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ABSTRACT

Nowadays, researchers have realized that microRNAs (miRNAs) are playing a 
significant role in many important biological processes and they are closely connected 
with various complex human diseases. However, since there are too many possible 
miRNA-disease associations to analyze, it remains difficult to predict the potential 
miRNAs related to human diseases without a systematic and effective method. In this 
study, we developed a Matrix Completion for MiRNA-Disease Association prediction 
model (MCMDA) based on the known miRNA-disease associations in HMDD database. 
MCMDA model utilized the matrix completion algorithm to update the adjacency 
matrix of known miRNA-disease associations and furthermore predict the potential 
associations. To evaluate the performance of MCMDA, we performed leave-one-
out cross validation (LOOCV) and 5-fold cross validation to compare MCMDA with 
three previous classical computational models (RLSMDA, HDMP, and WBSMDA). As a 
result, MCMDA achieved AUCs of 0.8749 in global LOOCV, 0.7718 in local LOOCV and 
average AUC of 0.8767+/-0.0011 in 5-fold cross validation. Moreover, the prediction 
results associated with colon neoplasms, kidney neoplasms, lymphoma and prostate 
neoplasms were verified. As a consequence, 84%, 86%, 78% and 90% of the top 
50 potential miRNAs for these four diseases were respectively confirmed by recent 
experimental discoveries. Therefore, MCMDA model is superior to the previous models 
in that it improves the prediction performance although it only depends on the known 
miRNA-disease associations.

INTRODUCTION

MicroRNA (miRNA) is a kind of short non-
coding single-stranded RNA (~22nt) which can regulate 
the gene expression by binding to the 3’ untranslated 
regions (UTRs) of its target messenger RNA (mRNA) 
through base pairing [1, 2]. There are significant 
differences between the miRNAs in different tissues and 
different growth stages, which means that miRNAs have 
differential spatial and temporal expression patterns [3]. 
Based on plenty of biological experiments, researchers 

now believe that these small molecules have a wide range 
of regulation effects on eukaryotic gene expression, not 
only in human genes but also in genes of many other 
species [4]. Up to now, researchers have discovered that 
miRNAs are involved in a series of critical life processes, 
including early cell growth, proliferation, differentiation 
[5, 6], apoptosis, death [7], fat metabolism and so on. 
Therefore, it is no wonder that miRNAs are closely 
related to many complex human diseases [8, 9]. For 
example, studies have implicated that miRNA-143 and 
miRNA-145 are constantly down-regulated in colorectal 
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tumors [10] and recently Croce et al. also have shown 
that the downregulation of these miRNAs is a common 
occurrence in breast carcinomas [11]. Besides, studies 
by Takamizawa et al. [12] and Yanaihara et al. [13] 
have presented evidence that transcripts of certain let-7 
homologs are significantly downregulated in human lung 
cancer. Based on real-time polymerase chain reaction 
(PCR), the analysis of miRNA arrays using pooled RNA 
samples from five gastric cancer patients indicates that the 
expression of miRNA-107, miRNA-21, miRNA-196a, 
miRNA-26b, miRNA-9, miRNA-142-3p, miRNA-30b, 
miRNA-150, miRNA-191, and miRNA-17 was found to 
be upregulated [14]. However, it is expensive and time-
consuming to identify the associations between miRNAs 
and diseases using experimental methods. Considering that 
large numbers of miRNA-associated datasets are available, 
computational methods are efficient in predicting miRNA-
disease associations in that they can select the most 
promising associated miRNAs for further experimental 
studies [15–17]. Therefore, it is necessary for us to make 
further efforts and develop efficient computational models 
to predict the potential miRNA-disease associations [16, 
18–31].

Many computational methods have been established 
to predict the potential associations between miRNAs and 
diseases depending on the assumption that miRNAs with 
similar functions are more likely to have connections with 
diseases which share similar phenotypes [32, 33]. Jiang 
et al. [34] proposed a hypergeometric distribution-based 
model to predict miRNA-disease associations based on 
disease phenotype similarity network, miRNA functional 
similarity network, and known human disease-miRNA 
association network. However, this method strongly 
depends on the miRNA-target interactions with a high rate 
of false positive and false negative samples. Moreover, 
Shi et al. [35] presented a new model by implementing 
random walk algorithm on protein-protein interaction 
(PPI) network based on the idea that miRNAs whose 
target genes are related to certain diseases are more likely 
to be associated with these diseases. They made use of 
the miRNA–target interactions, disease–gene associations, 
and PPIs to acquire potential associations between the 
miRNAs and diseases. Mork et al. [36] proposed a miRPD 
method with the help of protein-disease interactions 
as well as protein-miRNA interactions, where not only 
disease-related miRNAs but also potential disease-related 
proteins were analyzed. By integrating known disease–
gene associations and miRNA-target interactions, Xu et 
al. [37] introduced a miRNA prioritization method which 
need not rely on the known miRNA-disease associations. 
Instead, what they needed to do was to evaluate the 
similarity between the targets of miRNAs and disease 
genes. Nevertheless, all the methods mentioned above 
suffered from the miRNA-target interactions with high 
false positive and false negative samples, which could 

significantly reduce the accuracy of the aforementioned 
models.

Researchers also proposed some other computational 
models without relying on miRNA-target interactions. 
Based on miRNA functional similarity, disease semantic 
similarity, disease phenotype similarity, and miRNA-
disease associations, Xuan et al. [38] presented an HDMP 
model which analyzed the miRNAs related to the diseases 
by considering the functional similarities of the miRNA’s 
k most similar neighbors. Compared with the previous 
methods, HDMP assigned higher weight to the miRNAs 
in the cluster and family since they are more likely to be 
associated with similar diseases. When applied to new 
diseases without some known related miRNAs, however, 
HDMP is unable to work since it strongly depends on the 
neighbors of the miRNAs. Besides, HDMP is based on 
a local similarity measure rather than a global measure 
which can notably promote the prediction performance. 
Xuan et al. [39] introduced another model called MIDP 
based on random walk, which exploited the characteristics 
of the nodes and the various ranges of topologies. The 
labeled nodes in MIDP were assigned higher transition 
weight than the unlabeled nodes, which efficiently 
exploited the prior information of nodes and various 
ranges of topologies. What is worth mentioning is that 
MIDP effectively relieved the negative effect of noisy data. 
MIDP also extended the walk on a miRNA-disease bilayer 
network to predict candidate specially for the diseases 
without any known miRNAs. Recently, Zeng et al. [40] 
utilized matrix completion to predict the miRNA-disease 
associations based on miRNA-miRNA network and 
disease-disease network. The method contributed multiple 
feature sets to address problems related to insufficient 
miRNA-disease association data. The method could be 
applied to predict unknown miRNA-disease associations 
and new pathogenic miRNAs for well-characterized 
diseases. Chen et al. [41] proposed RWRMDA model 
which integrated miRNA-miRNA functional similarity 
and known miRNA-disease associations information to 
predict miRNA-disease associations. RWRMDA was 
motivated based on the investigation that global similarity 
measures are better in predicting the associations between 
miRNAs and diseases than the previous local network 
similarity measures. Still, this method fails to predict 
miRNAs associated with new diseases without any known 
related miRNAs. Chen et al. [16] presented another model 
called WBSMDA based on miRNA functional similarity, 
disease semantic similarity, miRNA-disease associations, 
and Gaussian interaction profile kernel similarity for 
miRNAs and diseases. WBSMDA makes a breakthrough 
in that it succeeds in predicting related miRNAs for 
new diseases without known related miRNAs and new 
miRNAs without known related diseases. Recently, 
Chen et al. [42] presented a model of HGIMDA using 
miRNA functional similarity, disease semantic similarity, 
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miRNA-disease associations, and Gaussian interaction 
profile kernel similarities. In HGIMDA, the new miRNA 
functional similarity network was obtained by combining 
miRNA functional similarity network with Gaussian 
interaction profile kernel similarities for miRNAs. The 
process of calculating new disease similarity network was 
quite similar. Then, a heterogeneous graph was obtained 
by combining new miRNA functional similarity network, 
new disease similarity network and known miRNA-
disease associations. Moreover, the potential association 
between a disease and a miRNA could be inferred 
based on an iterative equation if they didn’t have known 
association. It has been verified that HGIMDA obtained a 
high prediction performance.

In addition, several computational models have 
considered machine learning methods. For instance, Xu et 
al. [43] developed a miRNA target-dysregulated network 
(MTDN) based on miRNA-target interactions as well as 
miRNA and mRNA expression profiles. Besides, MTDN 
implemented support vector machine (SVM) classifier to 
distinguish positive miRNA-disease associations from 
negative ones. Nevertheless, it is still fairly difficult to 
obtain the negative miRNA-disease associations today, 
which seriously decreases the prediction performance 
of this computational model. Chen et al. [15] presented 
a RLSMDA model based on semi-supervised learning 
which calculated the semantic similarity between different 
diseases. It is worth mentioning that RLSMDA could 
identify related miRNAs for diseases without any known 
associated miRNAs, meanwhile avoiding the problem 
of using negative associations between miRNAs and 
diseases. The trouble of RLSMDA is how to find the 
appropriate parameters and how to combine the classifiers 
from miRNA space and disease space together. Chen et 
al. [19] developed another computational model called 
RBMMMDA based on miRNA-disease associations which 
presented restricted Boltzmann machine (RBM) which is a 
two-layer undirected graphical model consisting of layers 
of visible and hidden units. Compared to the previous 
models, RBMMMDA could obtain not only new miRNA-
disease associations but also corresponding association 
types. However, it is still too difficult to learn the complex 
parameters.

In this study, we developed an effective 
computational model of Matrix Completion for MiRNA-
Disease Association prediction model (MCMDA) 
using matrix completion algorithm based on the known 
miRNA-disease associations to predict the potential 
miRNA-disease associations. Compared to the previous 
computational models, MCMDA predicts the miRNA-
disease associations by using the matrix completion 
algorithm, which is of high efficiency to update the 
low-rank miRNA-disease matrix. Besides, negative 
associations which are required in some previous 
computational models are not needed in MCMDA. 
To evaluate the effectiveness of MCMDA, global and 

local LOOCV as well as 5-fold cross validation were 
introduced. The AUCs of global and local LOOCV were 
respectively 0.8749 and 0.7718, and the model obtained 
the average AUC of 0.8767+/-0.0011 on 5-fold cross 
validation. Besides, the top 10 and top 50 miRNAs related 
to colon neoplasms, kidney neoplasms, lymphoma and 
prostate neoplasms obtained by MCMDA were examined 
in dbDEMC [44] and miR2Disease [45] database. As a 
result, 84%, 86%, 78% and 90% of the top 50 potential 
miRNAs for these four complex diseases were respectively 
confirmed by recent experimental discoveries. Thus, it 
proves that MCMDA is effective in predicting potential 
miRNA-disease associations and it has significant 
advantages over the previous methods although MCMDA 
only depends on known miRNA-disease associations.

RESULTS

Performance evaluation

We used global and local LOOCV as well as 
5-fold cross validation based on the known miRNA-
disease associations in HMDD database to evaluate the 
performance of MCMDA. Meanwhile, MCMDA were 
compared with three previous classical computational 
methods: WBSMDA [16], RLSMDA [15] and HDMP 
[38]. In LOOCV evaluation, each known association in 
the database was regarded as the test sample in turn while 
the other known associations were regarded as training 
samples. The miRNA-diseases without known association 
evidences were considered as candidate samples. The 
scores of all miRNA-disease pairs could be obtained 
after MCMDA was implemented. In global LOOCV, the 
score of the test sample was compared with the scores 
of all the candidate samples while in local LOOCV, the 
test sample was merely compared with the scores of the 
candidate samples which included the particular disease 
in the test sample. In 5-fold cross validation, the known 
miRNA-disease associations were randomly divided into 
five disjoint parts. Each time, one part was picked out 
as test samples and the other four parts were treated as 
training samples. Still, the miRNA-disease pairs without 
known association evidences were regarded as candidate 
samples. Then, the score of each test sample were 
compared with the scores of all the candidate samples, 
respectively. This procedure was repeated five times until 
each known association was used as test sample and its 
score was compared with the scores of the candidate 
samples. Those test samples whose ranks exceeded the 
given threshold were considered to predict the miRNA-
disease associations correctly.

Finally, we drew a receiver operating characteristics 
curve (ROC) to compare MCMDA with all the previous 
methods. In this curve, the true positive rate (TPR, 
sensitivity) and false positive rate (FPR, 1-specificity) 
were plotted [46]. Sensitivity represents the percentage 
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of miRNA-disease test samples whose ranks exceeded 
the given threshold while specificity represents the 
percentage of negative miRNA-disease associations 
whose ranks were lower than the threshold [47]. The area 
under the ROC curve (AUC) was calculated to evaluate 
the accuracy of MCMDA. If AUC=1, MCMDA proves 
to be a prefect performance. AUC of 0.5 means that the 
method merely has a random prediction performance. As 
a result, the AUCs of MCMDA, WBSMDA, RLSMDA 
and HDMP were 0.8749, 0.8030, 0.8426, and 0.8366, 
respectively in global LOOCV. For local LOOCV, 
MCMDA, WBSMDA, RLSMDA and HDMP acquired 
AUCs of 0.7718, 0.8030, 0.8031 and 0.6953, respectively. 
The average AUCs of MCMDA, WBSMDA, RLSMDA, 
HDMP were 0.8767/-0.0011, 0.8185/-0.0009, 0.8569/-
0.0020 and 0.8342+/-0.0010, respectively in 5-fold cross 
validation (See Figure 1). All in all, MCMDA turns out 
to be more effective in predicting potential miRNA-
disease associations compared with the previous methods, 
especially considering that MCMDA merely depends on 
the known miRNA-disease associations in the database.

Case studies

Furthermore, case studies of four significant diseases 
related to human health were implemented to practically 
evaluate the prediction accuracy of MCMDA. The top 10 
and top 50 predicted miRNAs related with these diseases 

were examined by another two miRNA-disease databases, 
dbDEMC [44] and miR2Disease [45].

Colon Neoplasms is a malignant cancer which is 
commonly found in the boundary of rectum and sigmoid 
colon [48]. It is the third most common cancer and the 
third leading cause of cancer death for both men and 
women in the United States [49]. However, early patients 
of colon neoplasms only suffer from subtle symptoms 
[50], making the disease difficult to be detected. To 
make things worse, it is reported that its occurrence 
rate has an increasing trend these years [51]. Thus, it is 
urgent to predict the potential miRNAs related to colon 
neoplasms. With the help of the modern iatrology, many 
miRNAs have been confirmed to be correlated with 
colon neoplasms. For instance, miRNA-145 targets the 
insulin receptor substrate-1 and thus inhibits the growth 
of colon cancer cells [52]. Besides, miRNA-126, which is 
frequently lost in colon neoplasms cells, has the function 
of suppressing the growth of neoplastic cells by targeting 
phosphatidylinositol 3-kinase signaling [53]. MCMDA 
was implemented to predict the top 50 miRNAs associated 
with colon neoplasms. Therefore, 9 of the top 10 and 42 
of the top 50 predicted miRNAs associated with colon 
neoplasms were verified by dbDEMC and miR2Disease 
database (See Table 1).

Kidney neoplasms, also known as renal cancer, is a 
cancer starting in the cells of kidney that includes many 
different types [54]. The two most common types of kidney 

Figure 1: Performance evaluation comparison between MCMDA and three previous prediction models (RLSMDA, 
HDMP, WBSMDA) in terms of ROC curve and AUC based on global LOOCV and local LOOCV tested by known 
miRNA-disease associations in the HMDD database. MCMDA achieved AUC of 0.8749 in global LOOCV and 0.7718 in local 
LOOCV. Thus, the performance of MCMDA is almost better than all the previous models in some degree and it proves to be effective in 
predicting the potential miRNA-disease associations.
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cancer are renal cell carcinoma (RCC) and transitional cell 
carcinoma (TCC, also known as urothelial cell carcinoma) 
of the renal pelvis [55]. The most common symptoms of 
kidney neoplasms patients are pains in the lumbar and 
hematuria [56]. Many existing kidney neoplasm-related 
miRNAs have been reported based on recent biological 
experiments. For example, the common target ACVR2B 
of five miRNAs (miRNA-192, miRNA-194, miRNA-215, 
miRNA-200c and miRNA-141) is strongly expressed in 
renal childhood neoplasms [57]. In addition, miRNA-23b, 
by targeting proline oxidase, a novel tumor suppressor 

protein, could function as an oncogene in renal cancer 
[58]. Thus, the decreasing miRNA-23b expression 
may prove to be an effective way of inhibiting kidney 
tumor growth [58]. Based on MCMDA, 7 of the top 10 
potential miRNAs associated with kidney neoplasms were 
confirmed by deDEMC and miR2Disease database while 
43 were verified of the top 50 (See Table 2).

Lymphoma is a malignant tumor originating in 
the lymphatic hematopoietic system [59] which consists 
of two categories: non-Hodgkinlymphoma (NHL) and 
Hodgkin'slymphoma (HL) [60]. Lymphoma is thought 

Table 1: Prediction of the top 50 predicted miRNAs associated with colon neoplasms based on known associations in 
HMDD database 

miRNA Evidence miRNA Evidence

hsa-mir-146a dbdemc hsa-mir-196a dbdemc;miR2Disease

hsa-mir-155 dbdemc;miR2Disease hsa-mir-29c dbdemc

hsa-mir-122 unconfirmed hsa-mir-223 dbdemc;miR2Disease

hsa-mir-21 dbdemc;miR2Disease hsa-mir-143 dbdemc;miR2Disease

hsa-mir-34a dbdemc;miR2Disease hsa-let-7a unconfirmed

hsa-mir-221 dbdemc;miR2Disease hsa-mir-195 dbdemc;miR2Disease

hsa-mir-16 dbdemc hsa-mir-200b dbdemc

hsa-mir-125b dbdemc hsa-mir-214 dbdemc

hsa-mir-29a dbdemc;miR2Disease hsa-mir-106b dbdemc;miR2Disease

hsa-mir-29b dbdemc;miR2Disease hsa-mir-23a miR2Disease

hsa-mir-15a dbdemc hsa-mir-142 unconfirmed

hsa-mir-133a dbdemc;miR2Disease hsa-mir-31 dbdemc;miR2Disease

hsa-mir-222 dbdemc hsa-mir-34c miR2Disease

hsa-mir-20a dbdemc;miR2Disease hsa-mir-141 dbdemc;miR2Disease

hsa-mir-199a unconfirmed hsa-mir-148a dbdemc

hsa-mir-26a dbdemc;miR2Disease hsa-mir-182 dbdemc;miR2Disease

hsa-mir-1 dbdemc;miR2Disease hsa-mir-200a unconfirmed

hsa-mir-19b dbdemc;miR2Disease hsa-let-7c dbdemc

hsa-mir-19a dbdemc;miR2Disease hsa-mir-101 unconfirmed

hsa-mir-15b miR2Disease hsa-mir-192 dbdemc;miR2Disease

hsa-mir-18a miR2Disease hsa-mir-181a dbdemc;miR2Disease

hsa-mir-92a dbdemc hsa-mir-9 dbdemc;miR2Disease

hsa-mir-206 unconfirmed hsa-mir-133b dbdemc;miR2Disease

hsa-mir-30b dbdemc;miR2Disease hsa-mir-34b dbdemc;miR2Disease

hsa-mir-150 dbdemc;miR2Disease hsa-mir-183 dbdemc;miR2Disease

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.



Oncotarget21192www.impactjournals.com/oncotarget

to be associated with gene mutations, as well as viruses, 
pathogens, radiation, chemical drugs, autoimmune 
diseases, etc. [61]. For example, re-expression of 
miRNA-150 induces EBV-positive Burkitt lymphoma 
differentiation by modulating c-Myb in vitro [62]. Besides, 
the expressions of miRNA-21 and miRNA-210 in plasma 
of previously untreated lymphoma patient group were 
higher than those of the patients treated for 6 or more 
courses [63]. MCMDA model predicts the top 10 and top 
50 miRNAs related to lymphoma. As a result, 9 of the top 
10 and 39 of the top 50 potential miRNAs were confirmed 
in the deDEMC and miR2Disease database (See Table 3).

Prostate neoplasms is a malignant tumor which 
originates in the epithelial cells of prostate [64]. Factors 
that increase the risk of prostate neoplasms include 
older age, a family history of the disease, race and a 
diet high in processed meat, red meat or milk products 
or low in certain vegetables [65]. Up to now, lots of 
miRNAs have been discovered to be associated with 
prostate neoplasms. For instance, the proto-oncogene 
ERG is a target of miRNA-145 in prostate cancer 
[66]. MCMDA predicts the top 10 and top 50 potential 
miRNAs which are associated with prostate neoplasms. 
As a consequence, 9 of the top 10 and 45 of the top 50 

Table 2: Prediction of the top 50 predicted miRNAs associated with kidney neoplasms based on known associations 
in HMDD database 

miRNA Evidence miRNA Evidence

hsa-mir-155 dbdemc hsa-mir-92a unconfirmed

hsa-mir-146a dbdemc hsa-mir-195 dbdemc

hsa-mir-122 dbdemc;miR2Disease hsa-mir-126 dbdemc;miR2Disease

hsa-mir-34a dbdemc hsa-mir-29c dbdemc;miR2Disease

hsa-mir-221 unconfirmed hsa-mir-23a dbdemc

hsa-mir-16 dbdemc hsa-mir-143 dbdemc

hsa-mir-125b unconfirmed hsa-mir-223 dbdemc

hsa-mir-29a dbdemc;miR2Disease hsa-mir-214 dbdemc;miR2Disease

hsa-mir-133a unconfirmed hsa-let-7a dbdemc

hsa-mir-29b dbdemc;miR2Disease hsa-mir-148a dbdemc

hsa-mir-145 dbdemc hsa-mir-200b dbdemc;miR2Disease

hsa-mir-26a dbdemc;miR2Disease hsa-mir-31 dbdemc

hsa-mir-199a dbdemc;miR2Disease hsa-mir-142 unconfirmed

hsa-mir-222 dbdemc hsa-mir-106b dbdemc;miR2Disease

hsa-mir-1 dbdemc hsa-mir-34c dbdemc

hsa-mir-15b dbdemc hsa-mir-182 dbdemc;miR2Disease

hsa-mir-20a dbdemc;miR2Disease hsa-mir-200a dbdemc

hsa-mir-17 dbdemc;miR2Disease hsa-mir-101 dbdemc;miR2Disease

hsa-mir-30b dbdemc hsa-let-7c dbdemc

hsa-mir-206 dbdemc hsa-mir-181a dbdemc

hsa-mir-19a dbdemc hsa-mir-9 dbdemc

hsa-mir-196a dbdemc hsa-mir-34b dbdemc

hsa-mir-19b dbdemc;miR2Disease hsa-mir-183 dbdemc

hsa-mir-18a dbdemc hsa-mir-133b unconfirmed

hsa-mir-150 dbdemc;miR2Disease hsa-let-7b unconfirmed

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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predicted miRNAs were confirmed in the dbDEMC and 
miR2Disease database (See Table 4).

The result of case studies on the four 
aforementioned human diseases illustrates that MCMDA 
achieves excellent prediction performance. Moreover, we 
prioritized the potential miRNAs associated with all the 
human diseases in HMDD database (See Supplementary 
Table 1). We hope that the predictions of MCMDA can be 
verified in future scientific researches.

DISCUSSION

Nowadays, researchers propose several 
computational methods to predict the potential associations 

between miRNAs and diseases because computational 
models could select the most promising miRNAs 
related to human diseases and are less expensive than 
the traditional experimental methods. In order to predict 
potential miRNA-disease associations, we developed 
a computational model of MCMDA by analyzing the 
known miRNA-disease associations and implementing 
the matrix completion algorithm to get the association 
score of each miRNA-disease pair. MCMDA obtained 
excellent prediction performances based on LOOCV and 
5-fold cross validation. In addition, the predicted miRNAs 
associated with four important human diseases: colon 
neoplasms, kidney neoplasms, lymphoma and prostate 
neoplasms, were verified by the experimental literatures 

Table 3: Prediction of the top 50 predicted miRNAs associated with lymphoma based on known associations in 
HMDD database 

miRNA Evidence miRNA Evidence

hsa-mir-30b dbdemc hsa-mir-208a unconfirmed

hsa-mir-148a dbdemc hsa-mir-26b dbdemc

hsa-mir-373 dbdemc hsa-mir-143 unconfirmed

hsa-mir-196a dbdemc hsa-mir-9 dbdemc

hsa-mir-23a dbdemc hsa-let-7b dbdemc

hsa-mir-206 dbdemc hsa-mir-96 dbdemc

hsa-mir-195 dbdemc hsa-let-7d dbdemc

hsa-mir-372 unconfirmed hsa-mir-93 dbdemc

hsa-mir-199a dbdemc hsa-mir-483 unconfirmed

hsa-mir-15b dbdemc hsa-mir-371a unconfirmed

hsa-mir-34c unconfirmed hsa-let-7e dbdemc;miR2Disease

hsa-mir-34b dbdemc hsa-mir-7 dbdemc

hsa-mir-183 dbdemc hsa-mir-223 dbdemc

hsa-mir-132 dbdemc hsa-mir-106a dbdemc;miR2Disease

hsa-mir-214 dbdemc hsa-mir-205 dbdemc

hsa-mir-182 dbdemc hsa-mir-222 dbdemc

hsa-mir-31 unconfirmed hsa-mir-335 dbdemc

hsa-mir-133a dbdemc hsa-mir-27a dbdemc

hsa-mir-212 dbdemc hsa-mir-181c dbdemc

hsa-mir-141 dbdemc hsa-mir-224 dbdemc

hsa-mir-142 unconfirmed hsa-mir-27b dbdemc

hsa-mir-192 dbdemc hsa-mir-30a dbdemc

hsa-mir-429 unconfirmed hsa-mir-370 unconfirmed

hsa-mir-451a unconfirmed hsa-mir-1 dbdemc

hsa-mir-106b dbdemc hsa-let-7g dbdemc

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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in dbDEMC and miR2Disease database. The results from 
cross validation and case studies indicated that MCMDA 
was effective in predicting potential miRNA-disease 
associations although it only depends on known miRNA-
disease associations.

The reasons why MCMDA achieved excellent 
performances are as follows. Firstly, MCMDA predicts 
the miRNA-disease associations by using the matrix 
completion algorithm based on the observation that the 
miRNA-disease matrix is low-rank. MCMDA fills the 
candidate samples without known associations with 0 
and then iteratively updates them with the predictive 
scores. Besides, MCMDA is based on the known miRNA-
disease associations in HMDD database. Plenty of known 

associations guarantee the efficiency of the predictions 
in MCMDA. Finally, negative associations which are 
required in some previous models are not needed in 
MCMDA.

Yet, there still exist several limitations in MCMDA. 
Firstly, MCMDA method is based on the known miRNA-
disease associations, which means it cannot predict 
the potential miRNAs associated with the new diseases 
without any known related miRNAs and potential 
diseases associated with new miRNAs. Besides, there 
is no powerful method to find the optimal parameters 
for MCMDA. Finally, the current miRNA-disease 
associations are insufficient. To be specific, there are 
merely 5430 known miRNA-disease associations within 

Table 4: Prediction of the top 50 predicted miRNAs associated with prostate neoplasms based on known associations 
in HMDD database 

miRNA Evidence miRNA Evidence

hsa-mir-146a miR2Disease hsa-mir-150 dbdemc

hsa-mir-122 unconfirmed hsa-mir-126 dbdemc;miR2Disease

hsa-mir-155 dbdemc hsa-mir-195 dbdemc;miR2Disease

hsa-mir-21 dbdemc;miR2Disease hsa-mir-29c dbdemc

hsa-mir-34a dbdemc;miR2Disease hsa-mir-223 dbdemc;miR2Disease

hsa-mir-16 dbdemc;miR2Disease hsa-mir-143 dbdemc;miR2Disease

hsa-mir-221 dbdemc;miR2Disease hsa-mir-23a dbdemc;miR2Disease

hsa-mir-29a dbdemc hsa-let-7a dbdemc;miR2Disease

hsa-mir-133a dbdemc hsa-mir-200b unconfirmed

hsa-mir-29b dbdemc;miR2Disease hsa-mir-214 dbdemc;miR2Disease

hsa-mir-15a dbdemc;miR2Disease hsa-mir-148a miR2Disease

hsa-mir-26a dbdemc;miR2Disease hsa-mir-106b dbdemc

hsa-mir-222 dbdemc;miR2Disease hsa-mir-34c dbdemc

hsa-mir-199a dbdemc;miR2Disease hsa-mir-142 unconfirmed

hsa-mir-1 dbdemc hsa-mir-31 dbdemc;miR2Disease

hsa-mir-20a miR2Disease hsa-mir-141 miR2Disease

hsa-mir-17 miR2Disease hsa-mir-182 dbdemc;miR2Disease

hsa-mir-15b dbdemc hsa-mir-200a dbdemc

hsa-mir-19a dbdemc hsa-mir-101 dbdemc;miR2Disease

hsa-mir-19b dbdemc;miR2Disease hsa-let-7c dbdemc;miR2Disease

hsa-mir-206 dbdemc hsa-mir-192 dbdemc

hsa-mir-30b dbdemc;miR2Disease hsa-mir-181a dbdemc;miR2Disease

hsa-mir-18a unconfirmed hsa-mir-9 dbdemc

hsa-mir-196a dbdemc hsa-mir-34b dbdemc

hsa-mir-92a unconfirmed hsa-mir-133b dbdemc

The first column records top 1-25 related miRNAs. The second column records the top 26-50 related miRNAs.
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Figure 2: Flowchart of MCMDA model to predict the potential miRNA-disease associations based on the known 
associations in HMDD database.
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the possible exploration spaces of 495 miRNAs and 383 
diseases. The more known associations are confirmed in 
the future, the more accurate MCMDA model can become.

MATERIALS AND METHODS

Human miRNA-disease associations

The known miRNA-disease associations were 
downloaded from HMDD v2.0 database [67] which 
consisted of 5430 known miRNA-disease associations, 
495 miRNAs, and 383 diseases. We furthermore 
constructed an adjacency matrix M to represent known 
miRNA-disease associations. For instance, if miRNA 
m i( ) is reported to be associated with disease d j( ) in the 
database, the value of M i j( , ) is 1 and otherwise 0. Ω 
denotes the set of all the known associations in matrix M 
which means i j( , ) Ω  if m i( )  is associated with d j( ) . 
nm represents the number of miRNAs in HMDD database 
and nd represents the number of diseases.

MCMDA

We developed MCMDA based on the known 
miRNA-disease associations in HMDD database to 
predict the potential associations (See Figure 2). MCMDA 
uses the singular value thresholding (SVT) algorithm 
to accomplish the matrix completion procedure. First, 
the miRNA-disease association matrix M was obtained 
according to known miRNA-disease associations. Here, 
all the known associations between miRNAs and diseases 
in HMDD database are used as training samples.

The matrix completion algorithm is iterative and 
a n nm d´  prediction matrix X k (k denotes the iteration 
times) can be obtained in each iteration. When MCMDA 
ends, the matrix X n (n denotes the ultimate iteration times) 
is obtained which records the scores of all the possible 
miRNA-disease pairs. To ensure that the scores of known 
associations in X n are close to those in M, the following 
optimization problem needs to be solved.

f Xmin ( )
X t

s t P X P M. . ( ) ( )=Ω Ω  (1)
where X  is a n nm d´  candidate solution matrix with scores 
of all the unknown miRNA-disease samples, PΩ  is the 
orthogonal projector onto the span of matrices vanishing 
outside of Ω  so that the (i,j) th component of P X( )Ω  is 
equal to X i j( , ) if i j( , ) Ω  or zero otherwise. f X( )τ  is 
a nonlinear function of X  which can be written as the 
following form.

X Xmin 1
2X F*

2τ +

s t P X P M. . ( ) ( )=Ω Ω  (2)

where X
*
 is the nuclear form of the matrix X  which 

is the sum of the singular values of X , X F  denotes the 

Frobernius form of X  which is ∑∑
==
X i j( , )

j

n

i

n
2

11

dm

, t is a

thresholding which will be introduced later.
According to [68], problem (2) can be optimized 

using the Lagrangian multiplier method. Specifically, 
we introduce a Lagrangian multiplier Y and get the 
Lagrangian function as below:

= + < − >τ Ω ΩL X Y f X Y P M P X( , ) ( ) , ( ) ( )    (3)

The singular value decomposition (SVD) of matrix X with 
rank r, which represents the number of singular values of 
matrix X, is needed in matrix completion algorithm.

σ= Σ Σ = ≤ ≤X U V diag, ({ } )i i r
*

1      (4)

where U and V are n rm ´  and r nd´  matrices. 
diag({ } )i i r1sS = £ £ means that Σ  is a r r´  diagonal 

matrix with positive singular values { }i i r1s £ £  on its main 
diagonal. For 0t ³ , we introduce an operator τD  defined 
as follows:

D X UD V D diag( ) ( ) , ( ) ({ } )i
* s t= S S = -t w w +  (5)

where σ τ− +{ }i  is the positive part of { }is t- . In other 
words, { }is t- + is equal to is t-  if 0is t- ³  or 0 
otherwise and it effectively shrinks the singular values of 
X toward 0. The value of t  is n n5 m d´  according to 
the previous research of matrix completion algorithm [69].

There are two key steps which are special instances 
of Uzawa’s algorithm [70] to find a saddle point of (3) 
in each iteration. We introduce Y Y Y Y{ , ,..., , }n n0 1 1-  which 
are a series of n nm d´  matrices to record the intermediate 
scores of matrices X X{ .. }n1

. First, update X with Y:

= τ
−X D Y( )k k 1

        (6)

Then, update Y with X:

δ= + −−Y Y M X( )k k
k

k1

       (7)
where Y 0  is a zero matrix [71] and { }k k 1d ³  is the step size. 
It is usually thought that the iteration can converge to an 
unique solution when 0 2d< <  [72], specifically, we 
empirically set the value of { } 1.5k k 1d =³  according to the 
excellent performance in previous model [73]. MCMDA 
applies K.K.T conditions as the stopping criteria which 
are checked in each iteration to makes sure the scores of 
the known associations in the prediction matrix are close 
enough to the original matrix M:

ε− <Ω ΩP M X P M( ) ( )k
F F       (8)

where e is a stopping tolerance, the value is 10 4-  since it 
proved to be appropriate in restricting the iteration times 
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in previous algorithm [71]. If the stopping criteria is met, 
MCMDA stops iteration immediately and the ultimate 
matrix X n  is obtained. Finally, a parameter maxiter is 
set which restricts the max iteration times and avoids the 
infinite loop. Specifically, maxiter is set 500 to ensure that 
the ultimate matrix has reliable predicted scores. Based 
on the method mentioned above, the ultimate matrix 
X n  is obtained by above calculation process which 
can be utilized to predict the potential miRNA-disease 
associations.
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