Product-Impression Analysis Using Fuzzy C4.5 Decision Tree

Masataka Tokumaru and Noriaki Muranaka
Kansai University, Osaka, Japan

Outline

• Background of Our Research
• Product-Impression Analysis
• Impression Analysis of Golf Clubs
• Fuzzy C4.5 Decision Tree
• Experimental Result
• Conclusion

Background

• Designers are required to develop....
 • Functional and effective products
 • Valuable and reliable products
 • Recent needs to product designers
 • Easy to use
 • Attractive - consumer’s preference -

Product-Impression Analysis

• Product-Impression! *** emotion, feeling, sense, preference, subjectivity

Ease to Use? Attractive?

• Specification
 - Impressive Attributes (Various Aspect of feelings)
 - Driving Impression
 - Overall Impression
 - Feel Good?
 - Cool!
 - Attractive?
 - Engine Feel
 - Steering Feel
 - Comfortability
 - Rigidly of Chassis

Impression Analysis

• Questionnaire
 - Exterior Design Impression
 - Cute?
 - Modern?
 - Cool?
 - Elegant?

Design Factors

- factor a
- factor b
- factor c
- factor x

Quantity

Investigate relationship between Design Factors and Impression
Purpose of Our Research

Specification of Product
- factor a
- factor b
- factor c
- factor x

Impressive Attributes for Evaluation
- attribute a
- attribute b
- attribute c
- attribute n

Overall Impression of Product
- ease-of-use
- preference

*** is to investigate relationship between Impressive attributes and overall impression

Ease-of-Use of Golf Clubs

- Overall Impression: Ease-of-Hitting
 - How easily it can be used by people
- Impressive Attributes:
 - Easy to setup, Easy to control, timing to impact, drive stability, etc.
 - Hitting Sound (Feel, Level, Volume)
 - Length of Shaft (feel long or short), Weight (feel heavy or light)

Impression Analysis of Golf Clubs

Impression Analysis Using Fuzzy C4.5 Decision Tree

SKIMA2006

Impression Analysis of Golf Clubs

Questionnaire

- 24 attributes
- 7-point scale SD method

Impression Analysis of Golf Clubs Using Fuzzy C4.5 Decision Tree

- Fuzzy C4.5 Decision Tree
 - divides instances (questionnaire answers) into 3 subsets (easy to use, hard to use, neutral).
 - divides instances by value of a selected attribute
 - divides instances into fuzzy sets by membership functions

Subjects: 20 skilled golfers (42 years old and av. golf handicap of 15)

11 drivers for the test

- test for 5 min.
- rest and answer the questions for 5 min.
- repeat the task 15 times changing driver (11+4)

Questionnaire

- 24 attributes
- 7-point scale SD method

273 instances (evaluations) of the various drivers in total
Fuzzy C4.5 Decision Tree

Information entropy
\[\text{info}(T) = - \sum \left(\frac{\text{freq}(C_i, T)}{|T|} \times \log_2 \frac{|T|}{\text{freq}(C_i, T)} \right) \]

Information entropy dividing the set \(T \) into subset \(T_j \) by an attribute \(X_p \)
\[\text{info}_{T_j}(T) = - \sum \left(\frac{|T_j|}{|T|} \times \log_2 \frac{|T|}{|T_j|} \right) \]

Information gain
\[\text{gain}(X_p) = \text{info}(T) - \sum_{j=1}^{n} \left(\frac{|T_j|}{|T|} \times \text{info}(T_j) \right) \]

The amount of split information
\[\text{split info}(X_p)(T) = \text{info}(T) - \text{info}(T) \]

Information gain ratio
\[\text{gain ratio}(X_p) = \frac{\text{gain}(X_p)}{\text{split info}(X_p)(T)} \]

Information entropy dividing the set \(T \) into subset \(T_j \) by an attribute \(X_p \)
\[\text{freq}(C_i, T) = \sum \left(\text{possibility} \times \text{fitness value} + \cdots \right) \]

Membership Functions

answered value of questions about classes
\[\text{freq}(C_i, T) = \sum \left(\text{possibility} \times \text{fitness value} + \cdots \right) \]

answered value of questions about an attribute \(X_p \)
\[\text{freq}(C_i, T) = \sum \left(\text{possibility} \times \text{fitness value} + \cdots \right) \]

Branch and Leaf Node

Minimum Class Occupancy Ratio (MCOR): \[\text{class}_{\text{min}} \]
If most of instances in a subset belong to one class, the node becomes a leaf node.

Minimum Data Content Ratio (MDCR): \[\text{data}_{\text{min}} \]
If the number of data items contained in a subset is a little, the node becomes a leaf node.

Rules:
\[R_1: X_5 \text{ is (+) and } X_2 \text{ is (+) and } X_3 \text{ is (+) then } C_1 \]
\[R_2: X_5 \text{ is (-) and } X_7 \text{ is (-) and } X_6 \text{ is (+) and } X_2 \text{ is (-) then } C_3 \]

Experimental Result

Structural change of the constructed decision tree
Change in the number of rules

Classification Error Rate

The Condition for Reliable Decision Tree
\[\text{MCOR} : \text{class}_{\text{min}} \text{ from } 0.6 \text{ to } 0.9 \]
\[\text{MDCR} : \text{data}_{\text{min}} = 0.1 \]
An Example of Decision Tree for “Ease-of-Use” of Golf Clubs

Reliability Verification against Unknown Instances

- The number of instances: 273
- Example set
 - Training data: 200 (Selected from 273 instances)
 - Evaluation data: 70 (Selected from remaining 73 instances)
- Prepare 10 example sets
- Construct a decision tree using the training data
- Execute a classification test using the evaluation data
- Perform evaluations using 10 example sets

Experimental Results

- Proposed a method to investigate product impression using a fuzzy C4.5 decision tree.
- Conducted to impression analysis for the ease-of-use of golf clubs.
- Fuzzy decision tree could well consider user’s answered values with 7-level SD method.
- The proposed method showed distinct advantage in reliability of classifying unknown data.

Thank You for Your Attention