
A Domain Knowledge Manager for Dialogue Systems
Annika Flycht-Eriksson1

Abstract. In order to behave naturally and intelligently a dia-
logue system often has to gather information from many knowledge
sources and perform advanced domain reasoning. These tasks should
not be performed by the Dialogue Manager as this makes it very com-
plex and hard to customise to new domains. It is instead suggested
that application access and domain knowledge reasoning should be
clearly separated from dialogue management and performed by a
separate module. In this paper such a module, called the Domain
Knowledge Manager and the knowledge structures used by it is pre-
sented.

1 Introduction

Much effort have been spent on natural language understanding, di-
alogue management, and generation in dialogue systems for simple
services, i.e. dialogue systems that can provide information given a
set of parameters collected from the user [6]. The communication
with and the use of external resources containing domain knowledge
and application information, in most cases a database, are in general
not discussed. This is probably due to the fact that access of such
resources are considered rather straightforward. This is however not
necessarily the case. Some problems related to communication with
external resources and applications are [11]: the vocabulary of the
dialogue and the application might differ, thus a mapping between
them is necessary; the user can have false presuppositions about the
information in the application, which can result in a request and an
answer that will be misinterpreted; the retrieved information can be
ambiguous or indeterminate.

Furthermore, as information services and domains become more
complex, the complexity of the dialogues that the dialogue system
has to handle increases. The system must become more intelligent in
order to understand and fulfil the user’s requests. A consequence of
this is that dialogue systems need more and more domain knowledge,
and that the domain reasoning mechanisms have to become more so-
phisticated. The domain knowledge can be distributed over several
sources, which means that a system has to access, reason about, and
integrate domain knowledge from various sources. Since a system
cannot possibly have knowledge of everything related to the domain
it also has to have meta knowledge about its own limitations and
other possible resources, in order to give as helpful responses as pos-
sible.

The dialogue in figure 1, which shows how a user can interact
with a dialogue system that provides bus timetable information, il-
lustrates some of these issues. The temporal expression in utterance
U1 is vague and differs from the way time is represented in a bus
timetable. Utterance U2 is an example of the need for specialised do-
main knowledge, in this case the ability to reason about geographical

1 Department of Computer and Information Science, SE-581 83, Linköping
University, Sweden, email: annfl@ida.liu.se

objects and their relations. Taken together, U1 to S3 show that knowl-
edge from several resources have to be integrated in order to perform
a task, e.g. temporal knowledge, geographical knowledge and knowl-
edge of the bus timetable are needed in order to give information on
a specific bus route. Finally, U4 and S4 exemplify how meta knowl-
edge about the systems capabilities can be used to provide a helpful
and intelligent dialogue.

To solve the problems presented above we propose that a sepa-
rate module, a Domain Knowledge Manager, devoted to access of
application data and reasoning about domain knowledge should be
introduced. The new module co-operates with the Dialogue Manager
with the aim of achieving a natural and intuitive dialogue. In this pa-
per such a module, the tasks it performs, and its knowledge structures
are presented.

2 Domain Knowledge Management

Dialogue systems for information services often have a modular ar-
chitecture with processing modules for natural language interpreta-
tion, dialogue management, access of the application, and natural
language generation. The role of the Interpreter is to analyse the user
input and deliver a meaning representation to the Dialogue Manager.
The Dialogue Manager’s primary tasks are to handle the dialogue
with the user and to keep track of the interaction. Managing the in-
teraction with the user involves deciding whether a user request is
clear enough to access the application, or if it is not, to initiate a
clarification sub-dialogue. As a basis for these tasks the Dialogue
Manager uses a dialogue model, a dialogue history, and sometimes
system task models. The Generator is responsible for realisation of
question and answers from the Dialogue Manager.

Co-ordination and control of the different modules differ between
systems. Some dialogue system architectures consider the modules
as equal and communication and co-ordination is achieved by the use
of a separate module called a hub [14] or facilitator [10] that passes
messages between the modules. Another type of architecture is based
on the use of blackboards where different modules can read and write
information from and to a common source [5]. A third alternative is
to let the Dialogue Manager have the control of the system and decide
when and which of the different modules should perform a specific
task [8].

Regardless of whether a hub, blackboard or Dialogue Manager
architecture is used, there are several problems related to the com-
munication with applications as stated in the introduction.

Ambiguous and indeterminate knowledge have been dealt with to
some extent, often by adding specialised components to the dialogue
system. For example, vague temporal expressions must be resolved
in dialogue systems in the ATIS and train travel domain ([3, 7]). In
most cases these components extend the functionality of the inter-
preter and are called before a request is delivered to the Dialogue

U1: I want buses to Askeby in the evening Monday to Thursday
S1: Where do you get on?
U2: Is there a bus stop near the railway station in Linköping?
S2: Yes, it is called the Travel centre
U3: Then I want to go from there
S3: Let see, at 17.13 bus 539 leaves from the travel centre and arrives at Askeby shop 17.35
U4: How much is it?
S4: I cannot give information about prices, you have to contact a human operator at 020-211010

Figure 1. A hypothetical dialogue between a user and a dialogue system, which illustrates the need for domain and meta knowledge. For utterance U1
temporal reasoning is required to resolve the expression “evening Monday to Thursday”, to answer U2 the system must perform geographical reasoning, and

finally S4 shows that the system needs meta information about its own knowledge.

Manager.
A solution to the problem of mapping between the vocabulary used

by the dialogue manager and a suitable representation for the external
database has been proposed by Whittaker and Attwater [15]. A new
component, called the Information Manager, that interacts with the
application database is introduced. The Information Manager is re-
sponsible for translation between high level requests and a set of op-
erations on the database. To perform its task it utilises a data model
consisting of several vocabulary models, e.g. spelt out vocabulary
and spoken vocabulary, and it also has knowledge on synonyms and
homophones.

Similarly a separate module, the Action Manager, for communica-
tion with external resources has been proposed [13]. In this architec-
ture the Dialogue Manager is responsible for the translation between
the requests and the actions carried out by the Action Manager. When
a requested action is delivered to the Action Manager it has to decide
how the action should be executed and which source to access.

Even if some of the presented architectures include a separate
module for access of the application or reasoning with domain
knowledge, they deal only with one of the problems or a monolithic
application. None of the present approaches deal with all the issues
and the integration of several domain knowledge sources. A more
sophisticated module is needed to handle all these aspects. In the fol-
lowing sections we describe how such a module, called the Domain
Knowledge Manager, has been realised and how it can used in a dia-
logue system.

3 The Domain Knowledge Manager

The primary responsibility of the Domain Knowledge Manager is to
provide domain and application specific information when the Dia-
logue Manager has produced a fully specified request. The Domain
Knowledge Manager reasons about where and how the information
should be retrieved and how information from different domain or
application knowledge sources should be integrated. It also has to
provide helpful answers if the requests can not be fulfilled, that is, to
state what the problem is and give some possible solutions.

3.1 Multi-agent framework

The Domain Knowledge Manager consists of several agents: the
Control Agent, the Recipe Agent, the Integration Agent, and Do-
main Agents. The agents provide different services, typically to re-
trieve some information given some parameters, and can also request
services from each other. Communication and co-operation among
the agents are achieved by passing messages.

The Control Agent is a generic domain independent agent that con-
trols the processing of a request. For this purpose it utilises knowl-
edge structures called recipes. A recipe (cf. recipe-for-action [12])
consist of a series of services from different agents, which are ex-
ecuted in order to construct an answer to the request.

The Recipe Agent is responsible for the construction of recipes that
match the requests. The recipes are application specific, but the
agent in itself is domain independent.

The Integration Agent is a domain independent agent that can in-
tegrate several response alternatives into one answer, utilising in-
tegration rules, which contains both domain heuristic and more
general principles.

The Domain Agents are responsible for appropriate access of do-
main knowledge sources and are able to perform sophisticated
knowledge reasoning in order to retrieve the information. Thus,
each domain agent provides a set of services such as storing, re-
trieving or constructing a specific type of information. The domain
agents are in general application-specific.

The implementation of the Domain Knowledge Manager is based
on the Open Agent Architecture, OAA, which is a framework for
the development of multi-agent systems [10]. How the agents work
together to process a request is described in the following section.
To make the presentation less abstract examples from the domain
of bus timetable information will be used. The Domain Knowledge
Manager is however not restricted to this domain, by substituting the
domain agents and providing recipes and integration rules it can be
adapted to any domain in which several domain knowledge sources
are utilised, for example, tourist information or interactive news ser-
vices with background information.

3.2 Processing of requests

Processing of a request from the Dialogue Manager in general in-
volves three steps. First the Domain Knowledge Manager has to de-
cide how to treat the request, i.e. to produce one or more recipes. In
most cases one recipe is enough, but sometimes the user has provided
ambiguous information that cannot be resolved by the interpreter or
the Dialogue Manager, in which cases several recipes are needed.
The next step is to process the recipe(s). The processing must be
carefully monitored and aborted if an error occurs. Finally alterna-
tives must be inspected and integrated into one answer that can be
sent back to the Dialogue Manager.

Producing the recipes The first step towards fulfilling a request is
to find a suitable recipe that describes what information is needed and
how the information should be retrieved. For this purpose the Recipe

Agent Service
Spatial Reasoning Agent getBusStops(From.BusStop, From.Place, From.Street, From.Area,

From.Town, FromBusStops)
Spatial Reasoning Agent getBusStops(To.BusStop, To.Place, To.Street, To.Area, To.Town,

ToBusStops)
Temporal Reasoning Agent getDate(Time.Date, Date)
Temporal Reasoning Agent getTime(Time.Time, ArrTime)
Timetable Agent getBusRoutes(FromBusStops, ToBusStops, Date, ArrTime, Routes)

Figure 2. An example of an uninstantiated recipe for trip information.

Agent provides a makeRecipe service. As a basis for production of
a new recipe a recipe library that contains recipe templates for dif-
ferent types of requests is utilised. The recipe agent maps the request
to a suitable recipe template and instantiates it with the values from
the request. An example of a recipe template for trip information re-
quests is presented in figure 2.

Since the information given by the Dialogue Manager can be am-
biguous, the Recipe Agent in some cases have to find one or more
unambiguous interpretations of the request. For example the utter-
ance “I want to go by bus to Berga centrum” is ambiguous since
“Berga centrum” is the name of both a bus stop and a place. Does
the user mean that (s)he wants to go to the exact bus stop called
“Berga centrum” or more losely that (s)he wants to go to the place
“Berga cetrum”? If the system only considered the bus stop “Berga
centrum” it would not find bus routes stopping at the bus stop “Berga
söderleden” nearby “Berga centrum”.

The disambiguation can be approached in several ways, one is to
ask the user for clarification, but this can result in a cumbersome and
unnatural dialogue. Our approach is instead to generate several inter-
pretations originating from the ambiguous information, and produce
a recipe for each and process them in parallel. The alternative inter-
pretations can then be evaluated depending on the result, and in the
end be integrated into one answer.

Processing of recipes As mentioned above the main purpose of
the Domain Knowledge Manager is to collect and integrate informa-
tion from various domain agents. In the bus timetable information do-
main, four different domain agents are present. The Temporal Rea-
soning Agent contains a calendar and reasons about temporal ex-
pressions. The Spatial Reasoning Agent consists of a Geographical
Information System and a reasoning mechanism used to deduce the
relations between geographical objects [4]. The Timetable Agent
access an information source on the Internet, which contains the
timetables for local bus and train traffic. There is also a System In-
formation Agent with system information, like references to human
operators for questions outside the scope of timetable information,
for example on lost property.

Information is gathered by calling specific services, for example:
busStopNear?(BusStop, Landmark, Y/N) checks if the BusStop
is near the Landmark and provides a yes/no answer, and get-
Time(PartOfDay, Time) maps a temporal expression PartOfDay
to a precise time interval Time.

A complex request involves access of many different domain
agents. To fulfil a request for trip information three different agents
have to be involved. The Spatial Reasoning Agent must provide a
set of bus stops for departure and arrival, respectively. The Temporal
Reasoning Agent must provide the time and date. Then the Timetable

Agent can access the timetable database in order to retrieve the trip
information. Which of the agents services and in what order they
should be called are specified in the recipes for retrieval of trip infor-
mation, see figure 2.

The Control Agent supervises the process and interrupts it if er-
rors are encountered. An error can, for example, occur if the user has
provided vague information. If (s)he says that (s)he wants to travel
to Mjölby by train, Mjölby is a precise arrival location since it can
be mapped to one railway station, however, if (s)he says that (s)he
wants to travel to Mjölby by bus, Mjölby is to vague since it can be
mapped onto to many bus stops. The provided information can also
be erroneous, such as June 31 or the railway station in a city with no
railway. If a user has assumed there is a railway station in a city and
there is no one the Dialogue Knowledge Manager will detect this and
an explanation will be sent to the Dialogue Manager.

Integrating the alternatives Since ambiguous requests result in
a set of alternative recipes which are processed independently the
results must be integrated before an answer is transferred to the Dia-
logue Manager. This is performed by the Integration Agent utilising
integration rules. Some of the rules are general and domain indepen-
dent while others are heuristic and specialised for a specific domain.
An example of a general rule is: When all but one recipe have failed
the successful one is taken as the correct interpretation of the request
and returned to the dialogue manager. When more than one of the in-
terpretations provide a possible answer it is more difficult to integrate
them, and domain specific heuristics are needed.

4 Example from the MALIN system

The Domain Knowledge Manager is used in the MALIN (Multi-
modal Application of LINLIN) dialogue system2, primarily in an ap-
plication for timetable information for local bus traffic. In this section
we exemplify how the Domain Knowledge Manager interact with the
MALIN Dialogue Manager to achieve a natural dialogue.

In MALIN the Dialogue Manager has a prominent role since it
controls both the interaction with the user and the interaction be-
tween modules in the system. It can handle the dialogue for various
dialogue systems, and is customised for each new application [9].

The dialogue model in MALIN is based on a dialogue grammar
structured in terms of initiatives and responses. Incorporated in the
dialogue grammar are system task models, called Information Spec-
ification Forms (ISF), which contain information about what param-
eters are required for different types of requests (for more details

2 MALIN is a refinement of the LINLIN-system architecture [1] to handle
also multimodal interaction and more advanced applications.

see [2]). Focal information is recorded in a dialogue tree, which con-
stitutes the dialogue history.

The dialogue presented in figure 1 will be used to illustrate how
the Dialogue Manager and the Domain Knowledge Manager divide
the labour and how the knowledge reasoning tasks are carried
out. Consider the first utterance, U1: I want buses to Askeby in
the evening Monday to Thursday. The Dialogue Manager begins
specifying a Trip ISF:

2
66666664

Type : Trip

Arr :
�
Town : Askeby

�
Dep : req:

T ime :

"
Day : fMon::Thug
T ime : Evening
D=A : Arrival

#

Bus# : opt:

3
77777775

This does not form a complete request to the background system
since the required field Dep is empty, and thus the Dialogue Manager
begins to prompt the user for further information in order to fill it, in
this case asking for departure place, S1: Where do you get on?. The
user, however, does not know the name of the bus stop and instead
asks for a bus stop, U2: Is there a bus stop near the railway station
in Linköping?. This should not be added to the current ISF, instead a
new request is instantiated:2
664

Objects :

�
P lace : RailwayStation
Town : Link�oping

�

Properties :

�
Aspect : BusStopNear
V alue :

�
3
775

This request is sent to the Domain Knowledge Manager which
asks the Recipe Agent to find and instantiate a suitable recipe. The
resulting recipe is very simple, and consist of only one action (’ ’
denotes a place holder for parameters with no value):

getBusStopsNear/In(, ’Railway station’, , , ’Link öping’,
BusStops)

The service getBusStopsNear/In is requested from the Spatial
reasoning Agent. Since there is only one answer, the list fTravel Cen-
treg, it is returned to the Dialogue Manager.

The retrieved information results in the answer S2: Yes, it is called
the Travel centre. This was obviously information that was useful
for the user and (s)he decides to leave from there, U3: Then I want
to go from there. This in turn updates the Dep: parameter of the
previous Trip ISF to:

[Dep : [BusStop : TravelCentre]].

As all required parameters of the ISF are specified, the Dialogue
Manager realises that it has enough information and sends this up-
dated Trip ISF to the Domain Knowledge Manager. The Domain
Knowledge Manager finds the recipe template corresponding to the
task of finding trip information, instantiates it, and processes the
recipe requesting services from the Spatial Reasoning Agent, the
Temporal Reasoning Agent, and the Timetable Agent. The Timetable
Agent delivers a ranked list of possible trips that are returned to the
Dialogue Manager and the first alternative is presented to the user,

S3: Let see, at 17.13 bus 539 leaves from the travel centre and ar-
rives at Askeby shop 17.35

The final exchange U4-S4 illustrates the type of requests where
information about the systems abilities are provided. U4: How much
is it? is a task-related request, and the structure sent to the Domain
Knowledge Manager is a complex structure where the trip is the
object:

2
66666664

Objects :

2
6664

Arr : AskebyShop
Dep : TravelCentre
DepT ime : 17:13
ArrT ime : 17:35
Bus# : 539

3
7775

Properties :

�
Aspect : Price
V alue :

�

3
77777775

The Recipe Agent retrieves a recipe consisting of one action:

findSystemInformation(’Price’, Information)

The recipe is processed and information requested from the Sys-
tem Information Agent. The response to the Dialogue Manager is a
response with the content that the system does not have the requested
information and further helpful information on where to call retrieved
from the System Information Agent, S4: I cannot give information
about prices, you have to contact a human operator at 020-211010.

5 Conclusions and future work

In this paper an approach to development of intelligent information
dialogue systems where a Domain Knowledge Manager and a Di-
alogue Manager co-operate to achieve natural interaction has been
presented. The domain knowledge is represented in a number of do-
main agents who provide services to the Domain Knowledge Man-
ager. The use of a Domain Knowledge Manager in a dialogue sys-
tem gives us two major advantages. The first is that dialogue man-
agement becomes more focused as it only has to consider dialogue
phenomena, while domain specific reasoning is handled by the Do-
main Knowledge Manager. The second major advantage is that the
domain knowledge sources can easily be modified, exchanged, and
reused. This in turn facilitates porting of the system to new domains
since domain related aspects are included in the domain agents.

With the use of a Domain Knowledge Manager the problems re-
garding access of applications are also solved. The different domain
agents can map expressions expressed in the vocabulary of the di-
alogue to expressions that fit the application. False presuppositions
about the information in the application are detected by the Dialogue
Knowledge Manager when it processes a request and an explanation
is delivered to the Dialogue Manager. If the retrieved information is
ambiguous or indeterminate the Dialogue Knowledge Manager helps
the Dialogue Manager by stating that a clarification is needed and the
preferred type of information to ask for. For example, if the user has
been to vague when describing a departure location and only given
the name of an area, the Dialogue Knowledge Manager explains that
the area is to big and asks for more precise information such as a
street name.

The proposal of how a Domain Knowledge Manager can be de-
signed has two important features: the mechanisms for managing re-
quests are generic and to some extent domain independent, and the
domain knowledge sources has a common well specified interface

based on an agent communication protocol. This means that chang-
ing from one domain to another for the Domain Knowledge Manager
only involves the creation of new recipes, integration rules, and plug-
in of new domain agents.

Future challenges are to apply the proposed architecture, utilis-
ing a Domain Knowledge Manager, to other domains and types of
dialogue systems, such as advisory or tutoring systems. For such
systems other knowledge sources like user models and argumenta-
tion models are relevant and have to be incorporated in the system
architecture. We hope that with some modifications, the framework
presented in this paper can be used.

6 Acknowledgements

This work results from a number of projects on development of natu-
ral language interfaces supported by The Swedish Transport & Com-
munications Research Board (KFB), and the Centre for Industrial In-
formation Technology (CENIIT). Thanks to Arne Jönsson and Lena
Santamarta for comments on previous versions of this paper.

REFERENCES

[1] Lars Ahrenberg, Arne Jönsson, and Nils Dahlbäck, ‘Discourse repre-
sentation and discourse management for natural language interfaces’,
in Proceedings of the Second Nordic Conference on Text Comprehen-
sion in Man and Machine, Täby, Sweden, (1990).

[2] Nils Dahlbäck and Arne Jönsson, ‘Knowledge sources in spoken dia-
logue systems’, in Proceedings of Eurospeech’99, Budapest, Hungary,
(1999).

[3] Cristina Dobrin and Peter Boda, ‘Resolution of date and time expres-
sions in a www-based dialogue system’, in COST249 10th Management
Committee Meeting, Porto, Portugal, (February 12-13 1998).

[4] Annika Flycht-Eriksson and Arne Jönsson, ‘A spoken dialogue sys-
tem utilizing spatial information’, in Proceedings of International Con-
ference on Spoken Language Processing, ICSLP’98, p. 1207, Sydney,
Australia, (1998).

[5] Brigitte Grau, Grard Sabah, and Anne Vilnat, ‘Control in man-machine
dialogue’, THINK, 3(1), 32–55, (1994).

[6] Philip J. Hayes and D. Raj Reddy, ‘Steps toward graceful interaction in
spoken and written man-machine communication’, International Jour-
nal of Man-Machine Studies, 19, 231–284, (1983).

[7] Bernd Hildebrandt, Gernot A. Fink, Franz Kummert, and Gerhard
Sagerer, ‘Understanding of time constituents in spoken language dia-
logues’, pp. 939–942, (1994).

[8] Arne Jönsson, Dialogue Management for Natural Language Interfaces,
Ph.D. dissertation, Linköping University, 1993.

[9] Arne Jönsson, ‘A model for habitable and efficient dialogue manage-
ment for natural language interaction’, Natural Language Engineering,
3(2/3), 103–122, (1997).

[10] David L. Martin, Adam Cheyer, and Gowang Lo Lee, ‘Agent Devel-
opment Tools for the Open Agent Architecture’, in Proceedings of the
First International Conference on the Practical Application of Intelli-
gent Agents and Multi-Agent Technology, pp. 387–404, London, (April
1996). The Practical Application Company Ltd.

[11] Michael McTear. Spoken dialogue technology: Enabling
the conversational user interface. http://www.infj.ulst.ac.uk/˜
cbdg23/survey/spoken dialogue technology.html, 2000.

[12] Martha E. Pollack, ‘Plans as complex mental attitudes’, in Intentions in
Communication, chapter 5, MIT Press, (1990).

[13] Dragomir R. Radev, Nanda Kambhatla, Catherine Wolf Yiming Ye, and
Wlodek Zadrozny, ‘DSML: A proposal for XML standards for mes-
saging between components of a natural language dialogue system’, in
Proceedings of AISB Workshop on Reference Architectures and Data
Standards for NLP, Edinburgh, UK, (April 1999).

[14] Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp
Schmid, and Victor Zue, ‘GalaxyII: A reference architecture for conver-
sational system development’, in Proceedings of International Confer-
ence on Spoken Language Processing, ICSLP’98, volume 3, pp. 931–
934, Sydney, Australia, (December 1998).

[15] Steve J. Whittaker and David J. Attwater, ‘The design of complex tele-
phony applications using large vocabulary speech technology.’, in Pro-
ceedings of International Conference on Spoken Language Processing,
ICSLP’96, pp. 705–708, Philadelphia, USA, (October 1996).

