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ABSTRACT 
 In this paper an approach for fault location based on online neural network is designed.  The approach of learning 
the neural network based on the running fault values are trained for the suggested neural network. This approach result in 
running fault diagnosis based on the fault observation parameter based on the diagnosis tool. The approach is designed to 
run on running values of the distributed system so as to overcome the level of fault happening in a run time environment, 
which is not observed in case of the conventional neural controlling method.   
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1. INTRODUCTION 
 An overhead transmission line is one of the main 
components in every electric power system. The 
transmission line is exposed to the environment and the 
possibility of experiencing faults on the transmission line 
is generally higher than that on other main components. 
Line faults are the most common faults. They may be 
triggered by lightning strokes, trees falling across lines. 
Fog and salt spray on dirty insulators may cause the 
insulator strings to flash over, and ice and snow loadings 
may cause insulator strings to fail mechanically. When a 
fault occurs on an electrical transmission line, it is very 
important to detect it and to find it’s location in order to 
make necessary repairs and to restore power as soon as 
possible. The time needed to determine the fault point 
along the line will affect the quality of the power delivery. 
Therefore, an accurate fault location on the line is an 
important requirement for a permanent fault. Pointing to a 
weak spot, it is also helpful for a transient fault, which 
may result from a marginally contaminated insulator, or a 
swaying or growing tree under the line. Fault location in 
transmission lines has been a subject of interest for many 
years.  
 During the last decade a number of fault location 
algorithms have been developed, including the steady state 
phasor approach, the differential equation approach and 
the traveling wave approach [4], as well as two-end [13] 
and one-end [14] algorithms. In the last category, 
synchronized [5] and non-synchronized [9] sampling 
techniques are used. However, two-terminal data are not 
widely available. From a practical viewpoint, it is 
desirable for equipment to use only one-terminal data. The 
one-end algorithms, in turn, utilize different assumptions 
to replace the remote end measurements. Most of fault 
locators are only based on local measurements. Currently, 
the most widely used method of overhead line fault 
location is to determine the apparent reactance of the line 
during the time  the fault current is flowing and to convert 
the ohmic result into a distance based on the parameters of 

the line. It is widely recognized that this method is subject 
to errors when the fault resistance is high and the line is 
fed from both ends, and when parallel circuits exist over 
only parts of the length of the faulty line. Many successful 
applications of artificial neural networks (ANNs) to power 
systems have been demonstrated, including security 
assessment, load forecasting, control, etc. Recent 
applications in protection have covered fault diagnosis for 
electric power systems [8], transformer protection [2] and 
generator protection [7]. However, almost all of these 
applications in protection merely use the ANN ability of 
classification, that is, ANNs only output 1 or 0. Various 
approaches have been published describing applications of 
ANNs to fault detection and location in transmission lines 
[10],[11],[12]. In this paper, a single-end fault detector and 
three fault locators are proposed for on-line applications 
using ANN. A feed forward neural network based on the 
supervised back propagation learning algorithm was used 
to implement the fault detector and locators. The neural 
fault detector and locators were trained and tested with a 
number of simulation cases by considering various fault 
conditions (fault types, fault locations, fault resistances 
and fault inception angles) and various power system data 
(source capacities, source voltages, source angles, time 
constants of the sources) in a selected network model. 

2. NEURAL NETWORK 
 In this paper, the fully connected multilayer Feed 
Forward Neural Network (FFNN) was used and trained 
with a supervised learning algorithm called Back 
Propagation Algorithm (BPA). The FFNN consists of an 
input layer representing the input data to the network, 
some hidden layers and an output layer representing the 
response of the network. Each layer consists of a certain 
number of neurons; each neuron is connected to other 
neurons of the previous layer through adaptable synaptic 
weights w and biases b as shown in Figure-1. 
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Figure-1. Information processing in a neural network unit. 

 
If the inputs of neuron j are the variables x1, x2, . . 

. , xi, . . . , xN, the output uj of neuron j is obtained as 
follows: 
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Where wij represents the weight of the connection between 
neuron j and the ith input, bj represents the bias of neuron j 
and ϕ is the transfer function (activation function) of 
neuron j. A feed forward neural network of three layers 
(one hidden layer) is considered with N, M and Q neurons 
for the input, hidden and output layers, respectively. The 
input patterns of the ANN represented by a vector of 
variables x = (x1, x2, . . . , xi, . . . , xN) submitted to the 
ANN by the input layer are transferred to the hidden layer. 
Using the weight of the connection between the input and 
the hidden layer, and the bias of the hidden layer, the 
output vector u = (u1, u2, . . . , uj , . . . , uM) of the hidden 
layer is then determined.  The output uj of neuron j is 
obtained as follows: 
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Where wij
hid represents the weight of connection between 

neuron j in the hidden layer and the ith neuron of the input 
layer, bj

hid represents the bias of neuron j and hid is the 
activation function of the hidden layer.  The values of the 
vector u of the hidden layer are transferred to the output 
layer. Using the weight of the connection between the 
hidden and output layers and the bias of the output layer, 
the output vector y = (y1, y2, . . . , yk, . . . , yQ) of the output 
layer is determined. 
 The output yk of neuron k (of the output layer) is 
obtained as follows: 
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Where wjk
out represents the weight of the connection 

between neuron k in the output layer and the jth neuron of 
the hidden layer, bk

out represents the bias of neuron k and 
ϕout is the activation function of the output layer. The 

output yk (corresponding to the given input vector x) is 
compared with the desired output (target value) yk

d. The 
error in the output layer between yk and yk

d (yk
d − yk) is 

minimized using the mean square error at the output layer 
(which is composed of Q output neurons), defined by 
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 Training is the process of adjusting connection 
weights w and biases b. In the first step, the network 
outputs and the difference between the actual (obtained) 
output and the desired (target) output (i.e., the error) is 
calculated for the initialized weights and biases (arbitrary 
values). During the second stage, the initialized weights in 
all links and biases in all neurons are adjusted to minimize 
the error by propagating the error backwards (the back-
propagation algorithm). The network outputs and the error 
are calculated again with the adapted weights and biases, 
and the process (the training of the ANN) is repeated at 
each epoch until a satisfied output yk (corresponding to the 
values of the input variables x) is obtained and the error is 
acceptably small. 

 
3. ADAPTIVE LEARNING 
 The design process of the ANN fault detector and 
the fault locator goes through the following steps:  
 
1.  Preparation of a suitable training data set that 

represents cases the ANN needs to learn. 
2.  Selection of a suitable ANN structure for a given 

application. 
3.  Training the ANN. 
4.  Evaluation of the trained ANN using test patterns 

until it’s performance is satisfactory. 
 In order to build up an ANN, the inputs and 
outputs of the neural network have to be defined for 
pattern recognition. The inputs to the network should 
provide a true representation of the situation under 
consideration. For the developed system the current (I) and 
voltage (V) signals are calculated as a string of samples 
corresponding to a 100 kHz sampling frequency. These 
signals are processed so as to simulate a 2 kHz sampling 
process (40 samples per 50 Hz cycle) using an anti-
aliasing filter to remove the unwanted frequencies from a 
sampled waveform. This sampling rate is compatible with 
sampling rates presently used in digital relays. 
 The phase current (Ia, Ib, Ic) and voltage (Va, Vb, 
Vc) signals, and the zero sequence current (I0) and voltage 
(V0) signals sampled at 2 kHz are used as the inputs to the 
ANN. It should be mentioned that the input current and 
voltage samples have to be normalized in order to reach 
the ANN input level (±1). The ANN output is indexed 
with either a value of 1 (the presence of a fault) or 0 (the 
non-faulty situation). 
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4. PROPOSED FAULT DIAGNOSIS SYSTEM 
 The fault detection task can be formulated as a 
pattern classification problem. The fully connected three-
layer feed forward neural network was used to classify 
faulty/non-faulty data sets and the error back-propagation 
algorithm was used for training. The number of neurons in 
the input and hidden layers were selected empirically 
through extensive simulations. Various network 
configurations were trained and tested in order to establish 
an appropriate network with satisfactory performances, 
which were the fault tolerance, time response and 
generalization capabilities. Data strings of 7 consecutive 
samples of each signal sampled at 2 kHz are found to be 
appropriate inputs to the neural network. This represents a 
moving window with a length of 3 ms. In order to 
construct a good neural network system, it is vitally 
important to train and test it correctly.  
 With supervised learning, the ANN is trained 
with various input patterns corresponding to different 
types of fault (a–g, b–g, c–g, a–b–g, a–c–g, b–c–g, a–b, 
a–c, b–c, a–b–c and a–b–c–g, where a, b, and c are related 
to the phases and g refers to the ground) at various 
locations for different fault conditions (fault inception 
angles, fault resistances) and different power system  data 
(source capacities, source voltages, source angles, time 
constants of the sources). The ANN fault detector consists 
of 56 input neurons (seven samples of each signal: Ia, Ib, Ic, 
Va, Vb, Vc, I0, V0), 18 neurons in the hidden layer (chosen 
after a series of trials) and one output neuron to indicate 
the transmission line state. Then the ANN structure of the 
fault detector is (56–18–1).  
 The sigmoid transfer function 

 
s

1
(S)

1 e−
ϕ =
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was used for the hidden and output layers. 
 To evaluate the performance of the proposed 
neural network based fault detector and locator, a 400 kV, 
120 km transmission line extending between two sources 
as shown in figure-2 is considered in this study. The 
transmission line is represented by distributed parameters 
and the frequency dependence of the line parameters is 
taken into account. 
 
 

 

 

 

 

 

Figure-2. System studied 

 VT: Voltage Transformer, CT: Current Transformer,  
 CB: Circuit-Breaker, FD: Fault Detector,  
 FL:  Fault Locator. 
 A highly accurate transmission line simulation 
technique was utilized to generate voltage and current 
waveforms at the relay location (end S) for different fault 
types, fault conditions and different power system data. 
Voltage and current signals at the transmission line end S 
(relay location) will be acquired by the relay through CTs 
and VTs. After preprocessing, they will be fed to the fault 
detector (FD) to detect a fault, and if the fault is detected, 
the fault locator (FL) estimates the distance to the fault in 
the transmission line. 
 The proposed fault detector (FD) is designed to 
indicate the presence or absence of a fault. The occurrence 
of the fault is determined by identifying the power system 
state directly from instantaneous current (I) and voltage 
(V) data. The fault locator (FL) is designed to estimate the 
distance of the fault in the transmission line using the 
fundamental phasor magnitude of the voltage and current 
signals. The fault detector (FD) and the fault locator(FL) 
use only one-terminal line datum extracted at the relay 
location (S). 
 
5. SIMULATION RESULTS 
 In order to test the three-phase system a 
simulation was performed on the system using the pi 
circuit model representation of the transmission line.  

For the test purposes, a three- phase fault has 
been triggered following 2 cycles of system operation. The 
obtained output current and phase voltage in one line-
ground fault is as shown below: 

 

Figure-3. Current and voltage waveforms from the B 
phase Line 400kV 

120 km 
CB CT S  R 

 ~~ 
 The data points, which make up these curves, are 
then converted to the frequency domain by use of the 
Fourier transform. Then, a high order curve fit is used to 
determine the amount of corruption present in the 
fundamental frequency component due to the presence of 
the sub-synchronous component. This procedure is 
completed for the real and imaginary parts of the initial 
Fourier transform separately. One real and one imaginary 
transform solution curve fit for voltage, and one real and 
one imaginary transform solution curve fit for the current.  

Fault 

FL FD  Fault Distance 
VT 

Relay 
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Figure- 4.  Curve fitting of the obtained current magnitude 
using transformation features 

 

     

Figure-5. Curve fitting for the imaginary component  
of the fault current 

 
 Figures-5, 6 shows the transform results and the 
curve fit used to predict the corruption in the 60Hz 
(fundamental) component in the transmission lines for real 
and imaginary part. 
Once the corruption has been identified, the proper 60Hz 
magnitude is computed, and the fundamental component 
of the spectrum shown in Figures 5,6 is replaced with the 
curve fit estimate of the corruption. A spectrum of the 
subsynchronous component only with quite a bit of 
“leakage” is computed.  
 

  

Figure-6. Magnitude correction component of 
the developed fault current 

 
 With the variation of the weight factor of the 
training neural network a proper current spectrum is 

obtained which when applied to the current simulation 
obtains the fault current corrections as shown below: 

 

Figure-7. Compensated fault current for the given logic 
 

 The discrete fault components for the given 
current samples for 4 processing windows are shown 
below:  
 

 

Figure-8. Obtained current block samples of 
the continuous fault current 

 The magnitude of the next adjacent frequency 
component for each observation is carried out. When the 
ratio is maximum there is little or no remaining “leakage” 
and the fundamental frequency component of the signal 
will be equal to, or an even multiple / submultiples of one 
harmonics of the corresponding transform. Therefore, the 
frequency and magnitude calculated with the transform for 
that window length should be correct. The computed 
frequency of the subsynchronous component is found to 
be 49.873Hz. When this value is used and the impedance 
(V/I ratio) is computed at that frequency, the resulting 
values for L and C to the fault location are j61.4788 Ω of 
inductive reactance, and –j64 Ω of capacitive reactance. 
This represents a determination of fault location, for either 
relaying or fault location purposes, with an accuracy of 
97.6%. The EMTP analysis was performed using a time 
dependent switch between the A phase and ground. The 
following graphs depict the A phase voltage and current 
through the test. 
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Figure- 9. Fault observed at line phase A. 
 
The obtained observations for this case are as 

shown below: 
 
 
 
 
 
 
 
 
 

   

 

Figure-10.  Curve fitting of the obtained current 
magnitude using transformation features 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
     Figure -11.  Curve fitting for the imaginary     
      component of the fault current 

 

 

Figure-12: Magnitude correction component of 
the developed fault current 

 

Figure-13. Compensated fault current for  
the given logic 

 

 

Figure-14. Obtained current block samples of  
the continuous fault current 

 

 Once the proper values for the magnitude and 
frequency of the subsynchronous component have been 
found as well as the proper magnitude of the fundamental, 
it is then necessary, when working with a phase to ground 
fault, to compute the compensated current in order to 
arrive at the value of impedance to the fault. In an 
uncompensated transmission line, the factor “m” is found 
as follows: 

 0 1

1

Z Z
m

Z
−

=  

 This works out well since all terms in the 
equation are based on the line length to the fault, and it is 
possible to simply use the Z0 and Z1 parameters for the 
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entire length of the line. Therefore, the quantity “m” for an 
uncompensated line remains constant for a given line and 
is not dependent on fault location. 
 
6. CONCLUSIONS 
 An efficient neural network based fault detector 
for very fast EHV transmission line protection and three 
neural network based fault locators have been proposed. 
The results demonstrated the ability of ANNs to generalize 
the situation from the provided patterns and to accurately 
indicate the presence and location of faults using only one 
terminal line datum. The neural fault detector uses only 
instantaneous current and voltage values, while the neural 
fault locator uses the magnitudes at the fundamental 
frequency of the voltage and/or current phasors. The 
presented test results demonstrate the effectiveness and the 
precision of fault detection in a variety of fault situations 
including fault types, fault locations, fault inception angles 
and fault resistances, and different power system data 
including source capacities, source voltages, source  
angles and source time constants. The ANNs thus have the 
possibility to be used for on-line fault detection and 
location in transmission lines 
 
REFERENCES 
 
[1] Bretas A.S. and Phadke A.G. (2003): “Artificial neural 

networks in power system restoration”,IEEE Trans. 
Power Delivery,  Vol. 18, No. 4, pp. 1181–1186. 

 
[2] Zaman M.R. and Rahman M.A. (1998): “Experimental 

testing of artificial neural network based protection of 
power transformer”, IEEE Trans. Power Delivery, 
Vol. 13, No. 2, pp. 510–515. 

 
[3] Humpage W.D., Wong K.P. and Nguyen T.T. (1982): 

“Network equivalents in power system 
electromagnetic transient analysis”, Electric Power 
Syst. Res., Vol. 5, No. 3, pp. 231–243. 

 
[4]  Johns A.T. and Aggarwal R.K. (1976): “Digital 

simulation of faulted EHV transmission lines with 
particular reference to very high speed protection”,  
IEE Proc. Generation, Transmission and Distribution, 
Vol. 123, No. 4, pp. 353– 359. 

 
[5] Kezunovic M. and Mrkic J. (1994): “An accurate fault 

location algorithm using synchronized sampling”, 
Electric Power Syst. Res., Vol. 29, No. 3, pp. 161–
169. 

 
[6] Lian B. and Salama M.M.A. (1994): “An overview of 

digital fault location algorithms for power 
transmission lines using transient waveforms”, 
Electric Power Syst. Res., Vol. 29, No. 1, pp. 17–25. 

 
[7] Megahed A.I. and Malik O.P. (1999): “An artificial 

neural network based digital differential protection 

scheme for synchronous generator stator winding 
protection”,  IEEE Trans. Power Delivery, Vol. 14, 
No. 1, pp. 130–138. 

 
[8] Mohamed E.A. and Rao N.D. (1995): “Artificial 

neural network based fault diagnostic system for 
electric power distribution feeders”, Electric Power 
Syst. Res., Vol. 35, No. 1, pp. 1–10. 

 
[9]  Novosel D., Hart D.G., Udren E. and Garitty J. 

(1996): “Unsynchronized two terminal fault location 
estimation”, IEEE Trans. Power Delivery, Vol. 11, 
No. 1, pp. 130–138. 

 
[10] Oleskovicz M., Coury D.V. and Aggarwal R.K. 

(2001): “A complete scheme for fault detection, 
classification and localization in transmission lines 
using neural network”, Proc. 7-th Int. Conf. 
Developments in Power System Protection, 
Amsterdam, the Netherlands, pp. 335–338. 

 
[11]Osowski S. and Salat R. (2002): “Fault location in 

transmission line using hybrid neural 
network”,Compel, Vol. 21, No. 1, pp. 18–30. 

 
[12]Purushothama G.K, Narendranath A.U., Thukaram D. 

and Parthasarathy K. (2001): “ANN applications in 
fault locators”, Electrical Power & Energy Syst., Vol. 
23, No. 6, pp. 491–506. 

 
[13]Sheng L.B. and Elangovan S. (1998): “A fault location 

algorithm for transmission lines”, Electric Machines 
& Power Syst., Vol. 26, No. 10, pp. 991–1005.  

 
[14]Zhang Q., Zhang Y., Song W. and Yu Y. (1999): 

“Transmission line fault location for phase-to-earth 
fault using one terminal data”, IEE Proc. Trans. 
Distribution., Vol. 146, No. 2, pp. 121–124. 


