risk-Based Asset Allocation 0000

Risk-based Equity Strategies

Conclusion 0000

Risk Decomposition by Sectors or Principal Portfolios

- MV: Defensive sectors, concentrated in PP1 and PP2
- RP: Close to 1/N, highly concentrated
- DRP: Active sector allocation, tracks the number of relevant bets, balanced risk decomposition across PPs


lanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion 0000

Diversification throughout Time

- 1/N dominated by the other strategies
- DRP maintains the highest number of bets throughout time
- MDP and RP represent around 2 bets, MV slightly better, however, these strategies are losing ground at the end of the sample period

lanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

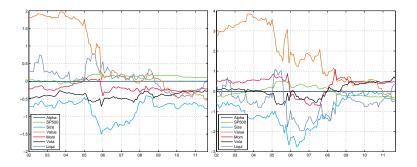
Conclusion 0000

Explaining the Performance of Risk-Based Strategies

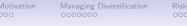
 $R_{\textit{RBS},t} = \alpha + \beta_1 R_{\textit{M},t} + \beta_2 R_{\textit{Size},t} + \beta_3 R_{\textit{Value},t} + \beta_4 R_{\textit{Mom},t} + \beta_5 R_{\textit{Vola},t} + \beta_6 R_{\textit{Liqui},t} + \varepsilon_t$

	Index	Risk-Based Allocations					
	S&P 500	1/N	MV	RP	MDP	DRP	
Coefficients							
Coefficients							
Alpha	0.09%	-0.21%	-0.18%	-0.26%	-0.27%	-0.22%	
Market	-	0.15	-0.05	0.08	-0.08	-0.19	
Size	1.55	-0.65	-0.53	-0.59	-0.67	-0.50	
Value	1.08	1.25	0.28	0.93	0.45	1.80	
Momentum	0.25	-0.43	-0.13	-0.31	-0.10	0.19	
Volatility	1.72	-0.03	-0.72	-0.51	-0.39	0.08	
Liquidity	1.02	-0.09	0.21	-0.16	0.54	-0.56	
Adjusted R ²	71.7%	47.2%	43.7%	42.1%	25.8%	17.0%	
Aujustea R-	11.1%	41.2%	43.1%	42.1%	25.8%	11.0%	

- MV, RP, and MDP load on the low-volatility anomaly
- DRP small adj. R^2 , large value tilt


lanaging Diversification

Risk-Based Asset Allocation


Risk-based Equity Strategies

Conclusion 0000

Equity Factor Exposure over Time

- RP with value and small cap tilt. Constantly loading on volatility factor
- DRP with sizable value tilt that is diminishing over time, no volatility factor exposure, time-varying momentum exposure

Risk-Based Asset Allocation 0000

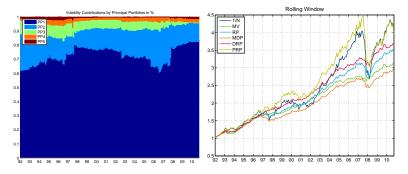
Risk-based Equity Strategies

Conclusion

Conclusion

- We have introduced the diversified risk parity strategy that achieves maximum diversification by equally budgeting risk to each of the uncorrelated risk sources
- Besides providing convincing risk-adjusted performance DRP is meeting its diversification objective well:
 - across asset classes
 - within equities
- The competing alternatives tend to be rather concentrated in a few bets
- DRP has a built-in mechanism for tracking the prevailing risk structure thus providing a more robust way for achieving maximum diversification throughout time

Aanaging Diversification


Risk-Based Asset Allocation

Risk-based Equity Strategies

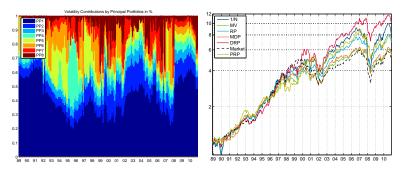
Conclusion

Principal Risk Parity for Asset Allocation

- Principal Risk Parity (PRP): Budget risk across principal portfolios proportional to their contribution to total variance
- PRP strategy is tracking closely the principal portfolio's variance decomposition over time
- Higher return at higher risk!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Managing Diversification


Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion

Principal Risk Parity for Equities

- Principal Risk Parity (PRP): Budget risk across principal portfolios proportional to their contribution to total variance
- PRP strategy is tracking closely the principal portfolio's variance decomposition over time
- High return at higher risk!

Aanaging Diversification

Risk-Based Asset Allocation

Risk-based Equity Strategies

Conclusion

Risk-Based Commodity Investing

- Bernardi, Leippold, and Lohre (2012) support alternative risk parity strategies for commodities as well
- Commodities are characterized by high heterogeneity—translating into 8 relevant PPs
- DRP and PRP both provide superior performance

