
Reusability Ranking of Software Components
by Coupling Measure

Gui Gui, Paul D.Scott

Department of Computer Science, University of Essex, Colchester, UK
ggui@essex.ac.uk, scotp@essex.ac.uk

Abstract: This paper provides an account of new measures of coupling developed to assess the
reusability of Java components retrieved from the internet by a search engine. These measures differ
from the majority of established metrics in two respects: they reflect the degree to which entities are
coupled or resemble each other, and they take account of indirect couplings or similarities. An empirical
comparison of the new measures with eight established metrics is described. The new measure is
shown to be consistently superior at ranking components according to their reusability.

 Keywords: Component, Coupling metrics, Measurement, Reusability

1. INTRODUCTION

The work reported in this paper arose as part of a project whose goal is to develop a system for retrieving Java
components from the internet. The user of such a search engine would be seeking components that can be readily
integrated to perform some clearly defined and distinct function within a larger software system. The first step of
such a search is clearly to find components offering the required functionality. This aspect of the system is outside
the scope of the present paper but has been described elsewhere [1]. However, material retrieved from the internet
is notoriously variable in quality. Consequently, it seems highly desirable that the search engine should also
provide the user with an indication of both how reliable the component is and how readily it may be adapted for
inclusion as part of a larger software system.

These two aspects of a component are closely related. A well designed component, in which the functionality has
been appropriately distributed to its various subcomponents, is more likely to be fault free and will be easier to
adapt. Appropriate distribution of function underlies two key concepts of object-oriented design: coupling and
cohesion. Coupling is the extent to which the various subcomponents interact. If they are highly interdependent
then changes to one are likely to have significant effects on the behaviour of others. Hence loose coupling between
its subcomponents is a desirable characteristic of a component.

Coupling is widely used as symbols to measure software quality. Many metrics have been proposed to measure
the coupling to predict the fault-proneness and maintainability of software. Their reasonability and performance had
been evaluated in theory and empirically [3][4][5] [13][14][15][16[17][18]. However, few researches had been done
using coupling to measure reusability of components because of their limitations and the difficulties to evaluate the
reusability of components.

We therefore decided that the component search engine should provide the user with reusability rankings of
retrieved components based on measures of their coupling. (Other factors, notably cohesion and customizability,
also have implications for reusability, but these, although part of our system, are outside the scope of the present
paper). There is a substantial literature on coupling metrics and this is briefly surveyed in the next section. We then
describe in detail the metrics we have developed for use in our system which attempt to address some of the
limitations of existing metrics. In particular, we consider both the strength and transitivity of dependencies. The
following section describes an empirical comparison of our proposed metrics and several popular alternatives as

 Evaluation and Assessment in Software Engineering 1

Reusability Ranking of Software Components by Coupling Measure

predictors of reusability. Section 5 presents an analysis of the results which demonstrate that our proposed metrics
consistently outperform the others. The paper concludes with a discussion of the implications of the research.

2. COUPLING METRICS

During the last 15 years a considerable amount of research effort has been devoted to developing coupling metrics
for object-oriented software. Space does not permit an exhaustive review of this work but the appendices of a
recent paper by Kanmani, Uthariraj, Sankaranarayanan and Thambidurai [9] provide a useful summary of many of
these metrics. Here we concentrate on their major features with an emphasis on those widely-used metrics used in
our comparative study.

Coupling is defined as: two objects are coupled if and only if at least one of them acts upon the other [18]. Since
coupling is the degree of interaction between classes, the basic idea underlying all coupling metrics is very simple:
count how many interclass interactions there are in the system. Nevertheless there is considerable variation
depending on what counts as an interaction, how the counting is done and how the totals are normalised. Kanmani
et al. [9] tabulate 29 such metrics, of which 18 were produced by a single research group [3].

Name Definition
CBO [5][6] Classes are coupled if methods or instance variables in one class are used by the other. CBO for a

class is number of other classes coupled with it.
RFC [5][6] Count of all methods in the class plus all methods called in other classes.

CF [4][7] Classes are coupled if methods or instance variables in one class are used by the other. CF for a

software system is number of coupled class pairs divided by total number of class pairs.

DAC
[10][13]

Data abstraction coupling. DAC for a class is the number of attributes having other classes as their
types.

TABLE 1. Coupling metrics

Table 1 summarises the characteristics of the metrics used in our comparative study. Two of them (CBO and RFC)
are part of the influential CK metric suite [5][6][12] developed by Chidamber and Kemperer. CBO is perhaps the
most obvious measure: a count of the number of classes that are coupled to a given class. RFC is not really a pure
coupling measure since it also includes the class’s own methods; however, it performed well in our experiments.
CF is part of the MOOD metric suite [4][7] while DAC [10] is substantially different as it measures the coupling due
to data abstraction.

All four measures have two important features in common. First, most of them treat interaction between a pair of
classes as a binary quantity; that is, no account is taken of how many interactions there may be between a given
pair of classes. Although other measurements can specify how much message or data communications between
classes (RFC [5][6] and DAC[10][13]), they didn’t concern the impact of the total number of attributes in the
classes. The percentage of the invocations in a class is more important than the pure number of invocations
because it presents how much a class depends on other classes. Second, they treat coupling as an intransitive
relation; that is no account is taken of the indirect coupling that arises if a class A interacts with another class B and
B in turn interacts a third class C but A has no direct interaction with C. Both these characteristics may lead to an
inaccurate measure of the mutual dependencies of the subcomponents of a system.

3. PROPOSED NEW METRICS

We carried out a pilot study, essentially a small scale version of that described in the next section, using the four
metrics listed in Table 1. They were selected, as representative of the much larger range described in the literature,
largely on the basis of how frequently they were referred to in later publications. The results suggested that none
was very effective in ranking the reusability of Java components. We therefore decided to develop alternative
coupling metrics in the hope of achieving superior performance. Since all the metrics considered treated class
interaction and method similarity as binary quantities, one obvious step was to develop measures that reflected the
extent to which a pair of classes was coupled or a pair of methods resembled each other. Because none of the
measures treated coupling or similarity as transitive relations, we decided that such indirect dependencies should
be incorporated into our metrics.

 Evaluation and Assessment in Software Engineering 2

Reusability Ranking of Software Components by Coupling Measure

In order to develop a coupling metric that takes account of both the degree of coupling and transitive (i.e indirect)
coupling between classes, we begin by regarding any object-oriented software system as a directed graph, in
which the vertices are the classes comprising the system. Suppose such a system comprises a set of classes C ≡ {
C1, C2,…Cm}. Let Mj ≡ {Mj,1, Mj,2, …. Mj,n} be the methods of the class Cj, and Rj,i the set of methods and instance
variables in class Ci invoked by class Cj for j ≠ i (Rj,j is defined to be null). Then the edge from Cj to Ci exists if and
only if Rj,i is not null. Thus an edge of the graph reflects the direct coupling of one class to another. The graph is
directed since Rj,i is not necessarily equal to Ri,j. Rj, the set of all methods and instance variables in other classes
that are invoked by class Cj, can be defined as formula (1):

 (1)
∪

mi
ijj RR

≤≤

≡
1

,

The next step is to associate a number with each edge that reflects the extent of direct coupling from one class to
another. Clearly it should be larger if the class invokes more of the other’s methods. However, this number should
also reflect the fact that a class that invokes many methods has a greater likelihood of invoking methods from any
particular class. We therefore define CoupD(i,j), our measure of direct coupling of class Ci to Cj, is defined by
formula (2).

()

ii

ji

MR

R
jiCoupD

+
= ,,

 (2)
Note that the denominator is the total number of methods invoked by class Ci and that 1 ≥ CoupD(i,j) ≥ 0.
The next step is to include the indirect coupling between classes. Suppose that CoupD(i,j) and CoupD(j,k) have
finite values but that CoupD(i,k) is zero. Thus although there is no direct coupling between classes Ci and Ck, there
is a dependency because Ci invokes methods in Cj which in turn invokes methods in Ck. Since the strength of this
dependency depends on the two direct couplings of which it is composed, a reasonable measure is provided by
their product, CoupD(i,j) × CoupD(j,k). This notion is readily generalised. A coupling between two classes exists if
there is a path from one to the other made up edges whose CoupD values are all non-zero. The strength of the
coupling is the product of all those CoupD values. Thus we define CoupT(i,j,π), the transitive coupling between
classes Ci and Cj due to a specific path π, as

() ∏∏

∈∈ +
==

ππ
π

tsts e ss

ts

e MR

R
tsCoupDjiCoupT

,,

,,),,(
 (3)

es,t denotes the edge between vertices s and t. Note first that CoupT includes the direct coupling, which
corresponds to path of length one, and second that, because the CoupD values are necessarily less than one,
transitive couplings due to longer paths will typically have lower values.

In general there may be more than one path having a non-zero CoupT value between any two classes. This raises
the question. of how their values may be combined to produce an overall measure of the coupling between the
classes. One approach would be to develop some method of adding their values but this raises a number of
complications such as how to deal with the fact that some of the paths will have edges in common. While solutions
to these difficulties may exist, a simpler pragmatic approach is to simply select the path with largest CoupT value
and hence define Coup(i, j), the strength of coupling between the two classes, Ci and Cj to be:

),,(),(maxπjiCoupTjiCoup = (4)
where

),,(maxarg),(max ππ π jiCPTji Π∈= (5)
and Π is the set of all paths from Ci to Cj. Note that, because of the attenuation of coupling over longer paths,
where a direct coupling exists, that will typically be value selected for the strength of coupling; Coup. While there
are obvious objections to ignoring the other weaker couplings, the ultimate test of this method is whether it is
effective. The results reported later in this paper suggest that this simple approach is adequate.
Having established a measure for the strength of coupling between pairs of classes, the final step is to use this as
a basis for a measure of the total coupling of a software system. This is readily achieved by summing all the
couplings of all class pairs and dividing by the total number of such pairs. The weighted transitive coupling
(WTCoup) of a system is thus defined as formula (6), where m is the number of classes in the system.

 mm

jiCoup
WTCoup

m

ji

−
=
∑
=

2
1,

),(

 (6)

 Evaluation and Assessment in Software Engineering 3

Reusability Ranking of Software Components by Coupling Measure

2. AN EXPERIMENTAL COMPARISON

One of the major methodological difficulties in software metrics research is the difficulty of empirical evaluation.
Having proposed a new metrics, how does one set about determining if it is effective or better than the
alternatives? Consequently, most existing metrics rest on a very slender experimental support [3][6][8]. In the
present study, we had the advantage that our messages were to be used for a very specific purpose: predicting
how much effort would be required to reuse a component within a larger system.

We therefore chose to measure reusability as simply the number of lines of code required to modify a component in
order to extend its functionality in a predefined way because they can reflect the effort required to reuse the
component in the new system. The codes required to extend a component include the new codes added and the
codes modified. In the experiments, very few codes are deleted; therefore, the deleted codes can be ignored. The
more lines required, the lower the reusability. This appears to us to be a crude but reasonable measure of the effort
that would be required for a programmer to adapt a component for use within a larger system. Time spent on
modifying the components is not selected as a measure because it is difficult to collect the accurate time people
use to program. Further, time spent on programming can not properly reflect the effort required because of different
thinking methods and the interruption from outside during the process of programming. Three case studies were
carried out:

 Case 1: HTML Parser

The original components analysed HTML documents, eliminated tags and comments and output the text. The
required extension was to count and output the number of tags found during parsing.

 Case 2: Lexical Tokenizer
 The original components tokenized a text document using user supplied token rules and output the tokens on a
web interface. The required extension was to count and output the number of tokens retrieved.

 Case 3: Barcode Generator
 The original components accepted a sequence of alphanumeric characters and generated the corresponding
barcode. The required extension was to count the number of letters.

All three included web based user interfaces. For each case, 15, 25 and 20 Java components with the specified
functionality were retrieved from a repository of about 10,000 Java components retrieved from the internet. The
requisite extensions were then implemented by a very experienced Java programmer and the number of additional
lines of code required (NLOC) counted. The modifications required were modest, largely because of the effort
involved in implementing them; about 5000 lines of code were needed for the 60 components considered in the
experiment. Despite the relative simplicity of the extensions, there was considerable variation in the quantity of
extra code required, as shown in Table 2.

Cases Mean Max Med Min Std Dev
HTML Parser 116.3 158 124 58 34.2
Lexical Token. 62.2 110 61 17 26.4
Barcode Gener. 74.1 120 74 24 30.3

TABLE 2: Number of lines of code (NLOC) required to modify components

Having established a measure of the reusability of the components, we then proceeded to investigate how
successful the various measures of coupling and cohesion are in predicting this quantity. Five measures of
coupling (our proposed measure WTCoup, CF [3], CBO [4], RFC [4] and DAC [10]) were calculated. The data
obtained for the five coupling measures when applied to the HTML parser components are shown in Table 3.

Where metrics were defined for classes rather than complete systems, the average value for all the classes in the
system was the measure used. The scope of measures is various. WTCoup and CF are in (0,1) because all of
them normalized by the total number of attributes in the objects. On the other hand, CBO, RFC and DAC are in the
scope (1, +) because they only count the number of interacted objects. In order to facilitate presentation of the
results on the same graph, those measures that do not necessarily produce values in the range (0,1) were divided
by the maximum value 100 to produce values of comparable magnitude. From the data, it can be seen that each
measure has enough variance to distinguish each component. Therefore, they are effective to be used in analysis
procedure. The consistent data is observed in other cases as well.

∞

 Evaluation and Assessment in Software Engineering 4

Reusability Ranking of Software Components by Coupling Measure

Measures Mean Med Max Min StdDev
WTCoup 0.29 0.314 0.37 0.14 0.065
CF 0.32 0.32 0.425 0.18 0.06
CBO 21.05 16 57 6 14.20
RFC 53.73 50 92 18 17.51
DAC 17 18 35 7 0.075

TABLE 3: Descriptive statistics data for coupling measures

5. AN EXPERIMENTAL COMPARISON

Two approaches were used to evaluate the performance of the various measures in predicting reusability: linear
regression and rank correlation [15].

5.1 Linear Regression
Logistic regression [2][17]is not selected because NLOC is not binary. The regression lines obtained for the five
coupling measures when applied to the HTML parser components are shown in Figure 1. The results for the other
two sets of components were similar. It is clear that the distribution of WTCoup is closer to a line than other
measures. Therefore, WTCoup provides much more consistent predictors than others. There are no obvious
systematic departures from linearity so the use of linear regression appears reasonable.

FIGURE 1: Regression of coupling measures against reusability (NLOC) for HTML parsers

The residuals in 95% confidence interval obtained for the five coupling measures when applied to the HTML parser
components are shown in Figure 2. Less residual indicates that the regression lines can reflect the distribution of
data more precisely. The results for the other two sets of components were similar. It is clear that WTCoup
measure is much more close to the regression line than other measures. Therefore, WTCoup has better linear
predictive capability on reusability.

 Evaluation and Assessment in Software Engineering 5

Reusability Ranking of Software Components by Coupling Measure

FIGURE 2. Residuals of coupling measures for HTML parsers

2 4 6 8 10 12 14

-60

-40

-20

0

20

40

60

Residual Case Order Plot

R
es

id
ua

ls

Case Number
 A. WTCoup B. CF

2 4 6 8 10 12 14
-100

-80

-60

-40

-20

0

20

40

60

80

100

Residual Case Order Plot

R
es

id
ua

ls

Case Number
2 4 6 8 10 12 14

-40

-20

0

20

40

60

Residual Case Order Plot

R
es

id
ua

ls

Case Number
 C. CBO D. RFC

2 4 6 8 10 12 14
-100

-80

-60

-40

-20

0

20

40

60

80

100

Residual Case Order Plot

R
es

id
ua

ls

Case Number
E. DAC

 HTML Parser Lexical Tokenizer Barcode Generator
WTCoup 0.846 0.836 0.958
CF 0.621 0.098 0.693
CBO 0.259 0.004 0.121
RFC 0.793 0.729 0.534
DAC 0.254 0.738 0.507

TABLE 4: R2 values for coupling measure regression lines

The coefficient of determination, R2, provides a measure of how much of the variation in NLOC is accounted for by
the coupling measure. Table 4 displays the values of R2 obtained for each of the coupling measures on all three
sets of components. In each case, our proposed new measure, WTCoup, gave the largest value of R2, indicating
that it was the best linear predictor of reusability. The best of the alternatives was RFC whose results were
consistent but substantially lower than those obtained for WTCoup. The remaining three coupling measures

 Evaluation and Assessment in Software Engineering 6

Reusability Ranking of Software Components by Coupling Measure

produced at least one R2 value so low as to indicate that the correlation was not significantly above chance at the
5% level. Further, p value demonstrates consist results as R2. For most measures, quite tiny p values demonstrate
the significance of linear relationship except for CBO which indicate the relationship of CBO and NLOC is not
significant.

5.2 Spearman Rank Correlation
Although these results provide a strong indication that the proposed new measures are better predictors of
reusability than the alternatives, our primary purpose is simply to rank a set of components retrieved from the
repository. We therefore also computed the Spearman rank correlation coefficients [15] between the rankings
determined by NLOC and those produced by the various coupling (Tables 5).
The relative performances of the various measures are consistent with the regression studies. In all cases, the
proposed measure, WTCoup, produced the highest rank correlations. They are in fact extremely high; no value
was lower than 0.95.

Measures HTML Parser Lexical Tokenizer Barcode Generator
WTCoup 0.975 0.952 0.974
CF 0.882 0.291 0.758
CBO 0.465 0.117 0.485
RFC 0.896 0.822 0.656
DAC 0.507 0.817 0.800

TABLE 5: Spearman rank correlations values for coupling measures

6. DISCUSSION

These results clearly demonstrate that our proposed metrics for coupling is a very good predictor of the number of
lines of code required to make simple modifications to Java components retrieved from the internet. Furthermore,
they demonstrate that, for this predictive task, the proposed metrics is superior to any of the alternative established
metrics that we tested in our experiment. In this concluding section we first consider possible improvements to our
metrics. Then we assess whether they are adequate for the purpose for which they were developed: producing a
reusability ranking for components retrieved from the internet. Finally we consider whether our results may be of
relevance to other applications of software metrics.

6.1 Possible Improvements
Both our proposed measures share two significant characteristics in the way they measure relationships between
pairs of entities. First, they are weighted; that is, they use a numeric measure of the degree of coupling or similarity
between entities rather than a binary quantity. Second they are transitive; that is, they include indirect coupling or
similarity mediated by intervening entities.

It is reasonable to enquire whether both these characteristics are necessary to achieve good prediction
performance. In fact our investigations suggest that both contribute to the performance. For example, Table 9
shows both the R2 values of linear regression and the Spearman rank correlations achieved by WICoup, an
intransitive variant of WTCoup in which all indirect couplings were set to zero. The performance of the intransitive
version is consistently poorer than that of WTCoup, although it still compares favourably with the other coupling
metrics (See Table 4 and Tables 5).

The method used, in our metrics, to determine the strength of indirect relationships when a pair of vertices was
linked by multiple paths was crude though effective: we simply chose the strength indicated by the strongest path.
The consequence of this is that indirect relationships may be underestimated. It would be possible to remedy this
by aggregating the weights contributed by all possible paths between two vertices. However, in view of the fact
using only the largest works well, we see no reason to make such a change.

HTML Parser Lexical Tokenizer Barcode Generator
R2 Rho R2 Rho R2 Rho

WICoup .828 .921 .782 .888 .818 .908
WTCoup .846 .975 .836 .952 .958 .974

TABLE 6. R2 values and rank correlations (Rho) for WICoup and WTCoup.

 Evaluation and Assessment in Software Engineering 7

Reusability Ranking of Software Components by Coupling Measure

In this paper, only the impact of coupling on the reusability is considered, as we mentioned in the previous section,
other factors including customizability cohesion can also be used to measure the component reusability. In the
future, research and experiments are required to determine if the degree of cohesion can be presented numerically
and if the intransitive relationship on the similarity of subcomponents can reflect the reusability. Assume all of the
factors can be used to measure the component reusability; further problems are if the combination of these
measures can improve the reliability of measures and how to combine them. Therefore, further experimental
investigation is required to determine how to combine these measures.

6.2 Adequacy for Component Ranking
The question of whether the proposed metrics provide trustworthy rankings of Java components depends
essentially on the reliability of the quantity we have chosen to measure reusability: the number of lines of code
required to implement a straightforward modification. The results clearly show that the metrics are excellent
predictors of the ranking of this quantity. Hence the worth of the metrics has been demonstrated provided it is
reasonable to assume that NLOC is itself a good indicator of how readily a component may be adapted for use in a
larger software system.

It could be objected that making a modest extension to the functionality is not the same as integrating the
component into a larger system. This is true, but the types of changes needed are likely to be similar. It could be
argued that the modifications used in our study were of a broadly similar nature and therefore may not be indicative
of what would be found on a wider range of components and modifications. This is a legitimate objection that could
only be addressed by an appreciably larger study. The present investigation involved modifying 60 programs and
hence represents a substantial effort. A further criticism might be that all the modifications were carried out by one
programmer; other programmers might have produced different results. Again this is a fair objection that could only
be remedied by a larger scale study. Ultimately we expect that our system will be tested in practical use as part of a
component search system and feedback from users will be provide an indication of the how good the quality
ranking metrics are.

6.3 Wider Implications
This work arose from, and is intended primarily as a contribution to, search engine technology. Nevertheless, we
believe it may be of interest to a wider body of researchers: in particular, those involved in developing and
evaluating software metrics. The majority of coupling metrics treat coupling and similarity as simple binary
quantities. Our results suggest that a numeric representation of the degree of the relationship leads is
advantageous. Transitive dependencies have received relatively little attention in the literature. Our findings
suggest that coupling and coherence metrics may be improved by their inclusion. The reliability of proposed metrics
is only tested on Java components, and we expect they also can be applied in other components in future
investigation.

Our methodology may also be of interest to those engaged in evaluating software metrics. Empirical evaluations
are difficult in this field, largely because it is difficult to obtain suitable material for carrying out systematic studies.
Because our study was carried out as part of the development of a component search engine, we were in the
happy position of being able to access significant numbers of independently developed programs that had
essentially similar functionality. The approach of implementing the same small change to all of them enables a
substantial number of comparable data points to be assembled for use in evaluations.

ACKNOWLEDGMENTS

We are grateful to the four UK higher education funding bodies (for England, Scotland, Wales and Northern
Ireland) for an Overseas Research Studentship (ORS/2002015010) awarded to G. Gui.

REFERENCES

[1] Gui, G. and Scott, P. D. Vector Space Based on Hierarchical Weighting: A Component Ranking Approach to
Component Retrieval. In Proceedings of the 6th International Workshop on Advanced Parallel Processing
Technologies (APPT’05) (Hong Kong, China, Oct 2005).
[2] Bieman, J. M. and Kang, B-Y. Cohesion and Reuse in an Object-Oriented System. In Proc. ACM Symposium on
Software Reusability (SSR’95). (April 1995) 259-262.
[3] Briand, L., Devanbu, P. and Melo, W. An investigation into coupling measures for C++. Proceedings o+f ICSE
1997, (Boston, USA, 1997).

 Evaluation and Assessment in Software Engineering 8

Reusability Ranking of Software Components by Coupling Measure

[4] Brito e Abreu, F. and Melo, W. Evaluating the impact of OO Design on Software Quality. Proc. Third
International Software Metrics Symposium. (Berlin 1996).
[5] Chidamber, S. R. and Kemerer, C. K. Towards a Metrics Suite for Object Oriented Design. Proceedings of 6th
ACM Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA’91),
(Phoenix, Arizona, 1991), 197-211.
[6] Chidamber, S. R. and Kemerer, C. K. A Metrics Suite for Object Oriented Design. IEEE Transactions on
Software Engineering, Vol. 20 (June 1994), 476-493.
[7] Harrison, R., S.J.Counsell, and R.V.Nith. Evaluation of the MOOD Set of Object-Oriented Software Metrics.
IEEE Transactions on Software Engineering, Vol. 24 (June 1998), 491-496.
[8] Hitz , M. and Montazeri, B. Measuring coupling and cohesion in object-oriented systems. Proceedings of
International Symposium on Applied Corporate Computing. (Monterrey, Mexico, 1995).
[9] Kanmani, S., Uthariraj, R., Sankaranarayanan, V. and Thambidurai, P. Investigation into the Exploitation of
Object-Oriented Features. ACM Sigsoft, Software Engineering Notes, Vol. 29 (March 2004).
[10] Li, W. and Henry, S. Object-Oriented metrics that predict maintainability. Journal of Systems and Software.
23(2) 1993 111-122.
[11] Li, X., Liu, Z. Pan, B. and Xing, B. A Measurement Tool for Object Oriented Software and Measurement
Experiments with It. In Proc. IWSM 2000. (Lecture Notes in Computer Science 2006, Springer-Verlag, Berlin,
Heidelberg, 2001), 44-54
[12] Subramanyam, R. and Krishnan, M. S. Empirical Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects. IEEE Transactions on Software Engineering, Vol. 29 (April 2003),
297-310
[13] Y.-S.Lee, B.-S.Liang, S.-F.Wu, F.-J.Wang, Measuring the coupling and Cohesion of an Object-Oriented
Program Based on Information Flow, In Proc. International Conference on Software Quality, Maribor, Slovenia,
1995.
[14] H. Washizaki, Y.Yamamoto and Y. Fukazawa. Software Component Metrics and It's Experimental Evaluation,
In Proc. of International Symposium on Empirical Software Engineering (ISESE2002), Vol.II (2002).
[15] S.D.Conte, H.E.Dunsmore and V.Y.Shen, Software Engineering Metrics and Models Benjamin-Cummings
Publishing Co., Inc.
[16] D.Kung, j. Gao, P.Hsia, F.Wen, Y.Toyoshima, C.Chen, Change Impact Identification in Object-Oriented
Software Maintenance, In Proc. Conf. Software Maintenance, pp. 202-211, 1994.
[17] Briand, L., Daly. J ,Porter. V, Wust.J. A Comprehensive Empirical Validation of Product Measures for Object-
Oriented System, Technical Report ISERN-98-07,1998.
[18] N. Fenton, "Software Measurement: A Necessary Scientific Basis,” In IEEE Trans. Software Eng., vol. 20, no.
3, pp. 199-206, March 1994.

 Evaluation and Assessment in Software Engineering 9

