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Abstract: The Internet of Things (IoT) concept has emerged to improve people’s lives by providing
a wide range of smart and connected devices and applications in several domains, such as green
IoT-based agriculture, smart farming, smart homes, smart transportation, smart health, smart grid,
smart cities, and smart environment. However, IoT devices are at risk of cyber attacks. The use of
deep learning techniques has been adequately adopted by researchers as a solution in securing the
IoT environment. Deep learning has also successfully been implemented in various fields, proving its
superiority in tackling intrusion detection attacks. Due to the limitation of signature-based detection
for unknown attacks, the anomaly-based Intrusion Detection System (IDS) gains advantages to
detect zero-day attacks. In this paper, a systematic literature review (SLR) is presented to analyze
the existing published literature regarding anomaly-based intrusion detection, using deep learning
techniques in securing IoT environments. Data from the published studies were retrieved from five
databases (IEEE Xplore, Scopus, Web of Science, Science Direct, and MDPI). Out of 2116 identified
records, 26 relevant studies were selected to answer the research questions. This review has explored
seven deep learning techniques practiced in IoT security, and the results showed their effectiveness in
dealing with security challenges in the IoT ecosystem. It is also found that supervised deep learning
techniques offer better performance, compared to unsupervised and semi-supervised learning. This
analysis provides an insight into how the use of data types and learning methods will affect the
performance of deep learning techniques for further contribution to enhancing a novel model for
anomaly intrusion detection and prediction.

Keywords: systematic literature review; anomaly intrusion detection; deep learning; IoT; resource
constraint; IDS

1. Introduction

Internet of Things (IoT) is the research and industrial trend in the arena of Information
Communications Technology (ICT) that has become accustomed to being part of technology
advancement in our everyday life [1]. The IoT term refers to a new communication
paradigm in which devices have sensors and actuators that can serve as objects or ‘things’
to sense their surrounding environment, communicate with one another, and exchange
data through the internet [2]. The IoT requires a platform in which all the applications,
products, and services are associated with, used to capture, communicate, store, access,
and share/transmit data from the real world [3,4]. Nowadays, there are around 50 billion
IoT devices connected to the internet, and it is expected to grow to an enormous size over
the next few years [5,6]. These huge numbers of devices produce a tremendous amount
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of data that can be used by many applications. IoT applications scenarios are ubiquitous,
and this includes, food, agriculture, smart farming, demotics, assisted living, e-health, and
enhanced learning, to mention a few examples of possible IoT applications. For instance,
there will be 15.3 billion IoT devices for smart agriculture by the end of 2025 [7,8]. A huge
number of sensors and actuators are needed for real-time monitoring and environment
of many industrial domains to provide actionable insights and make timely decisions [9].
However, many challenges hinder the full adoption of the IoT in both research and industry.
These challenges include, but are not limited to, security and trust, reliability, scalability,
and mobility, among many others [10].

Because IoT devices are connected to the global internet with unmatured and vulner-
able communication protocols and applications, it is exposed to many potential security
threats [3,4]. Adversaries may exploit these vulnerabilities and inject anomalies that trigger
the system to make wrong control decisions in IoT-based application, causing a catas-
trophic impact on people’s live, properties, and economics [7,11]. The evolved threats of
cyberattacks pose significant challenges to the IoT ecosystems. Moreover, IoT devices use
different platforms and a combination of network connections protocols such as Ethernet,
Wi-Fi, ZigBee, and wire-based technologies to increase their connectivity, which needs
coordination between different standards and protocols to mitigate security risks. Besides
the diverse technologies used by the IoT industry, the heterogeneity, and the distributed
nature of IoT applications increase the complexity of IoT networks and thus, magnify the
security risk. These shortcomings cause the IoT network to be exposed to many security
issues and cyberattacks. Therefore, an accurate anomaly-detection IDS model is vital for
IoT applications [12].

Many IDS solutions have been proposed to protect IoT devices from being exposed to
cyber criminals [13–15]. These security solutions can be divided into either proactive or
reactive measures. The proactive measures can be effective for protecting the IoT against
external threats. However, due to the connectivity of the IoT to the global internet, the risk
posed by intruders that can circumvent proactive measures is high. Intrusion Detection
Systems (IDSs) work as a second line of defense that can impede many cyberattacks.
IDS solutions have received intensive attention from researchers and industries in the
IoT field, and many IDS solutions have been proposed [16–18]. Based on the detection
approach, IDS solutions can be categorized into three approaches: signature, anomaly,
and hybrid IDS model. In general, the signature-based approach is effective for known
attacks, while the anomaly-based is effective for unknown attacks. However, due to
the heterogeneity, dynamicity, and complex nature of the IoT network, the signature-
based approach is inefficient and ineffective for IoT because it requires continuous human
interventions and knowledge expertise to extract attack patterns and signatures to update
the IDS model [19,20]. Anomaly-based IDS detection gains advantages in IoT because it
detects zero-day attacks and needs fewer human interventions [20]. The hybrid approach
combines both signatures-based and anomaly-based approaches. However, because it is
impractical to rely on pre-defined attack patterns (signature-based) intrusion detection
in IoT, the utilization of the signature-based IDS is limited in IoT networks [18–20]. To
this end, anomaly intrusion detection systems play a vital role in intrusion detection in
IoT environments.

Most of the existing IDS use conventional machine learning techniques to develop
detection models [21]. Machine learning techniques were widely adopted to construct the
IDS model. However, due to the speed and volume of the IoT-generated data, conventional
machine learning techniques that need well-crafted features engineering need intensive
research efforts to extract the representative features from big and unstructured data
generated by IoT devices. Thus, conventional machine learning–based solutions still
encounter many challenges. Recently, deep learning techniques (DL) have been widely
adopted for intrusion detection systems. DL expedites the analysis between fast and real
data streams in extracting relevant information to predict the future of the IoT domain.
DL is known to be more reliable than traditional learning because it can easily extract
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information, and hence, provides better accuracy [22]. Due to this, several studies have
been focused on using deep learning techniques to provide new solutions tackling two
different perspectives of both technical and regulatory, such as anomaly and malware
detection; however, the results are still unconvincing. Furthermore, most IDS solutions
have been adopted from existing computer networks, wireless sensors networks, and
mobile ad hoc networks. Yet, the unique characteristics of IoT-based networks, such as
connectivity to the global internet and lightweight resources, make the IDS proposed
for these networks not suitable to IoT applications [13,14]. There are only a few surveys
that have been found that focus specifically on DL techniques in the IoT domain [23]. To
the best of the authors’ knowledge, there is no review that is dedicated to investigating
the effectiveness of the deep learning-based IDS solutions in the IoT security domain.
Therefore, this paper was conducted to bridge this gap and investigate the most effective
and efficient use of DL approaches in securing the IoT environment. This review provides
an in-depth, focused, and high-quality analysis to orient future research toward finding
robust anomaly-based IDS using DL techniques.

The paper is organized as follows. The contributions introduced by this study are
briefed in Section 2. Related work is presented in Section 3. The review method, which in-
cludes the review protocol, planning, research questions, is described in Section 4. Section 5
presents the search strategies, which include the primary records selection, secondary
records selection, inclusion criteria, exclusion criteria, quality assessment (QA), data extrac-
tion, and synthesis. Section 6 presents the results, studies selection and quality assessment
results, and overview of publication sources. Section 7 presents the outcomes, which
include the answers to the research questions, taxonomy, analysis and discussion, and
the open issues. Section 8 presents the discussion. Section 9 presents the future direc-
tion. Limitations of the study are illustrated in Section 10, and the study is concluded in
Section 11.

2. Contributions

1. This study systemically explores the existing techniques on an anomaly-based intru-
sion detection system that uses the DL techniques in IoT.

2. A general taxonomy is proposed for the different deep learning techniques used for
constructing the anomaly-based IDS in IoT.

3. An analysis of the state-of-art DL-based techniques of anomaly-based intrusion detec-
tion systems in IoT, which use DL, is introduced in this survey.

4. This study discusses the challenges and future direction of DL-based anomaly detec-
tion in the IoT domain.

3. Background and Related Works

Existing deep learning studies related to IoT security focus primarily on experimental
aspects rather than the adopted techniques, leaving a gap for a comprehensive review of
different anomaly intrusion detection. For such reason, the goals are to identify what is
the most prominently used techniques and how to ensure better performances for each
technique. Due to the rapid growth of advancement in this area, the relevant studies should
be reviewed and appraised in parallel.

Hajiheidari et al. [19] conducted comprehensive work on intrusion detection systems
in the IoT that focuses on four different types of IDS (anomaly-based, signature-based,
specification-based, and hybrid-based). However, the scope of work was broad and
unspecific on the anomaly intrusion detection system, which used DL techniques. On the
other hand, Sharma et al. [23] surveyed studies that use DL for anomaly detection in IoT.
Likewise, Fahim and Sillitti [20] conducted a general study on anomaly detection, analysis,
and prediction techniques in an IoT environment. However, this study was not specific
to the IDS. Alsoufi and Razak [24] in our previous work, surveyed the anomaly intrusion
detection system in IoT, which used DL techniques. The finding of our work inspired
us to propose this work, which is an in-depth systematic literature review following the
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guideline based on proposed work by Kitchenham to provide researchers and developers
in-depth information and obtain details about an up-to-date technique and methodology
in anomaly intrusion detection in IoT, using deep learning [25].

Table 1 shows a detailed comparison with the similar reviewed articles in the area.
Consequently, there is an urgent need to conduct a systemic review and appraise the
specific studies in the field of IDS in IoT that used DL techniques. Thus, this systemic
review provides an in-depth and focused analysis on orienting future research toward
finding robust anomaly-based IDS using DL techniques.

Table 1. Comparison with other similar review articles in the area: (
√

: Yes, x: No).

Paper Name Year IoT Systematic Study Anomaly-Based Deep Learning

Fahim et al. [20] 2019
√ √ √

x
Hajiheidari et al. [19] 2019

√ √
x x

Sharma et al. [23] 2019
√

x
√ √

Alsoufi, Razak [24] 2021
√

x
√ √

This work
√ √ √ √

4. Review Method
4.1. Development of the Protocol

This review follows the guidelines of performing systematic reviews in the soft-
ware engineering domain, according to [25,26] as well as other methods from several
works [19,27,28].

4.2. Planning the Review

In the planning step, the need for SLR was determined, the research questions were
identified, and the review protocol was established.

4.3. The Need for a Systematic Review

There are many approaches applied in detecting intrusion attacks in IoT, using deep
learning. However, there is a lack of an in-depth and systematic analysis of those studies.
Such an analysis is crucial for the research community, especially for those who are new to
the area, to gain a holistic idea of the state of the art of anomaly detection in IoT, using deep
learning techniques. Hence, this study focuses on literature reviews of various methods
adopted for anomaly-based intrusion detection and inclusive of those researchers that have
conducted overview literature on different techniques, taxonomies, and comparisons. This
survey presents an in-depth discussion from different perspectives in adherence to the
highlighted research questions.

4.4. Research Questions

Q1 What is the comprehensive taxonomy of anomaly-based intrusion detection in IoT
using deep learning techniques?

Q2 What is the performance of anomaly-based intrusion detection in IoT using deep
learning techniques?

Q3 What are the challenges in the existing anomaly intrusion detection deep learning
techniques in IoT?

4.5. The Review Protocol

The review protocol is known as one of the most crucial steps in establishing systematic
literature reviews (SLRs). It provides an extensive guideline to determine the suitable and
formal methods to be discussed in the SLR. The goal of adapting review protocols is to
ensure that there is no bias and to distinguish SLR from any other traditional methods
of the literature review 23. This review protocol defines the review background, search
strategy, development of RQs, extraction of data, criteria for study selection, and data
syntheses. The research questions and background were discussed in previous sections.



Appl. Sci. 2021, 11, 8383 5 of 24

The next sections provide insights on different components. All stages of conducting this
systemic review are described in Figure 1.

Figure 1. Literature review methodology.

5. Search Strategy

This SLR used automatic search to explore and retrieve the related scholarly publica-
tions from online databases (IEEE Explorer, Web of Science, Scopus, Science Direct, and
MDPI), using specific keywords that were constructed in response to the research questions.
“Anomaly intrusion detection” AND “Internet of things”, “Anomaly intrusion detection”
AND “Deep learning”, “Anomaly intrusion detection system” AND “Internet of things”,
“Anomaly intrusion detection system” AND “Deep learning”, “Anomaly-based” AND
“Internet of things”, “Anomaly-based” AND “Deep learning”. The time frame was from
any time up to 2020, while no filters were applied for countries, type of publications, or
language during the retrieval of primary records from the online databases. The retrieval
of primary records from the pre-specified online databases involved two independent
investigators. If discrepancies occurred, a third investigator was consulted. For manual
search, reference lists of published reviews and surveys were looked through, while the
Google Scholar search engine was used to distinguish all studies that were cited by the
chosen primary studies. The manual search was managed to ensure a comprehensive
search of the pertinent studies. Any overlapping and redundancies in these publications
were removed permanently.
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5.1. Primary Records Selection

After the removal of duplicates, the remaining primary records were screened by
titles and abstracts to exclude books, conferences, reports, lecture notes, and miscellany.
This restricts selection to the original articles published in good-quality journals. The
primary selection involved two independent investigators. If discrepancies occurred, a
third investigator was consulted.

5.2. Secondary Records Selection

All the primary selected articles underwent secondary selection by applying eligibil-
ity criteria (exclusion and inclusion criteria), which were constructed in response to the
research questions. Exclusion and inclusion criteria were employed to ensure the inclusion
of only pertinent studies for data analysis regarding anomaly intrusion detection in IoT
using deep learning.

5.3. Inclusion Criteria

1. Publication of articles in peer-reviewed journals.
2. Accessible research articles.
3. Relevant content to anomaly intrusion detection system in IoT, using deep learning.

5.4. Exclusion Criteria

1. Research articles published in predatory journals according to Beals’ list.
2. Inaccessible articles.
3. Irrelevant to anomaly intrusion detection system in IoT using deep learning.

5.5. Quality Assessment (QA) of the Eligible Included Records

For pooling reliable data from the eligible studies, secondary selected records under-
went assessment for their quality. Based on [25], a necessary step to be followed through to
evaluate the quality of assorted studies was carried out by applying a quality assessment
(QA). For evaluation purposes, a set of four research questions (RQs) were taken into
consideration, including the following QA criteria:

1. QA1: Is the topic related to anomaly intrusion detection in IoT using deep learning techniques?
2. QA2: Is the research methodology adequately interpreted in the manuscript?
3. QA3: Is there an adequate clarification on the background review in which the study

was conducted?
4. QA4: Is there a comprehensible declaration regarding the research objectives?

The reliability of each 42 research articles was assessed, according to each criterion
mentioned in the four QA. There are three phases of QA quality schema, which are high,
medium, and low [29]. The quality of each paper was assessed, based on its loading score.
For a better context, papers that fulfill the criteria receive a score of two, whilst papers that
only fulfill the criteria partially receive a score of one, and papers that did not fulfill any of
the criteria receive a score of zero. In a scoring board, based on the four defined criteria,
studies that receive a score of five or above can be categorized as high quality.

In contrast, studies that receive a score of four can be grouped as medium quality.
Studies that receive a score below four will fall under the category of low quality. The
studies that scored five and above after QA were then included in data extraction and
synthesis. Two independent investigators reviewed the assessment of the quality of eligible
studies. A discussion with a third investigator solved any discrepancies.

5.6. Data Extraction and Synthesis of the Systemic Literature Review

The data were extracted from the related studies that underwent the assessment for
their quality. A form for better data extraction was created and performed thoroughly
by using Endnote and Microsoft Excel spreadsheets to analyze and extract significant
information from each eligible study. The extracted data included study ID, first author,
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publication date, methodology, technique-based taxonomy, datasets, accuracy, precision,
recall, False Alarm Rate (FAR), F1-Measure, False Positive Rate (FPR), and False Negative
Rate (FNR). Extraction of the data from studies was performed by two independent
investigators. Any discrepancies were solved by a discussion with a third investigator.

The data extracted were then synthesized for digressive analysis concerning is-
sues associated with anomaly detection in IoT using deep learning, which includes
strengths/weaknesses, classification, and approaches.

6. Results
6.1. Studies Selection and Quality Assessment

A total of 2116 records were extracted from the online database (n = 2106) and extra
sources (n = 10); after the removal of duplicates (n = 765), 1351 records were subject to
primary selection, out of which 714 records were excluded (books, lectures note, conferences
and miscellaneous). Accordingly, 637 records were identified as journal articles, out of
which 97 records were excluded (reviews, surveys, and reports). Finally, 540 records were
subjected to inclusion and exclusion criteria, out of which 43 studies were eligible. However,
only 26 studies met the criteria of quality assessment. The 26 studies that fulfill the
assessment criteria were selected to extract the data and synthesis of the systemic literature
review. Table 2 shows the number of retrieved records from online databases according to
the pre-specified keywords. Figure 2 shows the fellow chart of selection studies.

Table 2. Number of retrieved records from online databases according to the pre-specified keywords.

Database Name Keywords Records Total

IEEE explore

“Anomaly intrusion detection” AND “Internet of things” 113

1263

“Anomaly intrusion detection” AND “Deep learning” 109
“Anomaly intrusion detection system” AND “Internet of things” 96

“Anomaly intrusion detection system” AND “Deep learning” 96
“Anomaly-based” AND “Internet of things” 411

“Anomaly-based” AND “Deep learning” 442

Science direct

“Anomaly intrusion detection” AND “Internet of things” 6

344
“Anomaly intrusion detection” AND “Deep learning” 4

1
“Anomaly intrusion detection system” AND “Deep learning” 1

“Anomaly-based” AND “Internet of things” 188
“Anomaly-based” AND “Deep learning.” 144

Scopus

“Anomaly intrusion detection” AND “Internet of things” 4

138
“Anomaly intrusion detection” AND “Deep learning” 12

2
“Anomaly intrusion detection system” AND “Deep learning” 4

“Anomaly-based” AND “Internet of things” 69
“Anomaly-based” AND “Deep learning” 47

Web of science

“Anomaly intrusion detection” AND “Internet of things” 3

71
“Anomaly intrusion detection” AND “Deep learning” 6

2
“Anomaly intrusion detection system” AND “Deep learning” 2

“Anomaly-based” AND “Internet of things” 36
“Anomaly-based” AND “Deep learning” 22

MDPI

“Anomaly intrusion detection” AND “Internet of things” 40

290

“Anomaly intrusion detection” AND “Deep learning” 39
“Anomaly intrusion detection system” AND “Internet of things” 20

“Anomaly intrusion detection system” AND “Deep learning” 20
“Anomaly-based” AND “Internet of things” 90

“Anomaly-based” AND “Deep learning” 81

Other sources

“Anomaly intrusion detection” AND “Internet of things” 2

10

“Anomaly intrusion detection” AND “Deep learning” 1
“Anomaly intrusion detection system” AND “Internet of things” 2

“Anomaly intrusion detection system” AND “Deep learning” 1
“Anomaly-based” AND “Internet of things” 2

“Anomaly-based” AND “Deep learning” 2
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Figure 2. The fellow chart of selection studies.

6.2. Overview of Publication Sources

Figures 3 and 4 illustrate the list of selected papers published according to year and
journal. Noticeably, there is a trend toward anomaly-based intrusion detection in IoT, using
deep learning. This signifies a rising interest in this domain, especially after 2018. An
elevated increase of nine studies in 2020 was noted, compared to only five studies in 2019.
In comparison, the trend seems to start in 2017, as there was only one study published.
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Figure 3. Selected distribution studies by years.

Figure 4. Selected distribution studies by journals.

7. Outcomes
7.1. RQ1: What Is the Comprehensive Taxonomy of Anomaly Intrusion Detection in IoT Using
Deep Learning Techniques?

Recently, various studies have explored the application of anomaly detection in IoT
using deep learning. For better insight, taxonomy is shown in Figure 5 to pinpoint all
existing techniques and requirements of anomaly intrusion detection in IoT, using deep
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learning techniques. The IDS are commonly categorized as supervised, unsupervised, and
semi-supervised.

Figure 5. Taxonomy of anomaly intrusion detection in IoT using deep learning techniques [13–17,30–49].

• Supervised: in a supervised manner, anomalies detecting labeled datasets by con-
structing the network or system is normal behavior. Supervised anomaly detection
techniques can leverage the measurement of distance as well as the density of clusters
for the detection of intrusions.

• Unsupervised: in an unsupervised manner, the approach assumes a greater frequency
of normal behaviors, thus leading to the establishment of the model on assumptions,
wherein there is no need for any labeled data for training.

• Semi-supervised: in a semi-supervised manner, the algorithm is trained upon a
combination of labeled and unlabeled data.

7.2. RQ2: What Is the Performance of Anomaly Intrusion Detection in IoT Using Deep
Learning Techniques?

Accuracy, precision, recall, false-positive rate (FPR), false-negative rate (FNR), and
f-measure are the most frequently employed model evaluation techniques based on deep
learning [50–54].

As shown in Table 3, the high accuracy is nearly 100%; precision and recall are
almost 100% in D-PACK [45]. They used CNN and AE techniques on the Mirai-RGU
dataset. However, this model takes a long time for training and preprocessing, which
is resource consuming. Additionally, it covers only a few types of attacks. Similarly,
the study conducted by [37] used CNN and AE techniques on the Yahoo Webscope S5
dataset and achieved 99.62% accuracy, 98.78% precision, and 97.2% recall. This indicates
that the combination of CNN and AE may improve the performance. Nevertheless, the
resource-consuming aspect, network overhead, and datasets with real IoT traffic should be
considered as well. D. Li et al. [47] proposed a model that achieved an accuracy of 99.78%,
precision of 98.99%, recall of 91.05%, and FAR of 0.22%, using DML techniques by using
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the KDDUP99 dataset. However, this model suffers from high resource consumption, and
the dataset does not contain IoT traffics and modern types of attacks. Shi and Sun [16]
proposed a model that achieved 99.36% accuracy, the precision of 97.97%, and recall of
98.86%, using LSTM with RNN techniques. However, they did not report the FAR, as the
model is for a specific type of attack and is resource consuming. We can say that combining
AE with CNN techniques could enhance the accuracy and decrease the FAR, but we should
consider the resource consumption and cover the IoT attacks. Figure 6 shows the frequency
of the performance measures of the studies.

Table 3. Performance of the studies models.

Study Techniques Accuracy Precision Recall FAR F1-Measure FPR FNR

Lopez et al. [48] AE 80% 81.59% 80.1% 79.08%
Yang et al. [15] VAE + DNN 89.08% 86.05 95.68 90.61 19.01
Cheng et al. [30] LSTM 98%
Thamilarasu et al. [14] DBN 97%
Shi et al. [16] LSTM + RNN 99.36% 97.97% 98.86%, 98.42
Munir et al. [17] CNN 99% 100%
Gurina et al. [41] AE 0.007
Manimurugan et al. [40] DBN 98.37% 97.21%, 98.34% 97%
Malaiya et al. [46] CCN + VAE + LSTM 99%
Kim et al. [34] CNN 99%,
Jung et al. [35] CNN 96.50%, 85%
Gurina et al. [42] AE

Diro et al. [13] Multi-Layer
deep learning 99.02% 99.27% 99.14% 0.85%

Parra et al. [33] CNN + LSTM 94.30% 93.48% 93.67% 93.58% 5.20%
Cheng et al. [49] CNN 99.88% 99.89% 97.94% 98.64%

Moustafa et al. [38] DFFNN 98.4%,
92.5% 99%, 93% 1.8%, 8.2%

Xie et al. [31] LSTM

Zhao et al. [36] CNN 86.95%
76.67%

Li et al. [32] LSTM 97.58% 83.79% 2.02% 6.02%
Kim et al. [43] AE 99.81%
Hwang et al. [45] CNN + AE 100% 100% 100% 100% 0%
Yin et al. [37] CNN + AE 99.62% 98.78% 97.2% 98.78%
Telikani et al. [44] AE 99.6 100% 100% 100% 0.0057
Shone et al. [18] AE 97.85% 100% 100% 85.42%
Drosou et al. [39] GNN/RNN 99%
Deng et al. [47] DML 99.78 98.99 91.05 0.22%

Figure 6. The frequency of performance measures of the studies.
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7.2.1. Analysis of Accuracy Range

Table 4 shows the accuracy range for each deep learning technique used. The CNN
has a wide range that starts from 76.76% and reaches 99.88%; this technique was tested
10 times individually and integrated with another technique. In addition, AE covers a
wide range starting from 80% and reaches 99.81%, and it is similar to CNN in the detection
accuracy range and the one used. LSTM was used three times and achieved an accuracy
between 79.58% and 98%. DBN was used two times and gained an accuracy range from
97% to 97.21 with little enhancement. RNN and DFFNN were used once. Figure 7 shows
the techniques used in the studies.

Table 4. Accuracy range for the techniques.

Study No. of Study Techniques Used Accuracy Range

[17,34–36,49] 5 CNN (76.76–99.88%)
[37,45] 2 CNN + AE (99.62–100%)

[18,41–44,48] 6 AE (80–99.81%)
[31,32] 3 LSTM (79.58–98%)

[33] 1 CNN + LSTM (94.30%)
[46] 1 CCN + VAE + LSTM 99%

[14,40] 2 DBN (97–97.21%)
[15] 1 VAE + DNN 89.08%
[16] 1 LSTM + RNN 99.36%
[39] 1 GNN/RNN 99%
[38] 1 DFFNN 98.4%

[13] 1 Multi-Layer deep
learning 99.02

[49] 1 DML 99.78

Figure 7. The frequency of the techniques used in the studies.
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7.2.2. Analysis of Type of Attacks Detected

The type of attacks is the most important metric used to identify the advantage of the
anomaly intrusion detection system. Some models [16,46,50] achieved high accuracy in
detecting specific types of attacks. Howeve+-r, with only a few types of attacks included in
their training datasets, their performance is questionable. Therefore, these models need
more improvement to be able to detect as many attacks as possible with high accuracy. For
example, in the IC_VAE model proposed by Lopez-Martin et al. [48], using the NSL-KDD
dataset, the types of attacks detected by this model are Probing, Remote to Local (R2L),
User to Root (U2R), and Denial of Service (DoS) Attacks. Similarly, studies proposed
by [13,18,36,44,47] detected the same types of attacks, using NSL-KDD and KDD Cup
1999 datasets. Moreover, in [15,38], by adapting the NSL-KDD and UNSW-NB15, they
extended the range of attack by detecting modern attacks, such as Fuzzer and worm, back
door, analysis, exploits, generic, seel-code, and recionnary. In [34], by using KDD CUP 1999,
CSE-CIC-IDS2018, they extended the range of attack by detecting modern attacks, such as
DoS-Hulk, DoS-GoldenEye, DoS-SlowHTTPTest, DDoS-LOIC-HTTP, DoS-Slowloris, and
DDoS-HOIC. The study conducted by [14] used a test-bed that contains several attacks,
such as the Distributed Denial-of-Service (DDoS), sinkhole attack, Wormhole Attack, Black-
hole Attack. In [40], authors used CICIDS 2017 dataset with a set of attacks, including
DoS/DDoS, Botnet, Web Attack, Brute Force, Infiltration, PortScan, SQL Injection, Benign,
DoS Hulk. In the study conducted by [45], the Mirai-RGU dataset with a range of attacks,
including UDP Flood, SYN Flood, ACK Flood, and HTTP Flood, was used. In [41], by using
N-balot databases, the authors focused on Mirai and BASHLITE. Similarly, in [33], the
authors used the same dataset of N_BaIoT, but focusing on Distributed Denial of Service
(DDoS) and phishing attacks. In [16], by using the MCFP dataset, they focused on Botnets,
SYN flood, RST attacks. In [42], by using a test-bed, the range of attacks included flood
attacks and SQL injection attacks, SYN Flood, TCP Flood, UDP Flood Detection, ICMP
Flood Detection, and HTTP Flood Detection. In [35], the authors used a test-bed with a set
of attacks against IoT, such as botnets attack, Mirai, Hajime, Bricker, BotIoT Reaper, Masuta,
Sora. In [30], by using a test-bed, the range of the attacks included malicious scan, DoS
attack, malicious control spying, malicious operation, wrong setting categories, and data
probing. In [31], by using a test-bed, the range of attacks included sip, ssh, SSL, conn, DNS,
and HTTP. In [39], by using a test-bed and CTU-13 datasets, the range of attacks included
Infiltration attack, Propagation attack, worm infiltration, and worm propagation attack. In
the study conducted by [43], the authors used the self-collection dataset and focused on
interval attacks. In the studies [17,32,37,46,49], there was no report explaining what kinds
of attacks they used.

The DL algorithms that were used in the previous studies prove their ability to detect
a wide range of traditional types of attacks patterns, such as the attacks listed above.
Moreover, DL algorithms perform better once there are huge amounts of attack data.
However, more studies are needed to show the performance of the DL algorithms to
detect the recent IoT attacks, such as physical attacks, privilege escalation, eavesdropping,
brute-force password attacks, malicious node injection, and firmware hijacking.

7.2.3. Tools and Environments Applied by the Studied Work

Table 5 shows the categorization of the papers based on the tools and environments
applied by the studied work. There are several types of development tools that have been
used in such development, such as Python, MATLAB, and R language. As can be observed
in Table 5, TensorFlow and Keras have been used by many researchers due to their ability
to deal with large data and objects detected with high performance and provide high-level
APIs for easily building and training models. Furthermore, it can run on Linux, macOS,
Windows, and Android.



Appl. Sci. 2021, 11, 8383 14 of 24

Table 5. Tools and environments applied by the studied work.
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Lopez et al. [48] AE
√ √

Yang et al. [15] VAE + DNN
√

Cheng et al. [30] LSTM
√

Thamilarasu et al. [14] DBN
√ √ √

Shi et al. [16] LSTM + RNN
√ √ √

Gurina et al. [41] AE
√

Manimurugan et al. [40] DBN
√ √ √

Malaiya et al. [46] CCN + VAE + LSTM
√ √

Kim et al. [34] CNN
√ √

Jung et al. [35] CNN
√

Gurina et al. [42] AE
√

Diro et al. [13] Multi-Layer
deep learning

√

Parra et al. [33] CNN + LSTM
√

Cheng et al. [49] CNN
√

Moustafa et al. [38] DFFNN
√

Xie et al. [31] LSTM
√ √

Zhao et al. [36] CNN
√ √

Li et al. [32] LSTM
√

Kim et al. [43] AE
√

Hwang et al. [45] CNN + AE
√ √

Yin et al. [37] CNN + AE
√

Telikani et al. [44] AE
√

Shone et al. [18] AE
√

Drosou et al. [39] GNN/RNN
√

Deng et al. [47] DML
√

Munir et al. [17] CNN

7.2.4. Analysis of the Used Datasets

Table 6 shows the datasets used by the existing research regarding deep learning in
IoT security. As shown in Table 6, most of the studies used NLS_KDD and KDD CUP 1999.
This is due to a lack of substitute datasets. However, these datasets are outdated and do
not contain IoT traffic or modern types of attacks. Some modern datasets are now available
that contain modern types of attacks—UNSW-NB15 [55] and IoT traffic BoT-IoT [56] we
suggest for future researches. Table 7 shows the analysis of the most used datasets in the
surveyed studies.

Table 6. The datasets used in the studies.
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Lopez et al. [48] AE
√

Yang et al. [15] VAE + DNN
√ √

Cheng et al. [30] LSTM
√

Thamilarasu et al. [14] DBN
√

Shi et al. [16] LSTM + RNN
√

Munir et al. [17] CNN
√

Gurina et al. [41] AE
√

Manimurugan et al. [40] DBN
√

Malaiya et al. [46] CCN + VAE + LSTM
√ √
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Table 6. Cont.
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Kim et al. [34] CNN
√ √

Jung et al. [35] CNN
√

Gurina et al. [42] AE
√

Diro et al. [13] Multi-Layer
deep learning

√

Parra et al. [33] CNN + LSTM
√

Cheng et al. [49] CNN
√

Moustafa et al. [38] DFFNN
√ √

Xie et al. [31] LSTM
√

Zhao et al. [36] CNN
√

Li et al. [32] LSTM
√ √ √

Kim et al. [43] AE
√

Hwang et al. [45] CNN + AE
√

Yin et al. [37] CNN + AE
√

Telikani et al. [44] AE
√ √

Shone et al. [18] AE
√ √

Drosou et al. [39] GNN/RNN
√ √

Deng et al. [47] DML
√

Table 7. The analysis of the most used datasets in the surveyed studies.

Dataset Published
Year IoT Specific Features No. of

Classic
Total Normal

Records
Total Attacks

Records Description

NSL-KDD 2009 NO 43 4 77,054 71.463

This dataset is an extension of the dataset
“KDDCUP 99”. The duplicate records

were removed and lack in modern
large-scale attacks. Moreover, it is not IoT
specific. It contains 22 attack types in the
training dataset and 17 attack types in the

test dataset, which are categorized as
4 attack classes.

KDD CUP
1999 1999 NO 43 4 1,033,372 4,176,086

This dataset does not contain modern
attack data and modern large-scale

attacks. Moreover, it contains unbalanced
labels, and this dataset is not specific to

the IoT.

UNSW-NB15 2015 NO 49 9 2,218,761 321,283

This dataset is based on a synthetic
environment for generating attack

activities. It contains approximately one
hour of anonymized traffic traces from a

DDoS attack in 2007.

CICIDS 2017 2017 NO 80 14 2,273,097 557,646

This dataset is not specific to the IoT. It
contains complex features that are not

present in previous datasets. However, it
contains a modern large-scale attack.

CSE-CIC-
IDS2018 2018 NO 80 18 N/A N/A

This dataset is not specific to the IoT.
However, it contains a modern large-scale

attack.

N-BaIOT 2018 YES 115 8 17,936 831,298
This dataset contains IoT traffic, but it is
unbalanced, due to the normal records
being smaller than malicious records.

AWID 2015 NO 155 4 530,785 44,858
This dataset is not specific to the IoT.

However, it contains modern types of
attacks.

Yahoo
Webscope

S5/A1
2015 NO - - 93,197 1669

This dataset contains web traffic, which
includes normal and attacks traffic.

However, it is not specific to the IoT.

Kyoto 2006 NO 24 - 50,033,015 43,043,255
This dataset is not specific to the IoT.

However, it contains modern types of
attacks [57].
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7.3. RQ 3: What Are the Challenges Faced in Current Anomaly Intrusion Detection Deep Learning
Techniques in IoT?
7.3.1. Threat Detection

Because IoT supports a wide range of applications that need different resource re-
quirements in terms of processing, storage, and communication, the network becomes
more complex, due to the heterogeneity of the IoT devices that are being connected. This
makes it hard to provide a secure environment in the IoT ecosystem and even harder to
detect security threats. In securing an IoT environment, it is important to acknowledge
the features and criteria necessary for applying security analytics in deep learning algo-
rithms [54]. However, the existing mechanisms lack the effective and efficient methods
that can perceive the hidden correlation between these features. Nevertheless, the rapid
growth of deep learning algorithms is believed to have the capability of handling the
hidden parameters not limited to the IoT application, but also for finding the correlation
of data variation. In addition, a higher detection rate toward detecting zero-day attacks
efficiently is obtainable with deep learning [58].

7.3.2. Computational and Resource Constraint

The computational complexity can be considered one of the prominent obstacles in
the area of IoT security and deep learning. The usage of IoT devices requires a low battery
and CPU power. Hence, the computational time in IoT devices should be quick, and the
operation should be straightforward [59]. For better performance, it is more effective to
mitigate the IoT computation to the edge of the cloud. There is one particular study [60]
that emphasized analyzing the implementation of an algorithm that focuses on producing
a lightweight computation system. The distributed computing and distributed algorithms
provide better computational optimization by distributing the tasks overs multiple nodes,
which improves the efficiency [54,61].

7.3.3. Time Complexity

Time complexity is considered an obstacle because the current detection techniques
were developed based on batch processing applications rather than real-time detection. As
mentioned before, the IoT environment deals with real-data streaming. Hence, the time
complexity is crucial in detecting threats in IoT applications. In addition, it can assess
the impact on several attributes associated with security threats. Deep learning is highly
capable of resolving time complexity issues in IoT by implementing GPU components to
deal with real-time processing in an efficient manner [62].

7.3.4. Edge Computing and Security

An edge computing platform offers better extensibility in data processing and stor-
age for resource-constrained IoT devices. Furthermore, it enables nearby devices located
around the data sources to intelligently operate, even if they are far from the center node
of infrastructure. The cloud infrastructure stores the IoT devices’ data source regarding
network computing to provide rational edge services in detecting real-time threats. Un-
fortunately, IoT as a standalone entity is incapable of storing and analyzing data for any
potential threats, due to insufficient resources [63]. Hence, with the aid of edge computing,
it will enable multiple resource distribution of data processing over the cloud for analy-
sis [64]. It is convincible to state that the amalgamation of deep learning in IoT helps in
facilitating security analytics in providing an enhanced processing system that can detect
threats effectively and accurately [54].

7.3.5. Training Time

One of the major problems that existing techniques suffer from is the large and high
dimensional datasets used for training [65]. Due to that, more time is needed to train the
model for higher accuracy detection. In tackling these issues, deep learning algorithms
are proposed because they can work on lesser training duration and dataset. This helps
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to increase the efficiency during model training. The batch size may also affect the time
consumed in the training phase because of the accumulation of the network onto the
weight update [54,66]. To solve this, multiple layers can be used to build deep learning
networks, which facilitates the weighing and recognizing of the set of significant patterns
from the datasets. Furthermore, the exploits of storage and processing facilities additionally
obstruct the model training time. Dealing with this issue, the adaptation of big cloud-based
architecture and data technologies improve the efficiency by reducing the model training
duration [63].

8. Discussion

We found that the trend goes to AE techniques. The studies [18,41–44,48] used AE
techniques because of the ability of AE to take advantage of the linear and nonlinear
dimensionality reduction to detect the anomalies. The AE training phase involves the
reconstruction of clean input data from a partially destroyed one as well as the ability of
AE to deal with heterogeneity, unstructured and high dimensional data that generated
from IoT device. However, using techniques such as CNN combined with AE would be
preferable for better classification, depending on the data reduction from the AE phase.
Another observed five studies used CNN techniques [17,34–36,49], which can automatically
detect the most important feature and learn the key feature of each class by itself without
human intervention. Moreover, CNN can perform identification and prediction through
the dense network. The CNN considered is a very vast technique, and this may be due
to the ConvNets. Other factors that may affect the efficiency of CNN are filters, kernel
size, stride, and padding. However, using techniques such as AE combined with CNN
would be preferable to reduce the high dimensional data, which generate from IoT devices
to minimize the exchange data between IoT nodes to avoid the energy-consuming and
communication overhead.

In addition, we found that three studies used LSTM techniques [30–32] that are useful
for classifying, processing, and predicting time series in long duration. Moreover, they
have a memory that can store previous time step information, and this is how they learn.
They also can deal with noise distributed representation and continuous value. However,
LSTMs are apt for overfitting, and it is not easy to apply the dropout algorithm to restrain
this problem. Combining CNN with AE [37,45] could achieve a promising result in terms
of accuracy, recall, and precision. However, the researcher and developer should consider
the resource consumption, training time, and the type of attacks. Notably, the AE and CNN
are the most common techniques used in the literature. In addition, some studies used a
single technique, and others combined multiple ones to improve the performance [16,46,47].
However, the FAR needs to be decreased when considering different types of attacks in
the used dataset. Datasets that include a wide range of attacks with simulation tools are
suggested above. In addition, still, some DL techniques have not been examined yet, which
makes the need for more work in the area to achieve robust IDS for resource-constrained
IoT devices. Combining two DL could lead to achieving high detection attacks, but it
may lead to resource consumption and a high training time. The datasets used in the
literature are outdated, perhaps due to a lack of substitute datasets. However, these
datasets are outdated and do not contain IoT traffic or modern types of attacks. Some
modern datasets are now available that contain modern types of attacks; UNSW-NB15 [55]
and IoT traffic BoT-IoT [56] we suggest for future research. In addition, there is a need
for new datasets that reflect the IoT traffic. Table 8 shows the domain of state-of-the-art
studies, IDS architecture, the technique used, and methodology as well as the advantages
and disadvantages.
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Table 8. List of the state-of-the-art studies and the advantages and disadvantages.

Study IDS Architecture Techniques Used Methodology Advantages Disadvantages

Lopez et al. [48] Network-based AE

proposed Model to
perform feature
reconstruction and
detect malicious in
IoT environment.

• Lightweight.
• High accuracy in

recover
categorical
features.

• Low detection
accuracy.

• High
training time.

Yang et al. [15] Network-based VAE + DNN

proposed model to
perform monitoring
unknown attacks using
AE and DNN to learn
the complex traffics and
imbalanced classes.

• Lightweight.
• Low resource

consumption.

• Low detection
accuracy.

• High
training time.

Cheng et al. [30] Network-based LSTM

proposed model that
adopts an innovative
concept of the drift
method to improve the
accuracy of anomaly
detection using LSTM.

• High detection
accuracy.

• work well for
time series.

• Memory effective.

• Multi-
classification
method needs to
be enhanced.

Thamilarasu et al. [14] Network-based DBN

Proposed an intelligent
IDS to detect malicious
traffic in IoT networks
using DBN.

• Real-Time IDS.
• Detection

accuracy needs to
be enhanced.

Shi et al. [16] Network-based LSTM + RNN

Proposed approach is to
analyze a series of
network packets to
detect botnets using
LSTM and RNN for
better classification.

• Enhanced
robustness.

• High detection
accuracy.

• Lightweight.

• Few types
of attacks.

• High
false-positive
rate.

• Resources
consuming.

Munir et al. [17] Network-based CNN

Proposed
DeepAnTmodel to
anomaly detection and
time series prediction.

• High detection
accuracy.

• Detect point
anomalies,
contextual
anomalies.

• Model works well
with a vast
amount of data.

• High
computational
time.

• Poor data quality
can corrupt the
data
modeling phase.

Gurina et al. [41] Network-based AE

Proposed N-BaIoT to
extract network traffics
and detect anomalies
from resource
constraint devices.

• Enhanced
robustness

• Efficient time to
detect attacks.

• Low traffic
prediction.

• Detection
accuracy
not reported.

Manimurugan et al. [40] Centralized Host-Based DBN
Proposed approach to
detect anomaly attacks
in IoT environment.

• High detection
accuracy.

• Lightweight.

• Not a Real-Time
IDS.

• Detect few types
of IoT attacks.

Malaiya et al. [46] Network-based CCN + VAE + LSTM

Proposed approach to
detect anomaly in IoT
networks by combining
three deep
learning techniques.

• High detection
accuracy.

• Lightweight.

• Resource-
consuming.

• High
computational
complexity.

Kim et al. [34] Network-based CNN

Proposed approach to
detect anomaly in IoT
environment with
focusing on DoS attacks.

• High
detection accuracy.

• Lightweight.

• Detect few types
of IoT attacks.

• High
computational
complexity.

Jung et al. [35] Host-based CNN

Proposed approach to
monitoring malicious
botnet on resource
constraint IoT devices
using three types of
IoT devices.

• Good
classification
accuracy.

• Real-Time IDS.

• Expensive power
monitor.

• Detection
accuracy needs to
be enhanced.

• High
computational
complexity.

Gurina et al. [42] Host-based AE

Proposed approach to
detect malicious in web
server during users’
requests processing
considering the MyBB
web server as a
case study.

• Lightweight.
• capable to detect

zero-day attacks.
• High detection

accuracy for
individual attacks.

• High False
positive rate.

• High
computational
complexity.

• No comparison
with
previous methods.
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Table 8. Cont.

Study IDS Architecture Techniques Used Methodology Advantages Disadvantages

Diro et al. [13] Distributed
Network-Based

Multi-Layer
deep learning

Proposed a distributed
approach to detect
attacks in social IoT.

• Lightweight
• High detection

accuracy.
• Low resource

consumption.

• Few types of
attacks.

• High
training time.

Parra et al. [33] Distributed
Network-Based CNN + LSTM

Proposed a distributed
cloud-based approach
to detect and mitigate
phishing and Botnet
attacks on
client devices.

• Lightweight.
• Low

communication
overhead.

• Detection
accuracy needs to
be enhanced.

• High
computational
complexity.

Cheng et al. [49] Centralized Host-Based CNN

Proposed a
semi-supervised based
model to detect
anomalies in
IoT communication.

• Lightweight
• High detection

accuracy.

• High
computational
complexity.

Moustafa et al. [38] Network-based DFFNN

Proposed anomaly
detection to learn and
validate the information
collected from
TCP/IP packets.

• Lightweight
• High detection

accuracy.
• Model covered

vast types
of attacks.

• Not a
Real-Time IDS.

Xie et al. [31] Network-based LSTM

Proposed approach to
monitor and detect
malicious from the
network traffic flow.

• Lightweight.
• work well for

time series.

• Detection
accuracy
not reported.

Zhao et al. [36] Network-based CNN
Proposed approach to
detect intrusion in
industrial IoT.

• Enhanced
robustness.

• Lightweight.

• Detection
accuracy needs to
be enhanced.

• High
computational
complexity.

Li et al. [32] Network-based LSTM

Proposed approach to
detect attack interval
from historic data in
industrial IoT.

• Enhanced
robustness.

• Lightweight.
• High

detection accuracy.

• High
computational
complexity.

Kim et al. [43] Host-based AE

Proposed approach to
the analysis of attack
profile, detect the
threats and abnormal
behavior that deviates
from normal behavior
in IoT devices.

• Enhanced
robustness.

• Lightweight.
• High

detection accuracy.

• High
training time.

Hwang et al. [45] Network-based CNN + AE

Proposed D-PACK
anomaly approach to
detect features and
profiling traffic with just
a few first packets from
each flow in
IoT networks.

• High
detection accuracy.

• Lightweight.
• Low false

alarm rate.

• High
computational
complexity.

• High
training time.

• Focusing on few
types of attacks.

Yin et al. [37] Network-based CNN + AE

Proposed approach to
detect the anomaly and
to enhance classification
in time series.

• High
detection accuracy.

• Lightweight.
• Low false

alarm rate.

• High
computational
complexity.

• High
training time.

Telikani et al. [44] Network-based AE

Proposed CSSAE
(cost-sensitive stacked
auto-encoder) to solve
the class imbalance
problem in IDS and
detect low-frequency
attacks in
IoT environment.

• High detection
accuracy.

• Lightweight.
• Low false

alarm rate.

• High training
time.

Shone et al. [18] Network-based AE

Proposed model to
dimensionality
reduction for the data
and detect malicious at
the IoT environment.

• High detection
accuracy.

• Lightweight.

• High false alarm
rate.

• High
training time.
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Table 8. Cont.

Study IDS Architecture Techniques Used Methodology Advantages Disadvantages

Drosou et al. [39] Distributed
Network-based GNN/ RNN

Proposed collaborative
anomaly intrusion
detection to detect
malicious for
IoT devices.

• High detection
accuracy.

• Lightweight.

• High
computational
complexity.

• Power
consumption.

Deng et al. [47] Network-based DML

proposes an approach
to detect malicious and
feature extraction for
smart cities.

• High detection
accuracy.

• Lightweight.
• Low false

alarm rate.

• High
computational
complexity.

Table 8 also shows that there are many types of IDS architectures that have been
implemented. Network-based IDS is the most applied architecture, due to the availability
of labeled network traffic datasets. In the IoT networks, the architecture of the IDS depends
on the application domain and the host environment [2]. The host-based approach is rec-
ommended to protect the operating system of the IoT devices from malicious attacks, while
the network-based is suitable for protecting the communicated devices from malicious
traffic. Most studies applied the network-based architecture, while the nature of IoT is
heavily distributed. It will be more effective if the researchers and developers pay more
attention to combining host-based architecture with those that are network-based in a
distributed and hierarchical architectural design manner to minimize the detection time,
improve the detection accuracy, and decrease the network’s overhead.

9. Future Direction

Undoubtedly, improving the efficiency of deep learning detection results remains an
open research direction issue. IoT security researchers and developers must always contend
for 100% detection with zero false alarms while considering IoT resource constraints.
Moreover, most of the studies are pertinent to the system’s normal behavior. Often, most of
the approaches depend on the training of normal behavior, while the deviation is pertinent
to scenarios investigated as abnormal behavior. Thus, a better method in terms of precision
and robustness is needed to deal with complex real scenarios. Data complexities include
unexpected noise, redundancy in data, and imbalanced datasets. To extract significant
knowledge and information, well-designed techniques are required to organize the datasets.
In this scenario, a lightweight system can be exhaustive, due to the high computational
task of dealing with complex data. The current technology of cloud computing can be
utilized to obtain a productive result in real time. Most of the work done in recent years
was in the detection of anomalies, as the research community did not foster much interest
in anomaly prediction and prevention. This could contribute to predicting anomalies in
future work. There is a need to adopt and/or develop new methods that can prevent the
systems before attacks occur. Moreover, anomaly detection in multivariable time series is
still an open research direction. In addition, applying anomaly intrusion detection systems,
using deep learning in smart vehicles, needs to be investigated. There is an imperious need
for normal and anomaly datasets that are up-to-date and integrated with IoT applications
and services. These datasets could be extremely useful for testing various IDS types and
methods in IoT environments. The capability to implement effective and meaningful IDS
comparisons will rely on these datasets.

10. Limitation of the Study

Throughout the review study, the SLR is performed to provide extensive coverage
of all relevant studies associated with the use of deep learning techniques in securing
IoT environments. The main limitation of this study is in searching. There are also
few limitations of the SLR that should be taken into consideration, which are listed as
the following:
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1. This review is limited to articles and does not include books, magazines, and confer-
ences related to deep learning in IoT.

2. This review is limited to papers available in the English language.

11. Conclusions

In general, this study presented a systematic review of anomaly IDSs in IoT environ-
ments using deep learning. A comprehensive report was produced, regarding anomaly
intrusion detection in the domain of IoT, using deep learning techniques. Upon completion
of this study, a full adherence of systematic literature protocol and guidelines based on
proposed work by Kitchenham is presented [25]. All the data used were gathered from
primary studies published without applying any filters to differentiate between conference
proceedings and journal articles. This study summarized and organized the current litera-
ture related to anomaly-based intrusion detection in IoT, using deep learning techniques
according to the pre-defined keywords and RQs. A total number of 26 studies were in-
cluded, according to the stated exclusion, inclusion, and quality criteria. A comprehensive
taxonomy was presented based on the results of the study conducted for anomaly intrusion
detection in IoT using deep learning techniques. This study provided an insight into the
attributes and knowledge of existing anomaly intrusion detection in an IoT environment,
using deep learning techniques. Additionally, the study presented a comparison in terms of
the performance, the dataset used, attacks detection, techniques, and evaluation techniques
in each study. Finally, the study discussed challenges faced in anomaly intrusion detection
in IoT using deep learning. This paper can provide researchers with details about an
up-to-date technique and methodology in anomaly intrusion detection in IoT, using deep
leering. The limitations of current anomaly-based intrusion detection systems in IoT using
deep learning techniques indicate the future direction for further improvements of the IDS
systems, considering the characteristics of IoT.
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