

Environmental Health and Toxicology

• Review

elSSN: 2233-6567

A meta-analysis of exposure to particulate matter and adverse birth outcomes

Dirga Kumar Lamichhane¹, Jong-Han Leem², Ji-Young Lee¹, Hwan-Cheol Kim²

¹Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon; ²Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Korea

Objectives The objective of this study was to conduct a systematic review to provide summarized evidence on the association between maternal exposure to particulate air pollution and birth weight (BW) and preterm birth (PTB) after taking into consideration the potential confounding effect of maternal smoking.

Methods We systematically searched all published cohort and case-control studies examining BW and PTB association with particulate matter (PM, less than or equal to 2.5 μ m and 10.0 μ m in diameter, PM_{2.5} and PM₁₀, respectively) from PubMed and Web of Science, from January 1980 to April 2015. We extracted coefficients for continuous BW and odds ratio (OR) for PTB from each individual study, and meta-analysis was used to combine the coefficient and OR of individual studies. The methodological quality of individual study was assessed using a standard protocol proposed by Downs and Black. Forty-four studies met the inclusion criteria.

Results In random effects meta-analyses, BW as a continuous outcome was negatively associated with 10 μ g/m³ increase in PM₁₀ (-10.31 g; 95% confidence interval [Cl], -13.57 to -3.13 g; I-squared=0%, p=0.947) and PM_{2.5} (-22.17 g; 95% Cl, -37.93 to -6.41 g; I-squared=92.3%, p<0.001) exposure during entire pregnancy, adjusted for maternal smoking. A significantly increased risk of PTB per 10 μ g/m³ increase in PM₁₀ (OR, 1.23; 95% Cl, 1.04 to 1.41; I-squared=0%, p=0.977) and PM_{2.5} (OR, 1.14; 95% Cl, 1.06 to 1.22; I-squared=92.5%, p<0.001) exposure during entire pregnancy was observed. Effect size of change in BW per 10 μ g/m³ increase in PM tended to report stronger associations after adjustment for maternal smoking.

Conclusions While this systematic review supports an adverse impact of maternal exposure to particulate air pollution on birth outcomes, variation in effects by exposure period and sources of heterogeneity between studies should be further explored.

Keywords Birth weight, Heterogeneity, Meta-analysis, Maternal smoking, Particulate matter, Preterm birth

Introduction

Maternal exposure to air pollution during pregnancy is associated with increased risk of adverse birth outcomes such as low birth weight (BW) and preterm delivery [1-3]. These adverse outcomes have been suggested to be associated with increased neonatal morbidity and mortality as well as possible developmental problems in childhood and risk of various diseases including depression or other psychiatric conditions in adulthood [4-6]. More than 20 million infants worldwide, representing 15.5% of all births, are born with low BW (<2500 g); prevalence in developing countries (16.5%) is more than double the level in the developed regions (7%) [7]. Preterm birth (PTB) is one of the reasons for low BW and is also regarded as an indirect

Correspondence: Jong-Han Leem 27 Inhang-ro Jung-gu, Incheon 22332, Korea Tel: +82-32-890-3539 Fax: +82-32-890-2859 E-mail: ekeeper21@naver.com

Received: June 15, 2015 Accepted: November 2, 2015 Published online: November 3, 2015

This article is available from: http://e-eht.org/

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

cause of neonatal death. Risk factors of PTB include younger maternal age, smoking, and poor housing, along with medical factors such as induction, premature rupture of membranes, infection, multiple pregnancy, intrauterine death, fetal and uterine abnormalities, and chorioamnionitis [8].

Several case-control and cohort studies have revealed a positive association between maternal exposure to ambient air pollution and a range of adverse pregnancy outcomes [9-11]; however, there are notable inconsistencies among the findings of these studies [12-15]. Additionally, several reviews have been published in the last decades [16-18], but they have generally been based on a small number of studies, and only two have provided pooled estimates of effect size (ES) for BW and PTB [1,3]. These reviews provided the pooled effect estimates of -16.77 g (95% confidence interval [CI], -20.23 to -13.31, 1980 to 2011) per 20 μ g/m³ increase in particulate matter (PM) less than or equal to 10 μ m in diameter (PM₁₀) for change in BW [3] and the combined odds ratio (OR) of 1.02 (95% CI, 0.99 to 1.04, till July 2009) per 10 μ g/m³ increase in PM₁₀ for PTB during entire pregnancy [1]. However, in several individual studies, we could not rule out the consequences of specific biases which may arise from differences in the methodological quality and the study settings such as the demographic characteristics of the study population, exposure periods (month, trimester, and other periods), study periods, and the degree of confounding [13,14,16,19]. In addition, some individual studies were criticized for inadequate control of smoking [20,21].

This study aimed to conduct a systematic review to provide summarized evidence of the associations between PM (less than or equal to 2.5 μ m in diameter. PM_{2.5} and PM₁₀) and BW and PTB, by providing summary estimates of effect by gestational period and taking into consideration the potential confounding effect of maternal smoking.

Materials and Methods

Inclusion Criteria and Search Strategy

We performed a systematic literature search in PubMed (www. ncbi.nlm.nih.gov/pubmed) and Web of Science (www.isiknowledge.com) to identify all published case-control and cohort studies (January 1980 and April 2015) that evaluated the association between PM and BW and preterm delivery, by using the search strategy described in Figure 1. Additional publications were identified based on references citied within the published articles and citation tract. Search terms included "air pollution" OR "particulate matter" OR "PM" OR "PM₁₀" OR "PM_{2.5}" OR "TSP" AND "low BW" OR "BW" OR " preterm birth" OR "PTD" OR "preterm delivery"OR intra-uterine growth-retardation" OR "IUGR". Initial screening of the studies was based on titles/abstracts. In general, studies that were not related to "air pollution" and "birth outcomes" were excluded. Furthermore, daily time series studies, case reports, case series, and studies available only

Figure 1. Flow chart of selection of studies.

in abstract form were excluded. Articles that passed the initial screening were reviewed independently by two authors to evaluate whether or not they should be considered for full review. A disagreement between the two authors was resolved by consensus. We carefully checked the references of each publication and uploaded all relevant studies into Ref Works (ProQuest, Kanagawa, Japan), and duplicate records were removed.

Data Extraction

After full review, data extraction from relevant studies was performed independently by two investigators, using standard template. The template included information on study design, location, dates of data collection, data sources, sample size, descriptive information on study subject characteristics, outcome frequency, distribution of exposure, method of exposure characterization, statistical analysis methods, ES estimates, and covariates examined jointly with air pollution. We extracted the smoking adjusted and smoking unadjusted effect measures separately from the original studies. As studies did not all include or adjusted for the same gaseous pollutants, single pollutant models fully adjusted for other covariates were used. Data were analyzed using Excel 2007 (Microsoft, Redmond, WA, USA) and Stata version 13.0 (Stata Corp., College Station, TX, USA).

In meta-analyses, we selected the results that were based on the larger number of observations for the same outcome, pollutant, and population. We selected the study of Morello-Frosch et al. [22] over those from Parker et al. [23] and Basu et al. [24] for the results of PM_{2.5} because the former study covered a large number of observations. Likewise, the results from Suh et al. [25] (vs. Suh et al. [11]) for PM₁₀ and from Gray et al. [26] (vs. Gray et al. [27]) for PM_{2.5} were selected for meta-analysis. Instead of including the study that reported sensitivity analyses [28], we included study that reported the primary results [10]. Two studies of Jedrychowski et al. [29,30] that reported results for PM_{2.5} and BW for different gestational periods were included, whereas one other study only reported results based on categorical exposures [31].

Assessment of Quality

To assess the methodological quality of articles that were included for the quality comparison across studies, we used the checklist developed by Downs and Black [32]. The checklists are applicable for any analytical study related to health care intervention. The checklist consists of 27 items distributed in five subscales, including reporting (10 items), external validity (3 items), bias (7 items), confounding (6 items), and power (1 item). Answers are generally scored 0 or 1, with the exception of one item in the reporting subscale (score range, 0 to 2) and another item on power (score range, 0 to 5). According to this checklist, a study can get maximum score of 32. Two reviewers had independently reviewed each study included in the analysis, and there were no substantial difference between the judgments of these two reviewers regarding the quality of individual studies. The quality of a study was determined through comparing its score with the median score calculated for all studies included in meta-analysis. A relatively high quality study referred to a score greater than or equal to the median; otherwise, the study was considered as relatively low quality.

Statistical Analysis

In order to facilitate comparisons of ES from different studies, all risk estimates were converted to a common exposure unit of $10 \ \mu g/m^3$ increase in PM₁₀ or PM_{2.5}. Effect estimates were grouped by gestational period (trimester-specific and whole pregnancy). Most effect estimates relating to PTB were expressed as adjusted OR, however, when relative risks were reported, we converted these to ORs using the approximation approach described by Zhang and Yu [33]. The systematic review was conducted in accordance with Meta-analysis of Observational Studies in Epidemiology guidelines [34]. The pooled effect measures were estimated based on a random effect model [35], quantifying heterogeneity among estimates from primary studies suing the I-squared statistic (25%, 50%, and 75% were used as rules of thumb for low, moderate, and high heterogeneity) [36]. A potential publication bias across the included studies was examined using contour-enhanced funnel plot and Egger's test.

We performed sensitivity analyses and subgroup analyses to evaluate potential sources of heterogeneity across the included studies. Sensitivity analyses were performed by removing each study one-by-one. Subgroup analyses were based on the possible confounding effects of smoking and the methodological quality of the studies (high or low).

Results

Study Characteristics

Table 1 summarizes the main characteristics of individual studies. A total of 44 articles that met the inclusion criteria were included in this review. Most studies employed a retrospective cohort design using administrative birth data, while four were case-control studies. Individual studies were based on as few as 235 and as many as 3303834 births. More than half of the studies (n=25) were from North America, followed by Asia (n=7), Europe (n=6), Australia (n=4), and South America (n=2). The majority of studies (n=32) used central monitoring data for the assessment of exposure. Three studies employed person-

Dag	0	Λ	6	F 1	0
r ay	C	4	U		3

and
BW
and
matter
particulate
þ
exposure
l to
relateo
studies
primary
of
Characteristics
- 11
Table

Table 1. Characteristics of $\boldsymbol{\rho}$	orimary stu	Idies related to exposur	e to particu	llate matter	and BW an	d preterm birth					
First author F	Year of Jublication	Location	Outcome	Pollutant	Design	Time period	Birth (n)	Exposure period	Exposure assessment	Exposure range (µg/m³)	Smoking adjusted
Basu et al. [24]	2004	California, USA	CBW	$PM_{2.5}$	Cohort	Jan 1, 2000 - Dec 31, 2000	16693	WP	MS	Range= 4.0, 34.0	No
Bell et al. [10]	2007	Connecticut, Massachusetts, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1999 - Dec 31, 2002	358504	WP	MS	Mean (SD)=11.9 (1.6) Mean (SD)=22.3 (5.3)	Yes
Bell et al. [28]	2008	Connecticut, Massachusetts, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1999 - Dec 31, 2002	358504	WP	MS	IQR=2.2 IQR=7.4	Yes
Bell et al. [45]	2010	Connecticut, Massachusetts, USA	CBW	PM _{2.5}	Cohort	Jan 1, 1999 - Dec 31, 2000	76788	WP, TS	MS	Mean (SD)=14.0 (2.13)	Yes
Brauer et al. [38]	2008	Vancouver, Canada	PTB	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1999 - Dec 31, 2002	70249	WP	MQI	Mean (Min-Max)=5.1(1.0-7.6) Mean (Min-Max)=12.5 (8.4-16.6)	Yes
Chen et al. [46]	2002	Nevada, USA	CBW	PM ₁₀	Cohort	Jan 1, 1991 - Dec 31, 1999	39338	WP,TS	MS	Mean (SD)=31.53 (22.32)	Yes
Currie et al. [43]	2009	New Jersey, USA	CBW	PM_{10}	Cohort	Jan 1, 1989 - Dec 31, 2003	312589	TS	MS	Mean (SD)=2.97 (0.75)	Yes
Darrow et al. [47]	2011	Atlanta, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1994 - Dec 31, 2004	406627	TS	MS	'Mean (SD)= 16.4 (3.1) 'Mean (SD)= 23.4 (4.2)	Yes
Gouveia et al. [48]	2004	Sao Paulo, Brazil	CBW	PM_{10}	Cohort	Jan 1, 1997 - Dec 31, 1997	179460	TS	MS	Mean (Min-Max)=60.3 (25.5-153.0)	No
Geer et al. [15]	2012	Texas, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1998 - Dec 31, 2004	1548904	WP	MS	Mean (SD)=12.6 (1.0) Mean (SD)=27.4 (4.1)	Yes
Gehring et al. [42]	2011	Netherlands	CBW, PTB	$PM_{2.5}$	Cohort	Jan 1, 1996 - Dec 31, 1997	3853	WP,TS	LUR	[†] Mean (Min-Max)=21.3 (13.2-45.4)	Yes
Gray et al. [26]	2014	North Carolina, USA	CBW	$PM_{2.5}$	Cohort	Jan 1, 2002 - Dec 31, 2006	457642	WP	DFM	Mean (SD)=13.6 (1.7)	Yes
Gray et al. [27]	2010	North Carolina, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 2000 - Dec 31, 2002	178356	WP, TS	MS	Mean (SD)=15.7 (1.6) Mean (SD)=23.7 (4.9)	Yes
Ha et al. [49]	2014	Seoul, Korea	PTB	PM ₁₀	Cohort	Jan 1, 1998 - Dec 31, 2000	382100	TS	MS	Mean (Min-Max)=66.21 (10.36-249.19)	No
Hansen et al. [37]	2007	Brisbane, Australia	CBW	PM_{10}	Cohort	Jan 1, 2000 - Dec 31, 2003	26617	WP, TS	MS	Mean (Min-Max)=19.6 (4.9-171.7)	No
Hansen et al. [50]	2006	Brisbane, Australia	PTB	PM ₁₀	Cohort	Jan 1, 2000 - Jun 30, 2003	28200	WP, TS	MS	Mean (Min-Max)=19.6 (4.9-171.7)	No
Huynh et al. [21]	2006	California, USA	PTB	PM _{2.5} C	ase-control	Jan 1, 1998 - Dec 31, 2000	42692	WP	MS	Mean (SD)=18.0 (5.2)	No
Hyder et al. [51]	2014	Connecticut, Massachusetts., USA	CBW	PM _{2.5}	Cohort	Jan 1, 2000 - Dec ⁶ 31, 2006	628131	WP, TS	MS	Mean (Min-Max)=11.91 (4.02-19.97)	Yes
Jalaludin et al. [41]	2007	Sydney, Australia	PTB	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1998 - Dec 31, 2000	123840	TS	MS	Mean (SD)= 9.0 (3.94) Mean (SD)=16.3 (6.38)	Yes
Jedrychowski et al. [29]	2004	Krakow, Poland	CBW	$PM_{2.5}$	Cohort	Jan 1, 2001 - Mar 31, 2003	362	WP	PM	^h Mean (SD)= 39.4 (1.4)	No
Jedrychowski et al. [30]	2009	Krakow, Poland	CBW	$PM_{2.5}$	Cohort	Jan 1, 2001 - Feb 28, 2004	481	TS	PM	Mean (SD)=43.83 (31.91)	No
Jedrychowski et al. [31]	2010	Krakow, Poland	CBW	$PM_{2.5}$	Cohort	Jan 1, 2001 - Feb 28, 2004	481	TS	PM	^s Median (range)=35.3 (10.4, 249.9)	No
Kim et al. [44]	2007	Seoul, Korea	CBW, PTB	PM_{10}	Cohort	May 1, 2001 - May 31, 2004	1514	TS	MS	^f Mean(SD)=89.7 (44.5)	No
Kloog et al. [52]	2012	Massachusetts., USA	CBW	$PM_{2.5}$	Cohort	Jan 1, 2000 - Dec 31, 2008	572272	WP, TS	LUR	Mean (SD)=9.6 (5.1)	Yes
Lee et al. [53]	2013	Pittsburgh, USA	PTB	$PM_{2.5}$	Cohort	Jan 1, 1997 - Dec 31, 2002	34705	TS	MS	flQR=4.0 flQR=7.7	Yes
Leem et al. [54]	2006	Incheon, Korea	PTB	PM ₁₀	Cohort	Jan 1, 2001 - Dec 31, 2002	52113	TS	OBK	Range=26.00, 106.39	No
Madsen et al. [55]	2010	Oslo, Norway	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1999 - Dec 31, 2002	25229	WP	MS	Mean (SD)=12.6 (0.9) Mean (SD)=25.5 (3.3)	Yes
Mannes et al. [56]	2005	Sydney, Australia	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1998 - Dec 31, 2000	151458	TS	MS	Mean (Min-Max)=9.4 (2.4-82.1) Mean (Min-Max)=16.8 (3.8-104.0)	Yes
Medeiros and Gouveia [57]	2005	Sao Paulo, Brazil	CBW	PM_{10}	Cohort	Jan 1, 1998 - Dec 31, 2000	311735	TS	MS		No
Morello-Frosch et al. [22]	2010	California, USA	CBW	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1996 - Dec 31, 2006	3303834	WP, TS	MS	Mean (SD)=16.7 (5.5) Mean (SD)=31.4 (11.2)	No
										(Continued to the nex	ct page)

First author	Year of publicatior	Location	Outcome	Pollutant	Design	Time	e period	Birth (n)	Exposure period	Exposure assessment	Exposure range ($\mu g/m^3$)	Smoking adjusted
Parker et al. [23]	2005	California, USA	CBW	$PM_{2.5}$	Cohort	Jan 1, 2000	- Dec 31, 2000	18247	WP, TS	MS	Mean (SD)=15.4 (5.1)	No
Parker and Woodruff [13]	2008	Entire USA	CBW	$PM_{2.5}$	Cohort	Jan 1, 2001	- Dec 31, 2003	401273	WP, TS	MS	Median (25th-75th)=13.5 (10.9-16.1)	Yes
Pedersen et al. [58]	2013	EU	CBW	PM _{2.5} PM ₁₀	Cohort	Feb 11, 199	4 - Jun 2, 2011	50151	WP	LUR	Mean (5th -95th)=16.5 (8.8-24.9) Mean (5th -95th)=25.4 (11.6-39.4)	Yes
Pereira et al. [59]	2014	Connecticut, USA	PTB	$PM_{2.5}$	Cohort	Jan 1, 2000	- Dec 31, 2006	61688	WP, TS	MS	'Median (IQR)=12.41 (3.49)	Yes
Ritz et al. [9]	2000	California, USA	PTB	PM_{10}	Cohort	Jan 1, 1989	- Dec 31, 1993	97158	TS	MS	Mean (SD)=49.3(16.9)	Yes
Ritz et al. [60]	2007	California, USA	PTB	$PM_{2.5}$	Case-control	Jan 1, 2003	- Dec 31, 2003	58316	WP, TS	MS	Mean (range)=20.01(13.80, 26.68)	Yes
Rogers and Dunlop [61]	2006	Georgia, USA	PTB	PM_{10}	Case-control	Apr 1, 1986	- Mar 30, 1988	325	WP	DM	Median=7.84	Yes
Salam et al. [62]	2005	California, USA	CBW	PM_{10}	Cohort	Jan 1, 1975	- Dec 31, 1987	3901	WP, TS	MS	Mean (SD)=45.8 (12.9)	Yes
Suh et al. [11]	2008	Seoul, Korea	PTB	PM_{10}	Case-control	Jan 1, 2003	- Mar 31, 2007	235	TS	MS	[†] Mean (Min-Max)=61.12 (31.77-107.36)	No
Suh et al. [25]	2009	Seoul, Korea	PTB	PM_{10}	Cohort	Jan 1, 1998	- Dec 31, 2000	374167	TS	MS	^f Mean (SD)=65.74 (11.06)	No
Wilhelm and Ritz [39]	2005	California, USA	PTB	PM _{2.5} PM ₁₀	Cohort	Jan 1, 1994	- Dec 31, 2000	639710	WP, TS	MS	'Mean (range)=21.9 (11.8, 38.9) 'Mean (range)=42.2 (26.3, 77.4)	No
Wu et al. [20]	2009	Los Angeles, USA	PTB	$PM_{2.5}$	Cohort	Jan 1, 1997	- Dec 31, 2006	81186	WP	DM	Mean (SD)=1.82 (1.33)	No
Yang et al. [63]	2003	Kaohsiung, Taiwan	CBW	PM_{10}	Cohort	Jan 1, 1995	- Dec 31, 1997	13396	TS	MS	Tertile (33th-67th)=(62.43-100.44)	No
Zhao et al. [40]	2015	Lanzhou, China	PTB	PM_{10}	Cohort	Jan 1, 2010	- Dec 31, 2012	8969	WP, TS	MQI	Mean (SD)=142.1 (17.6)	Yes
PM ₁₀ , particulate matter le term birth; MS, monitoring ing; f, first trimester; s, sec	ss than or (station; DN ond trimest	equal to 10 µm in dian A, dispersion model; L ter; t, third trimester. h	neter; PM _{2.5} , UR, land-use , group with	particulate regression higher exp	matter less n model; IDW osure levels;	than or equa /, inverse-dis IQR, interqua	al to 2.5 µm in di stance weighting; artile range; SD,	ameter; WP, PM, person standard de	whole preg al monitorin viation; Min,	nancy; TS; ti g; DFM, dow minimum; N	imester specific. CBW; change in BW; l inscaling fusion model; OBK, ordinary bl lax, maximum.	PTB, pre- lock krig-

Dirga Kumar Lamichhane, et al. | Air pollution and birth outcome

al monitoring, while nine modeled exposures using pollutant dispersion and/or land-use patterns. Almost all studies adjusted for mother's age, education, gestation, parity, gender, and/or socioeconomic status as a covariate and many of them also adjusted for race and season, but 14 did not directly adjust for smoking. Most of these studies stated that the smoking-unadjusted effect estimates obtained from their study was reasonably unconfounded by smoking [20,21,37].

For outcome of BW, there were seven studies that examined PM_{10} exposure and 11 studies using $PM_{2.5}$, with nine studies providing estimates for both pollutants. Similarly, for PTB, there were five studies relying on $PM_{2.5}$, nine studies on PM_{10} , and four studies on both pollutants. For PTB studies, the reported mean exposure levels ranged from 5.1 µg/m³ [38] to 21.91 µg/m³ [39] for $PM_{2.5}$ and 12.5 µg/m³ [38] to 142.1 µg/m³ [40] for PM_{10} . Likewise, for BW, the measured mean $PM_{2.5}$ exposures ranged from 9.0 µg/m³ [41] to 21.3 µg/m³ [42] and for PM_{10} from 2.97 µg/m³ [43] to 89.7 µg/m³ [44].

Methodological Quality of Studies

We used Downs and Black checklist to assess the methodological quality of studies related to BW and PTB (Table S1). We evaluated 27 studies and all of them were cohort or case-control studies. We scored "0" for eight checklist items which were applicable to randomized controlled trials but not relevant to our study. The total scores ranged from 11 to 19 for all included studies, with a median score of 15. Fourteen studies were regarded as relatively high quality (score \geq 15) and thirteen were ranked as relatively low quality (score < 15). Most high quality studies assessed potential confounding bias and provided a clear explanation on the inclusion and exclusion criteria as well as follow-up procedures.

Quantitative Data Synthesis

The results of the pooled analyses are illustrated in Figures 2-4, forest plots showing effect estimate from individual studies for PM₁₀. We reported PM₁₀ as the number of effect estimate from studies was generally greater and results were more consistent than for the PM_{2.5}. Forest plots for the PM_{2.5} are found in Figures S1-S5. The pooled ES of BW during pregnancy was -13.88 g (95% CI, -15.70 to -12.06 g) with a moderate heterogeneity among studies (I-squared = 57.5%, *p* = 0.064) (Figure S1A). The pooled smoking-adjusted estimate was greatest for the entire pregnancy (ES, =-22.17 g; 95% CI, -37.99 to -6.41 g; I-squared = 92.3%, *p* < 0.001) compared to individual trimesters (Table 2 and Figure S1B).

Sixteen studies were included in the primary meta-analysis for the change in BW associated with a 10 μ g/m³ increment in

Table 1. Continued from the previous page

Meta-analysis	PM ₁₀	PM _{2.5}
Change in BW (g)		
Unadjusted (95% CI)	-8.17 (-10.99, -5.36)	NS
n (I-squared, %) ^a	3 (35.2)	-
Adjusted for smoking (95% CI)	-10.31 (-13.57, -7.05)	-22.17 (-37.93, -6.41)
n (I-squared, %) ^a	5 (0.0)	7 (92.3)
Combined studies (95% CI)	-6.50 (-10.94, -2.5)	-13.88 (-15.7, -12.06)
n (I-squared, %)ª	8 (76.4)	8 (47.5)
Odds ratio for PTB		
Unadjusted (95% CI)	1.04 (1.02, 1.06) ^b	NS
n (I-squared, %) ^a	4 (0.0)	-
Adjusted for smoking (95% CI)	0.97 (0.86, 1.08) ^b	1.13 (0.98, 1.28)
n (I-squared, %) ^a	3 (57.9)	5 (93.0)
Combined studies (95% CI)	1.23 (1.04, 1.41)	1.14 (1.06, 1.22)
n (I-squared, %)ª	3 (0.0)	7 (92.5)

Table 2. Summary of pooled estimates of effect for change in birth weight (BW) and preterm birth (PTB) in association with a 10 μ g /m³ increase in maternal exposure to PM₁₀ and PM_{2.5}

PM, particulate matte; PM₁₀, PM less than or equal to 10 μ m in diameter; PM_{2.5}, PM less than or equal to 2.5 μ m in diameter; CI, confidence interval; n, number of studies to conduct a meta-analysis; NS, not sufficient number of studies to conduct a meta-analysis.

^aThe percentage of variability due to heterogeneity between studies.

^bBased on the third trimester exposure. All other estimates are based on entire pregnancy exposure.

PM₁₀, by gestational period. We found the pooled smoking-adjusted ES during pregnancy (ES, -10.31 g; 95% CI, -13.57 to -7.05 g; I-squared = 0.0%, p = 0.947) (Figure 2A) was larger than that without adjustment for smoking (ES, -8.17 g; 95% CI, -10.99 to -5.36 g; I-squared = 35.2%, p = 0.214) (Figure 2B). Pooled ES were generally of greatest magnitude based on exposure over the whole pregnancy (Figure 2). Combination of the eight better quality studies demonstrated a pooled overall ES of -6.07 (95% CI, -8.61 to -3.54) with higher heterogeneity (Isquared = 53.8%, p = 0.002) (Figure 3A); the pooled ES for eight studies with relatively low quality was -1.03 g (95% CI, -2.90 to 0.84 g; I-squared = 93.5%, *p* < 0.001) (Figure 3B). Similarly, compared to the low quality studies, the pooled estimate of relatively high quality was greatest for the entire pregnancy (pooled ES, -10.59 g; 95% CI, -13.24 to -7.94 g) with no heterogeneity (I-squared = 0%, p = 0.939).

A forest plot for PTB associated with a $10 \mu g/m^3$ increment in PM₁₀ is presented in Figure 4. We estimated decreased odds of PTB for the first (combined OR, 0.98; 95% CI, 0.94 to 1.03) and second trimesters (combined OR, 0.97; 95% CI, 0.95 to 0.99), and increased odds for the third trimester (combined OR, 1.03; 95% CI, 1.01 to 1.05) and the entire pregnancy (combined OR, 1.23; 95% CI, 1.04 to 1.41). Heterogeneity among estimates was low, except for the first trimester, where it was high. Combination of studies that were based on methodological quality and confounding effect of smoking for PTB indicated mixed associations (Figures S3 and S4). We found the pooled smoking-adjusted OR (0.97; 95% CI, 0.86 to 1.08; I-squared = 57.9%, p = 0.093) was smaller than that without adjustment for smoking (pooled OR, 1.04; 95% CI 1.02 to 1.06; I-

squared = 0.0%, p = 0.449) for the third trimester of exposures (Table 2), suggesting that a residual confounding of around 6.73% (1-0.97/1.04) was likely from smoking. Furthermore, we analyzed the studies by using the combination of third trimester or entire pregnancy into single group and stratified by smoking adjusted vs. smoking unadjusted categories, revealing the pooled OR of 1.03 (95% CI, 1.01 to 1.05) for smoking-unadjusted studies and 1.01 (95% CI, 0.90 to 1.13) for smoking-adjusted studies (Figure S5), indicating a residual confounding of around 2%. However, in other gestational periods, we could not compare the confounding effects of smoking due to lack of sufficient number of studies. Furthermore, we estimated that each 10 µg/m³ increase in PM_{2.5} exposure during pregnancy increase the risk of PTB by 14% (95% CI, 1.06 to 1.22) (Table 2).

Sensitivity Analyses and Publication Bias

With some noted exception, overall, we observed that metaanalysis estimates were stable, excluding a particular study did not change the summary point estimates much. For example, the pooled estimated reduction in smoking adjusted BW during pregnancy with a 10 μ g/m³ increase in PM₁₀ increased from -6.46 g (95% CI, -14.20 to 1.28 g) to -10.31 g (95% CI, -13.57 to -7.05 g) after removing the study by Geer et al. [15]. Likewise, removing the study by Medeiros and Gouveia [57] in smoking unadjusted BW during the third trimester was resulted in negative association with BW, changing ES from 1.36 g (95% CI, -4.90 to 7.63) to -1.63 g (95% CI, -5.84 to 2.48 g). For PTB and PM₁₀ exposure, the meta-analyses were robust to the exclusion of influential studies [38,49,54] with regard to the magnitude of the estimated associations.

Study ID	% ES (95% CI) Weight
Trimester 1	
Chen et al. (2002)	-0.82 (-5.15, 3.51) 10.59
Mannes et al. (2005)	-1.40 (-13.70, 10.90) 3.04
Salam et al. (2005)	-1.50 (-11.35, 8.35) 4.29
Currie et al. (2009)	-3.08 (-10.29, 4.13) 6.52
Subtotal (1-squared = 0.0%, $p = 0.964$)	-1.43 (-4.77, 1.92) 24.43
rimester 2	0.20 (4.53, 4.13) 10.50
annes et al. (2002)	-20 50 (-33 60 -7 40) 2 74
alam et al. (2005)	-8 26 (-19 00 2 47) 3 77
urrie et al. (2009)	-4 09 (-11 81 3 64) 5 99
ibtotal (I-squared = 68.2%, p = 0.024)	-6.50 (-13.85, 0.85) 23.08
imester 3	
hen et al. (2002)	-3.95 (-8.40, 0.50) 10.39
annes et al. (2005)	-9.50 (-23.00, 4.00) 2.60
alam et al. (2005)	-10.85 (-21.10, -0.60) 4.04
urrie et al. (2009)	-6.20 (-15.11, 2.70) 4.95
arrow et al. (2011)	-3.29 (-10.57, 4.00) 6.44
IDTOTAI (I-squared = 0.0%, $p = 0.704$)	-5.11 (-8.32, -1.89) 28.42
tire pregnancy	-7 26 (-16 73 2 21) A 54
alam et al. (2005)	-11.06 (-24.22.21) 4.04
edersen et al. (2013)	-8.00 (-19.00 3.00) 3.63
ell et al. (2007)	-11.08 (-15.00, -7.16) 11.31
adsen et al. (2010)	-9.95 (-26.30, 6.39) 1.87
ubtotal (I-squared = 0.0%, p = 0.947)	-10.31 (-13.57, -7.05) 24.07
verall (I-squared = 39.8%, p = 0.042)	-5.51 (-7.88, -3.13) 100.00
ote: weights are from random effects analysis	
-50 0	50
Study	
)	% ES (95% CI) Weight
imester 1	% ES (95% Cl) Weight
imester 1 ouveia et al. (2004)	ES (95% Cl) Weight
imester 1 juveia et al. (2004) ansen et al. (2007) veralle Forces et al. (2010)	ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 2.30 (1.30 (1.60) 9.43
mester 1 uveia et al. (2004) insen et al. (2007) rello-Frosch et al. (2010) met al. (2007)	ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10
mester 1 uveia et al. (2004) insen et al. (2007) rello-Frosch et al. (2010) m et al. (2007) deiros and Gouveia (2005)	% % ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76
mester 1 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2010) n et al. (2007) deiros and Gouveia (2005) ng et al. (2003)	% % ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71
mester 1 uveia et al. (2004) insen et al. (2007) retlo-Frosch et al. (2010) m et al. (2007) defiros and Gouveia (2005) ng et al. (2003) ibtotal (i-squared = 81.1%, p = 0.000)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43
imester 1 pouveia et al. (2004) ansen et al. (2007) prello-Frosch et al. (2010) met al. (2007) edeiros and Gouveia (2005) ang et al. (2003) ubtotal (I-squared = 81.1%, p = 0.000) imester 2 pouveia et al. (2004)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 -4.40 (-18.90, 10.10) 1.37
imester 1 juveia et al. (2004) insen et al. (2007) retlo-Frosch et al. (2010) me et al. (2007) edeiros and Gouveia (2005) ing et al. (2003) ubtotal (I-squared = 81.1%, p = 0.000) imester 2 puveia et al. (2004) imsen et al. (2004)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 0.81 (-19.18, 20.82) 0.78
imester 1 juveia et al. (2004) ansen et al. (2007) prello-Frosch et al. (2010) me tal. (2007) defiros and Gouveia (2005) ing et al. (2003) ibtotal (1-squared = 81.1%, p = 0.000) imester 2 juveia et al. (2004) ansen et al. (2007) prello-Frosch et al. (2010)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 0.81 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39
mester 1 uveia et al. (2004) nsen et al. (2007) retlo-Frosch et al. (2010) m et al. (2007) total (1-squared = 81.1%, p = 0.000) mester 2 uveia et al. (2004) nsen et al. (2007) retlo-Frosch et al. (2010) m et al. (2007)	% % ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-80.00, -4.00) 7.67 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 0.81 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85
mester 1 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2010) mester 2 uveia et al. (2003) btotal (l-squared = 81.1%, <i>p</i> = 0.000) mester 2 uveia et al. (2004) nsen et al. (2007) deiros and Gouveia (2005) me et al. (2003)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -81 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.02, 280) 7.46
imester 1 uveia et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) imester 2 uveia et al. (2003) ibtotal (1-squared = 81.1%, $p = 0.000$) imester 2 uveia et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) met al. (2007) orello-Gouveia (2005) ing et al. (2003) ibtotal (1-squared = 0.0%, $p = 0.603$)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 -2.30 (-3.00, -1.60) 8.43 -2.30 (-3.00, -1.60) 8.43 -3.81 (-20, 12.0) 1.00) -5.20 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37
imester 1 puveia et al. (2004) ansen et al. (2007) edeiros and Gouveia (2005) ime et al. (2007) edeiros and Gouveia (2005) imester 2 puveia et al. (2004) ansen et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) met al. (2007) orello-Frosch et al. (2010) met al. (2007) imester 3 imester 3	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.05 (-5.52, (-5.50, -11.96) 0.67 -5.20 (-5.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 -4.40 (-18.90, 10.10) 1.37 -3.51 (-5.26, -7.90, -7.0) 8.39 -0.30 (-7.30, 6.70) 3.85 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 -1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95
imester 1 puveia et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) imester 2 puveia et al. (2003) abtotal (1-squared = 81.1%, $p = 0.000$) imester 2 puveia et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) met at. (2007) orello-Frosch et al. (2010) met at. (2007) adeiros and Gouveia (2005) ing et al. (2003) abtotal (1-squared = 0.0%, $p = 0.603$) imester 3 puveia et al. (2004) imester 3 puveia et al. (2004)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 0.81 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 -0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 29.20) 1.35
mester 1 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2010) mester 2 uveia et al. (2007) rello-Frosch et al. (2010) mester 3 uveia et al. (2003) btotal (I-squared = 0.0%, $p = 0.603$) mester 3 uveia et al. (2007) rello-Frosch et al. (2010) mester 4 rello-Frosch et al. (2005) ng et al. (2003) btotal (I-squared = 0.0%, $p = 0.603$) mester 4 uveia et al. (2007) rello-Frosch et al. (2010)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-80.0) 7.60 -6.00 (-80.0) 7.60 -6.00 (-80.0) 7.61 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.1 (-9.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -3.03 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 -14.60 (0.00, 29.20) 1.35 6.32 (-12.02, 24.65) 0.91 2.70 (-4.40, 2.60) 9.91
mester 1 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2010) mester 2 uveia et al. (2007) rello-Frosch et al. (2004) nsen et al. (2007) rello-Frosch et al. (2007) rello-Frosch et al. (2007) ng et al. (2007) deiros and Gouveia (2005) ng et al. (2003) btotal (1-squared = 0.0%, $p = 0.603$) mester 3 uveia et al. (2007) rello-Frosch et al. (2010) mester 3 uveia et al. (2007) rello-Frosch et al. (2010)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.16 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 29.20) 1.35 6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43
mester 1 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2003) btotal (I-squared = 81.1%, $p = 0.000$) mester 2 uveia et al. (2007) rello-Frosch et al. (2010) mester 3 uveia et al. (2004) nsen et al. (2007) rello-Frosch et al. (2010) mester 3 uveia et al. (2007) rello-Frosch et al. (2010) mester 3 uveia et al. (2007) rello-Frosch et al. (2010) mester 41. (2007)	% ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.16 (-2.00, -2.80) 7.46 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 29.20) 1.35 6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 4.95
mester 1 uveia et al. (2007) relo-Frosch et al. (2010) ne et al. (2007) deiros and Gouveia (2005) gg et al. (2003) btotal (I-squared = 81.1%, $p = 0.000$) mester 2 uveia et al. (2007) relo-Frosch et al. (2010) ne et al. (2007) relo-Frosch et al. (2010) mester 3 uveia et al. (2007) relo-Frosch et al. (2010) mester 3 relo-Frosch et al. (2007) relo-Frosch et al. (2005)	% ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (12,0, 14.40) 4.10 -6.05 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (12,0, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.11 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 -0.30 (-7.30, 6.70) 3.85 -0.30 (-7.30, 6.70) 2.695 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 1.35 -6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 4.95 -2.10 (-7.50, 3.30) 4.95
imester 1 uveia et al. (2004) insen et al. (2007) reflo-Frosch et al. (2010) m et al. (2003) ibtotal (I-squared = 81.1%, $p = 0.000$) imester 2 uveia et al. (2004) insen et al. (2007) reflo-Frosch et al. (2010) m et al. (2007) ibtotal (I-squared = 0.0%, $p = 0.603$) imester 3 uveia et al. (2004) insen et al. (2007) reflo-Frosch et al. (2010) m et al. (2003) ibtotal (I-squared = 0.0%, $p = 0.603$) imester 3 uveia et al. (2001) ay et al. (2001) m et al. (2007) reflo-Frosch et al. (2010) m et al. (2007) ibtotal (I-squared = 94.1%, $p = 0.000$)	% ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.16 (-2.30, -0.70) 8.39 -1.50 (-2.30, -0.70) 8.39 -3.03 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 29.20) 1.35 6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 4.95 8.00 (5.70, 10.30) 7.54 3.30 (-6.60, 13.20) 2.48
have the function of the second seco	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-80.0) 4.00 -6.00 (-80.0) 7.60 -6.00 (-80.0) 7.60 -7.331 (-6.45, -0.16) 29.43 -1.50 (-2.30, -0.70) 8.39 -3.31 (-6.45, -0.16) 29.43 -1.50 (-2.30, -0.70) 8.39 -3.03 (-7.30, 6.70) 3.85 -3.04 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.90, -0.50) 26.95 -1.24 (-1.90, -0.50) 26.95 -1.24 (-1.90, -0.50) 26.95 -1.24 (-1.90, -0.50) 26.95 -1.35 (-6.0, 13.20) 2.48 -3.30 (-6.60, 13.20) 2.44 <td< td=""></td<>
imester 1 invester 1 invester 1 invester 1 invester 2 invester 2 invester 2 invester 2 invester 2 invester 2 invester 4al. (2004) ansen et al. (2007) reflo-Frosch et al. (2010) reflo-Frosch et al. (2010) reflo-Frosch et al. (2005) ang et al. (2003) ubtotal (1-squared = $0.0\%, p = 0.603$) imester 3 invester 3 invester 4al. (2001) reflo-Frosch et al. (2010) ray et al. (2007) oreflo-Frosch et al. (2010) ray et al. (2003) ubtotal (1-squared = $94.1\%, p = 0.000$) thire pregnancy oreflo-Frosch et al. (2010)	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (12.0, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-3.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -3.81 (-5.20, -0.70) 8.39 -3.03 (-7.30, 6.70) 3.85 -4.40 (-3.60, 6.80) 7.46 1.60 (-3.60, 6.80) 7.46 1.60 (-3.60, 6.80) 7.46 1.60 (-3.60, 6.80) 7.46 1.60 (-3.60, 6.80) 7.46 1.60 (-3.60, 6.80) 7.46 1.60 (-18.90, 10.10) 1.35 6.32 (-12.02, 24.65) 9.91 -3.70 (-4.40, -3.00) 8.43 8.99 (-16.71, -1.27) 3.44 -210 (-7.50, 3.30) 4.95 8.00 (5.70, 10.30) 7.54 3.30 (-6.60, 13.20) 2.48 1.36 (-4.90, 7.63) 29.09 -7.20 (-7.90, -6.50) 8.43
invester 1 invester 1 invester 1 invester 2 invester 2 invester 2 invester 2 invester 2 invester 2 invester 2 invester 4al. (2004) ansen et al. (2007) invester 2 invester 4al. (2007) invester 3 invester 3 invester 3 invester 4al. (2004) ansen et al. (2003) invester 3 invester 4al. (2004) ansen et al. (2003) invester 4al. (2005) ang et al. (2003) invester 3 invester 4al. (2001) invester 4al. (2001) invester 4al. (2002) invester 4al. (2001) invester 4al. (2005) ang et al. (2003) invester 4al. (2001) invester 4al. (2005) ang et al. (2003) invester 4al. (2005) ang et al. (2003) invester 4al. (2005) ang et al. (2003) invester 4al. (2004) invester 4al. (2005) ang et al. (2003) invester 4al. (2010) invester 4al. (2	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -8.16 (-2.30, -0.70) 8.99 -1.50 (-2.30, -0.70) 8.95 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 29.20) 1.35 6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 7.54 3.30 (-6.60, 13.20) 2.48 1.36 (-4.90, 7.63) 29.99 -7.20 (-7.90, -6.50) 8.43 -11.04 (-15.42, -6.67) 5.78
imester 1 Duveia et al. (2004) ansen et al. (2007) orello-Frosch et al. (2010) imester 2 Duveia et al. (2007) deliros and Gouveia (2005) ansen et al. (2007) deliros and Gouveia (2005) ang et al. (2007) deliros ch et al. (2010) ray et al. (2003) ubtotal (1-squared = 94.1%, $p = 0.000$) thire pregnancy prello-Frosch et al. (2010) ray et al. (2010) ansen et al. (2007) bottal (1-squared = 35.2%, $p = 0.214$)	% ES (95% Cl) Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (120, 14.40) 4.10 -6.00 (-80.0) 7.6 -6.00 (-80.0) 7.6 -5.20 (-8.50, -1.90) 6.71 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 -0.81 (-19.18, 20.82) 0.78 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.24 (-1.99, -0.50) 26.95 -1.30 (-7.50, 3.30) 4.95 8.00 (5.70, 10.30) 7.54 3.30 (-6.60, 13.20) 2.48 -3.30 (-7.90, -6.50) 8.43 -1.04 (-15.42, -6.67) 5.78 0.00 (-32.19, 32.
imester 1 puveia et al. (2004) ansen et al. (2007) dediros and Gouveia (2005) ime et al. (2007) dediros and Gouveia (2005) imester 2 puveia et al. (2004) ansen et al. (2007) dediros and Gouveia (2005) ang et al. (2007) dediros and Gouveia (2005) ang et al. (2007) dediros and Gouveia (2005) imester 3 puveia et al. (2004) ansen et al. (2007) dediros and Gouveia (2005) imester 4 (2007) dediros and Gouveia (2005) imester 3 puveia et al. (2007) dediros and Gouveia (2005) imester 4 (2007) dediros and Gouveia (2005) ing et al. (2007) dediros and Gouveia (2005) i	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (12.0, 14.40) 4.10 -6.05 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (12.0, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37
mester 1 uveia et al. (2004) met al. (2007) met al. (2007) met al. (2003) bitotal (I-squared = 81.1%, $p = 0.000$) mester 2 uveia et al. (2004) insen et al. (2007) met al. (2007) met al. (2007) met al. (2003) bitotal (I-squared = 0.0%, $p = 0.603$) mester 3 uveia et al. (2004) insen et al. (2007) mester 41. (2003) bitotal (I-squared = 0.0%, $p = 0.603$) mester 3 uveia et al. (2007) met al. (2007) met al. (2007) mester 41. (2010) mester 41. (% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 6.71 -3.31 (-6.45, -0.16) 29.43 - -4.40 (-18.90, 10.10) 1.37 81 (-19.18, 20.82) 0.78 520 (-3.00, -7.00) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-2.30, -0.70) 8.39 50 (-3.00, -7.00) 8.43 150 (-2.30, -0.70) 8.43 124 (-1.99, -0.50) 26.95 -1460 (0.00, 29.20) 1.35 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 7.54 3.30 (-6.60, 13.20) 2.48
have the set of the s	% Weight -13.70 (-27.00, -0.40) 1.58 -6.95 (-25.87, 11.96) 0.86 -2.30 (-3.00, -1.60) 8.43 7.80 (1.20, 14.40) 4.10 -6.00 (-8.00, -4.00) 7.76 -5.20 (-8.50, -1.90) 0.671 -3.31 (-6.45, -0.16) 29.43 -4.40 (-18.90, 10.10) 1.37 -8.16 (-2.30, -0.70) 8.39 -1.50 (-2.30, -0.70) 8.39 -1.50 (-2.30, -0.70) 8.39 -0.30 (-7.30, 6.70) 3.85 0.40 (-2.00, 2.80) 7.46 1.60 (-3.60, 6.80) 5.10 -1.24 (-1.99, -0.50) 26.95 14.60 (0.00, 2.92.0) 1.35 6.32 (-12.02, 24.65) 0.91 -3.70 (-4.40, -3.00) 8.43 -8.99 (-16.71, -1.27) 3.44 -2.10 (-7.50, 3.30) 4.55 8.00 (5.70, 10.30) 7.54 3.30 (-6.60, 13.20) 2.48 1.36 (-4.90, 7.63) 29.99 -7.20 (-7.90, -6.50) 8.43 -11.04 (-15.42, -6.67) 5.78

Figure 2. Effect size (ES) and 95% confidence interval (CI) of change in birth weight (g) per 10 µg/m³ PM₁₀, by exposure period; size of shaded area around point estimate is proportional to weight in calculating pooled estimate. (A) Forest plot of pooled studies adjusting for smoking and (B) forest plot of pooled studies not adjusting for smoking. PM₁₀, particulate matter less than or equal to 10 µm in diameter.

Study ID	ES (95% CI)	% Weight
Trimester 1 Chen et al. (2002)	-0.82 (-5.15, 3.51) 13 70 (27 00 - 0.40)	8.13 2.71
Salam et al. (2005)	-1.50 (-11.35, 8.35)	4.08
Mannes et al. (2005)	-1.40 (-13.70, 10.90)	3.04
Currie et al. (2009)	-3.08 (-10.29, 4.13)	5.72
Subtotal (I-squared = 0.0% , p = 0.500)	-2.10 (-5.40, 1.09)	23.08
Trimester 2	0.20 (4.52 . 4.12)	0 12
Gouveia et al. (2004)	-4.40 (-18.90, 10.10)	2.37
Salam et al. (2005)	-8.26 (-19.00, 2.47)	3.66
Mannes et al. (2005)	-20.50 (-33.60, -7.40)	2.77
Currie et al. (2009)	-4.09 (-11.81, 3.64)	5.36
Subtotal (I-Squared - 37.8%, p = 0.030)	-3.33 (-12.13, 0.23)	22.23
Trimester 3	2.05 (9.40, 0.50)	9.02
Gouveia et al. (2004)	14.60 (0.00, 29.20)	2.35
Mannes et al. (2005)	-9.50 (-23.00, 4.00)	2.65
Salam et al. (2005)	-10.85 (-21.10, -0.60)	3.88
Currie et al. (2009)	-6.20 (-15.11, 2.70)	4.60
Subtotal (I-squared = 49.5% p = 0.078)	-5.23 (-10.35 -0.12)	26.86
	0.20 (10.00, 0.12)	20.00
Entire pregnancy	7.00 (40.70, 0.04)	4.00
Salam et al. (2002)	-7.20 (-10.73, 2.21) -11.06 (-24.22, 2.11)	4.29
Bell et al. (2007)	-11.08 (-15.00, -7.16)	8.50
Gray et al. (2010)	-11.04 (-15.42, -6.67)	8.09
Pedersen et al. (2013)	-8.00 (-19.00, 3.00)	3.54
Subtotal (I-squared = 0.0%, p = 0.939)	-10.59 (-13.24, -7.94)	27.17
Overall (I-squared = 53.8%, p = 0.002)	-6.07 (-8.61, -3.54)	100.00
Note: weights are from random effects analysis		
-50 0	50	(A
Study		%
Study ID	ES (95% CI)	% Weight
Study ID Trimester 1	ES (95% CI)	% Weight
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia. (2005)	ES (95% Cl)	% Weight 6.91 8.00
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia. (2005) Hansen et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96)	% Weight 6.91 8.00 0.88
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40)	% Weight 6.91 8.00 0.88 4.20
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.90 (-9.00)	% Weight 6.91 8.00 0.88 4.20 8.71 8.71
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p= 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2003) Medeiros and Gouveia (2005)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) 0.40 (-2.00, 2.80)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 2.61
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18 20.81)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1-20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (120, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) 3.70 (-4.40, 3.20)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2% , p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0\%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2010) Darrow et al. (2010) Darrow et al. (2010)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2010) Darrow et al. (2011) Subtotal (I-squared = 94.6%, p = 0.000)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2010) Darrow et al. (2010) Subtotal (I-squared = 94.6%, p = 0.000)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, $p = 0.000$) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2007) Kim et al. (2007) Kim et al. (2007) Kim et al. (2007) Kim et al. (2010) Darrow et al. (2010) Subtotal (I-squared = 94.6%, $p = 0.000$) Trime pregnancy Hansen et al. (2007)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, $p = 0.000$) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 94.6%, $p = 0.000$) Entire pregnancy Hansen et al. (2007) Morello-Frosch et al. (2010)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-55, 7.29) 0.000 (-32.19, 32.19) -7.20 (-7.90, -6.50)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, p = 0.485) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 94.6%, p = 0.000) Entire pregnancy Hansen et al. (2007) Morello-Frosch et al. (2010) Geer et al. (2012) Morello-Frosch et al. (2010) Completer State (2007) Morello-Frosch et al. (2010) Yang et al. (2007) Morello-Frosch et al. (2010) Completer State (2007) Morello-Frosch et al. (2007) Morel	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29) -7.20 (-7.90, -6.50) -4.81 (0.52, 9.11)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71 6.01
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2% , p = 0.000) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0% , p = 0.485) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2010) Entire pregnancy Hansen et al. (2007) Morello-Frosch et al. (2010) Geer et al. (2012) Madsen et al. (2012) Madsen et al. (2010) Carter to the table of the table of tab	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29) 0.00 (-32.19, 32.19) -7.20 (-7.90, -6.50) -4.81 (0.52, 9.11) -9.95 (-26.30, 63.39)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71 6.01 1.14
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, $p = 0.000$) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2010) Characen et al. (2010) Darrow et al. (2010) Characen et al. (2010) Characen et al. (2010) Subtotal (I-squared = 94.6%, $p = 0.000$) Third pregnancy Hansen et al. (2010) Geer et al. (2012) Madsen et al. (2010) Subtotal (I-squared = 89.9%, $p = 0.000$)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29) -7.20 (-7.90, -6.50) 4.81 (0.52, 9.11) -9.95 (-26.30, 6.39) -2.86 (-12.35, 6.64)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71 6.01 1.14 16.18
Study ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2%, $p = 0.000$) Trimester 2 Yang et al. (2003) Medeiros and Gouveia (2005) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0%, $p = 0.485$) Trimester 3 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2011) Subtotal (I-squared = 94.6%, $p = 0.000$) Trimester al. (2010) Geer et al. (2010) Geer et al. (2010) Subtotal (I-squared = 89.9%, $p = 0.000$)	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-52.50, 7.29) 0.00 (-32.19, 32.19) -7.20 (-7.90, -6.50) 4.81 (0.52, 9.11) -9.95 (-26.30, 6.39) -2.86 (-12.35, 6.64) -1.03 (-2.90, 0.84)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71 6.01 1.14 16.18 100.00
Sludy ID Trimester 1 Yang et al. (2003) Medeiros and Gouveia (2005) Hansen et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 83.2% , $p = 0.000$) Trimester 2 Yang et al. (2007) Morello-Frosch et al. (2010) Subtotal (I-squared = 0.0% , $p = 0.485$) Trimester 3 Yang et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2007) Kim et al. (2007) Kim et al. (2007) Kim et al. (2007) Kim et al. (2007) Morello-Frosch et al. (2010) Darrow et al. (2010) Subtotal (I-squared = 94.6% , $p = 0.000$) This pregnancy Hansen et al. (2010) Subtotal (I-squared = 93.5% , $p = 0.000$) Note: weights are from random effects analysis	ES (95% Cl) -5.20 (-8.50, -1.90) -6.00 (-8.00, -4.00) -6.95 (-25.87, 11.96) 7.80 (1.20, 14.40) -2.30 (-3.00, -1.60) -2.82 (-5.96, 0.32) 1.60 (-3.60, 6.80) 0.40 (-2.00, 2.80) -0.30 (-7.30, 6.70) 0.81 (-19.18, 20.81) -1.50 (-2.30, -0.70) -1.24 (-1.98, -0.49) 3.30 (-6.60, 13.20) 8.00 (5.70, 10.30) 6.32 (-12.01, 24.64) -2.10 (-7.50, 3.30) -3.70 (-4.40, -3.00) -3.29 (-10.57, 4.00) 0.90 (-5.50, 7.29) 0.00 (-32.19, 32.19) -7.20 (-7.90, -6.50) 4.81 (0.52, 9.11) -9.95 (-26.30, 6.39) -2.86 (-12.35, 6.64) -1.03 (-2.90, 0.84)	% Weight 6.91 8.00 0.88 4.20 8.71 28.70 5.24 7.69 3.94 0.79 8.67 26.34 2.54 7.77 0.93 5.08 8.71 3.77 28.79 0.32 8.71 6.01 1.14 16.18 100.00

Figure 3. Effect size (ES) and 95% confidence interval (CI) of change in birth weight (g) per 10 μg/m³ PM₁₀, by exposure period; size of shaded area around point estimate is proportional to weight in calculating pooled estimate. (A) Forest plot of pooled relatively better quality studies and (B) forest plot of pooled relatively low quality studies. PM₁₀, particulate matter less than or equal to 10 μm in diameter.

Study		%
ID	ES (95% CI)	Weight
Trimester 1		
Hansen et al. (2006)	1.36 (1.14, 1.64)	0.79
Kim et al. (2007)		4.50
Ritz et al. (2000)	 ◆ 1.02 (1.00, 1.04) 	10.16
Suh et al. (2009)	• 0.94 (0.90, 0.99)	7.69
Jalaludin et al. (2007)	0.88 (0.76, 1.01)	2.62
Zhao et al. (2015)	1.00 (0.74, 1.36)	0.53
Wilhelm and Ritz (2005)	 0.98 (0.94, 1.02) 	8.57
Lee et al. (2013)	1.05 (0.92, 1.20)	2.22
Subtotal (l-squared = 72.6% , $p = 0.001$)	0.98 (0.94, 1.03)	37.09
Trimester 2	1.00.(0.02, 1.00)	5.00
Kim et al. (2007)		5.28
Sun et al. (2009)	• 0.98 (0.94, 1.03)	7.82
Zhao et al. (2015)		0.25
Wilhelm and Ritz (2005) $(1 - 0.00)$	0.96 (0.93, 0.99)	9.58
Subtotal (I-squared = 0.0% , $p = 0.601$)	0.97 (0.95, 0.99)	22.92
- Trimester 3		
Jalahudin et al. (2007)	0.89(0.77, 1.03)	2 49
Kim et al. (2007)	▲ 1.05 (0.99, 1.11)	6.16
Ritz et al. (2000)	• 1.03 (1.00, 1.05)	9.75
Sub et al. (2009)	• 1.05 (1.02, 1.03)	9 2 9
Hansen et al. (2006)		0.98
Wilhelm and Ritz (2005)	• 1.02 (0.99, 1.02)	9 25
Theoret al. (2015)		0.63
Subtotal (L-squared = 27.1% p = 0.221)		38 54
Subtout (i Squarea 27.176, p 0.221)	1.05 (1.01, 1.05)	50.51
Entire pregnancy		
Hansen et al. (2006)	1.19 (0.87, 1.64)	0.35
Rogers and Dunlop (2006)	1 24 (1 04, 1 48)	1.01
Zhao et al. (2015)	1.22 (0.66, 2.24)	0.09
Subtotal (I-squared = 0.0% , $p = 0.977$)	1.23 (1.04, 1.41)	1.44
	•	
Overall (l-squared = 67.3% , $p = 0.000$)	1.00 (0.98, 1.03)	100.00
Note: weights are from random effects analysis		
-2.24	1 2.24	

Figure 4. Effect size (ES) (odds ratio) and 95% confidence intervals (CI) for preterm birth per 10 µg/m³ PM₁₀, by exposure period. PM₁₀, particulate matter less than or equal to 10 µm in diameter.

Figure 5. Contour-enhanced funnel plot for estimation of publication bias.

We did not detect a statistically significant publication bias based on the Egger's test (p = 0.181 for PM₁₀; p = 0.241 for PM_{2.5}) or by using contour-enhanced funnel plot (Figure 5). The funnel plot revealed that studies were missing in areas of higher statistical significance, suggesting that asymmetry may be more likely to be due to factors other than publication bias, such as variable study quality [64].

Discussion

This systematic review has updated current scientific evidence and shows that decrease in BW per $10 \,\mu g/m^3$ increase in particulate matter (PM_{2.5} or PM₁₀) during pregnancy; a decreased BW estimated with smoking-adjusted studies was consistently higher than the weight estimated with smoking unadjusted studies. We found the pooled estimates of decrease in BW of approximately 10 g for PM₁₀ and 22 g for PM_{2.5} without evidence of publication bias or heterogeneity (PM₁₀), after taking into consideration the confounding effect of smoking. In addition, our results of combined smoking-adjusted and-unadjusted studies suggest that maternal exposures to PM10 and PM2.5 during pregnancy are associated with 23% and 14%, respectively, excess risk of PTB.

We identified 13 previous reviews linking air pollution, BW and PTB [1-3,16-19,65-70]. Of the previous reviews, only two reviews have provided pooled estimates of effects [1,3]. Other previous reviews were basically provided a variety of qualitative observations and discussed outstanding methodological issues [3]. The major methodological issues identified included confounding factors, a small number of studies identified for each outcome, difference in characterization of exposure and outcome, and publication bias, although it was not quantified. There was little evidence to support the identification of a critical period of exposures. In a recent coordinated international analysis, Dadvand et al. [70] explored the influence of site characteristics and exposure assessment methods on between-center heterogeneity to quantify the association between maternal exposure to PM and term BW and low BW. However, this study was mainly based on center-specific effect estimates and maternal smoking was not included in their meta-regression analysis. One advantage of this review is that we appraised all individual studies included in the outcome specific analysis according to a structured and validated checklist, helping us to present quality assessment of methodological rigor of studies in a more organized and standardized way. The included studies allowed us to explore possible exposure-response relationship according to a critical exposure period, which offers another advantage of this meta-analysis.

Our pooled estimates of decrease in BW of 10 g and 22 g for

each 10 μ g/m³ increase in PM₁₀ and PM_{2.5}, respectively, is comparable with a recent coordinated international analysis [70] and a previous review [3]. A coordinated international analysis from 14 centers in 9 countries reported that PM₁₀ was associated with an 8.9 g (95% CI, -13.2 to -4.6 g) decrease in BW per 10 $\mu g/m^3$ in the fully adjusted random effects analysis, and there was significant heterogeneity among site characteristics. Stieb et al. [3] estimated decreases of 23.4 g (95% CI, -45.5 to -1.4 g) BW per $10 \,\mu\text{g}/\text{m}^3$ increases in PM_{2.5}. As reported in previous reviews, we also observed a significant heterogeneity among the studies, but the degree of heterogeneity was varied considerably according to pollutants, outcome, and exposure period. However, we detected a consistent pattern of variability in estimates by gestational period.

We found overall or pooled smoking-adjusted ES for BW was stronger than that without adjustment for smoking in most cases. Combined smoking-unadjusted ES indicated a decrease in BW associated with a 10 μ g/m³ increase in PM₁₀ exposure during pregnancy (-8.17 g; 95% CI, -10.99 to -5.36 g). The association was stronger when adjusted for smoking (-10.31 g; 95% CI, -13.57 to -7.05 g). The strength and direction of this association was comparable with a previous fully adjusted (vs. unadjusted) random effects meta-analyses for term BW (-8.9 g; 95% CI, -13.2 to -4.6 g) [70].

We found that the pooled OR of PTB during entire pregnancy is higher than that of previous review. Sapkota et al. [1] estimated the association between PTB and maternal PM₁₀ exposure during the third trimester (5 studies) and entire pregnancy (7 studies), but did not detect association with exposure in the entire pregnancy (OR, 1.02; 95% CI, 1.01 to 1.03 and OR, 1.02; 95% CI, 1.00 to 1.03, respectively). Our estimate for third trimester (OR, 1.03; 95% CI, 1.01 to 1.05) is in agreement with that study. We estimated a 23% increase in risk of PTB for each 10 μ g/m³ increase in PM10 during entire pregnancy without evidence of heterogeneity (I-squared = 0%, p = 0.977). This may be due to fewer estimates available in that gestational period. One more possibility is that very high rates of PTB observed in some of the studies may have partly affected the pooled estimates. Stieb et al. [3] also reported higher risk of PTB for each 20 μ g/m³ increase in PM_{10} during entire pregnancy (OR, 1.35; 95% CI, 0.97 to 1.90), but their lower 95% CI included the null value of 1.

We found no evidence of publication bias based on contourenhanced funnel plot for PM and BW. Therefore, we expect that any publication bias, if present, is minimal in our review. Thus, some difference in the ESs between this meta-analysis and previous one may be due to publication bias. A previous study that demonstrated a comparison between meta-analyses and large multicenter analyses of the associations between air pollution

and mortality has suggested that difference in ESs reported in meta-analyses could be attributable to publication bias [71].

Woodruff et al. [14] stated that methodological quality of studies on air pollution and birth outcomes depends on alternative approaches to address residual confounding by individual risk factors, characterization of exposure patterns and confounding, refined characterization of critical exposure windows, evaluation of air pollution as a multi-pollutant mixture, and use of alternative pollutant metrics. We observed significant heterogeneity for some exposure periods. Variations in population characteristics, methods of exposure ascertainment, and characterization of confounding may have resulted in heterogeneity in the pooled estimates. Subgroup analyses in our review identified potential confounding effects of smoking and methodological quality (high or low) as potential sources of heterogeneity. We observed some attenuation in PM10 effect estimates for PTB after controlling for smoking, although the level of effect was less than 7%, suggesting that a residual confounding by unreported smoking is likely. However, we judged that, for PTB, there were too few estimates in individual exposure period in order to examine sources of heterogeneity in each period.

Although we realized that the countries where studies were conducted and the study design might also be sources of heterogeneity, they were not analyzed in the review due to the limited number of studies conducted in different countries. Though we recognized that several sensitivity analyses were conducted in relation to race or other factors, stratified analyses were not performed based on these categories due to the limited number of studies, particularly when divided by exposure period. We also aware that the use of effect estimates based on associations with ambient levels of pollutants as a surrogate for personal exposure levels may have resulted some exposure misclassification. Other limitation includes the fact that none of the included studies provided the precise information on the timing of smoking during pregnancy. Hence, future large cohort studies with sufficient data and detailed information on timing of smoking during pregnancy and other potential confounding factors as well as reliable exposure data are required for a better understanding of the association between PM and the risk of adverse birth outcomes.

Conclusion

This systematic review and meta-analysis, which are based on 44 studies of particulate pollution and birth outcomes, revealed that 10 to 22 g decrease in BW was linked to maternal exposure to particulate pollution (PM_{10} or $PM_{2.5}$) during pregnancy, after adjustment for smoking. Likewise, pooled smoking-adjusted

OR for PTB (0.97; 95% CI, 0.86 to 1.08; I-squared = 57.9%, p = 0.093) was smaller than that without adjustment for smoking (pooled OR,1.04; 95% CI, 1.02 to 1.06; I-squared = 0.0%, p = 0.449) for the third trimester of exposures, suggesting some attenuation in the pollution parameter after controlling for smoking. We identified potential confounding effects of smoking and methodological quality as potential sources of heterogeneity. There was considerable variability in pooled estimates of effect by gestational period. Our findings have substantial public health implications as reduced BW, although relatively small, is a risk factor for numerous adverse health effects early in life. In addition, it has also been associated with multiple adverse outcomes (reduced stature, increased incidence of cardiovascular disease, type 2 diabetes mellitus, and osteoporosis) later in life. Considering the ubiquitous nature of particulate air pollution [72]. exposure, variation in effects by exposure period, especially time periods shorter than trimester and sources of heterogeneity between studies and centers should be further explored.

Acknowledgements

The authors would like to thank Professor Nick Black and Eun Hee Ha for their helpful response to our queries. This study was funded by Inha University and Korea Centers for Disease Control and Prevention (#2014ER270501).

Conflict of Interest

The authors have no conflicts of interest associated with material presented in this paper.

ORCID

Dirga Kumar Lamichhane *http://orcid.org/0000-0002-9263-3707* Jong-Han Leem *http://orcid.org/0000-0003-3292-6492* Ji-Young Lee *http://orcid.org/0000-0002-0067-182X* Hwan-Cheol Kim *http://orcid.org/0000-0002-3635-1297*

References

- Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health 2012;5(4):369-381.
- 2. Srám RJ, Binková B, Dejmek J, Bobak M. Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 2005;113(4):375-382.
- 3. Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, BW and preterm birth: a systematic review and meta-analysis. Environ

Res 2012;117:100-111.

- 4. Behrman RE, Butler AS ; Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm birth: causes, consequences, and prevention. Washington, DC: National Academies Press; 2007, p. 311-432.
- 5. Wilcox AJ. On the importance--and the unimportance--of birthweight. Int J Epidemiol 2001;30(6):1233-1241.
- Van Lieshout RJ, Boyle MH, Saigal S, Morrison K, Schmidt LA. Mental health of extremely low BW survivors in their 30s. Pediatrics 2015;135(3):452-459.
- World Health Organization; United Nations Children's Fund. Low birthweight: country, regional and global estimates; 2004 [cited 2015 Jun 3]. Available from: http://www.unicef.org/publications/ files/low_birthweight_from_EY.pdf.
- 8. Bibby E, Stewart A. The epidemiology of preterm birth. Neuro Endocrinol Lett 2004;25 Suppl 1:43-47.
- 9. Ritz B, Yu F, Chapa G, Fruin S. Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology 2000;11(5):502-511.
- Bell ML, Ebisu K, Belanger K. Ambient air pollution and low BW in Connecticut and Massachusetts. Environ Health Perspect 2007;115(7):1118-1124.
- 11. Suh YJ, Ha EH, Park H, Kim YJ, Kim H, Hong YC. GSTM1 polymorphism along with PM10 exposure contributes to the risk of preterm delivery. Mutat Res 2008;656(1-2):62-67.
- Parker JD, Rich DQ, Glinianaia SV, Leem JH, Wartenberg D, Bell ML, et al. The International Collaboration on Air Pollution and Pregnancy Outcomes: initial results. Environ Health Perspect 2011; 119(7):1023-1028.
- Parker JD, Woodruff TJ. Influences of study design and location on the relationship between particulate matter air pollution and birthweight. Paediatr Perinat Epidemiol 2008;22(3):214-227.
- Woodruff TJ, Parker JD, Darrow LA, Slama R, Bell ML, Choi H, et al. Methodological issues in studies of air pollution and reproductive health. Environ Res 2009;109(3):311-320.
- Geer LA, Weedon J, Bell ML. Ambient air pollution and term BW in Texas from 1998 to 2004. J Air Waste Manag Assoc 2012;62(11): 1285-1295.
- Bonzini M, Carugno M, Grillo P, Mensi C, Bertazzi PA, Pesatori AC. Impact of ambient air pollution on birth outcomes: systematic review of the current evidences. Med Lav 2010;101(5):341-363.
- Bosetti C, Nieuwenhuijsen MJ, Gallus S, Cipriani S, La Vecchia C, Parazzini F. Ambient particulate matter and preterm birth or BW: a review of the literature. Arch Toxicol 2010;84(6):447-460.
- Ghosh R, Rankin J, Pless-Mulloli T, Glinianaia S. Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ Res 2007;105(3):400-408.
- Shah PS, Balkhair T; Knowledge Synthesis Group on Determinants of Preterm/LBW births. Air pollution and birth outcomes: a systematic review. Environ Int 2011;37(2):498-516.
- Wu J, Ren C, Delfino RJ, Chung J, Wilhelm M, Ritz B. Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the south coast air basin of California. Environ Health Perspect 2009;117(11):1773-1779.
- 21. Huynh M, Woodruff TJ, Parker JD, Schoendorf KC. Relationships between air pollution and preterm birth in California. Paediatr Per-

inat Epidemiol 2006;20(6):454-461.

- 22. Morello-Frosch R, Jesdale BM, Sadd JL, Pastor M. Ambient air pollution exposure and full-term BW in California. Environ Health 2010;9:44.
- 23. Parker JD, Woodruff TJ, Basu R, Schoendorf KC. Air pollution and BW among term infants in California. Pediatrics 2005;115(1):121-128.
- Basu R, Woodruff TJ, Parker JD, Saulnier L, Schoendorf KC. Comparing exposure metrics in the relationship between PM2.5 and BW in California. J Expo Anal Environ Epidemiol 2004;14(5):391-396.
- 25. Suh YJ, Kim H, Seo JH, Park H, Kim YJ, Hong YC, et al. Different effects of PM10 exposure on preterm birth by gestational period estimated from time-dependent survival analyses. Int Arch Occup Environ Health 2009;82(5):613-621.
- 26. Gray SC, Edwards SE, Schultz BD, Miranda ML. Assessing the impact of race, social factors and air pollution on birth outcomes: a population-based study. Environ Health 2014;13(1):4.
- Gray SC, Edwards SE, Miranda ML. Assessing exposure metrics for PM and BW models. J Expo Sci Environ Epidemiol 2010;20(5): 469-477.
- Bell ML, Ebisu K, Belanger K. The relationship between air pollution and low BW: effects by mother's age, infant sex, co-pollutants, and pre-term births. Environ Res Lett 2008;3(4):44003.
- 29. Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, et al. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect 2004;112(14):1398-1402.
- Jedrychowski W, Perera F, Mrozek-Budzyn D, Mroz E, Flak E, Spengler JD, et al. Gender differences in fetal growth of newborns exposed prenatally to airborne fine particulate matter. Environ Res 2009;109(4):447-456.
- Jedrychowski W, Perera F, Mrozek-Budzyn D, Flak E, Mroz E, Sochacka-Tatara E, et al. Higher fish consumption in pregnancy may confer protection against the harmful effect of prenatal exposure to fine particulate matter. Ann Nutr Metab 2010;56(2):119-126.
- 32. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998;52(6):377-384.
- 33. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998;280(19):1690-1691.
- 34. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283(15):2008-2012.
- 35. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177-188.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557-560.
- Hansen C, Neller A, Williams G, Simpson R. Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environ Res 2007;103(3):383-389.
- 38. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air pollution impacts on birth out-

comes. Environ Health Perspect 2008;116(5):680-686.

- Wilhelm M, Ritz B. Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect 2005;113(9):1212-1221.
- 40. Zhao N, Qiu J, Zhang Y, He X, Zhou M, Li M, et al. Ambient air pollutant PM10 and risk of preterm birth in Lanzhou, China. Environ Int 2015;76:71-77.
- Jalaludin B, Mannes T, Morgan G, Lincoln D, Sheppeard V, Corbett S. Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia. Environ Health 2007;6:16.
- 42. Gehring U, Wijga AH, Fischer P, de Jongste JC, Kerkhof M, Koppelman GH, et al. Traffic-related air pollution, preterm birth and term BW in the PIAMA birth cohort study. Environ Res 2011;111(1):125-135.
- 43. Currie J, Neidell M, Schmieder JF. Air pollution and infant health: lessons from New Jersey. J Health Econ 2009;28(3):688-703.
- 44. Kim OJ, Ha EH, Kim BM, Seo JH, Park HS, Jung WJ, et al. PM10 and pregnancy outcomes: a hospital-based cohort study of pregnant women in Seoul. J Occup Environ Med 2007;49(12):1394-1402.
- Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, et al. Prenatal exposure to fine particulate matter and BW: variations by particulate constituents and sources. Epidemiology 2010;21(6):884-891.
- Chen L, Yang W, Jennison BL, Goodrich A, Omaye ST. Air pollution and BW in northern Nevada, 1991-1999. Inhal Toxicol 2002;14(2):141-157.
- Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE. Ambient air pollution and BW in full-term infants in Atlanta, 1994-2004. Environ Health Perspect 2011;119(5):731-737.
- Gouveia N, Bremner SA, Novaes HM. Association between ambient air pollution and BW in São Paulo, Brazil. J Epidemiol Community Health 2004;58(1):11-17.
- 49. Ha EH, Lee BE, Park HS, Kim YS, Kim H, Kim YJ, et al. Prenatal exposure to PM10 and preterm birth between 1998 and 2000 in Seoul, Korea. J Prev Med Public Health 2004;37(4):300-305.
- Hansen C, Neller A, Williams G, Simpson R. Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG 2006;113(8):935-941.
- Hyder A, Lee HJ, Ebisu K, Koutrakis P, Belanger K, Bell ML. PM2.5 exposure and birth outcomes: use of satellite- and monitorbased data. Epidemiology 2014;25(1):58-67.
- 52. Kloog I, Melly SJ, Ridgway WL, Coull BA, Schwartz J. Using new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and BW in Massachusetts. Environ Health 2012;11:40.
- 53. Lee PC, Roberts JM, Catov JM, Talbott EO, Ritz B. First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in Allegheny County, PA. Matern Child Health J 2013;17(3):545-555.
- Leem JH, Kaplan BM, Shim YK, Pohl HR, Gotway CA, Bullard SM, et al. Exposures to air pollutants during pregnancy and preterm delivery. Environ Health Perspect 2006;114(6):905-910.
- 55. Madsen C, Gehring U, Walker SE, Brunekreef B, Stigum H, Naess O, et al. Ambient air pollution exposure, residential mobility and term BW in Oslo, Norway. Environ Res 2010;110(4):363-371.
- 56. Mannes T, Jalaludin B, Morgan G, Lincoln D, Sheppeard V, Cor-

- 57. Medeiros A, Gouveia N. Relationship between low birthweight and air pollution in the city of Sao Paulo, Brazil. Rev Saude Publica 2005;39(6):965-972 (Portuguese).
- Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen AM, Ballester F, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med 2013;1(9):695-704.
- 59. Pereira G, Belanger K, Ebisu K, Bell ML. Fine particulate matter and risk of preterm birth in Connecticut in 2000-2006: a longitudinal study. Am J Epidemiol 2014;179(1):67-74.
- 60. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JK. Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol 2007;166(9):1045-1052.
- 61. Rogers JF, Dunlop AL. Air pollution and very low BW infants: a target population? Pediatrics 2006;118(1):156-164.
- 62. Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, Gilliland FD. Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children's Health Study. Environ Health Perspect 2005;113(11):1638-1644.
- 63. Yang CY, Tseng YT, Chang CC. Effects of air pollution on BW among children born between 1995 and 1997 in Kaohsiung, Taiwan. J Toxicol Environ Health A 2003;66(9):807-816.
- 64. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contourenhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 2008;61(10):991-996.
- Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology 2004;15(1):36-45.
- Leem JH, Ha EH. Air pollution and adverse pregnancy outcome; 2011 [cited 2015 Jun 3]. Available from: http://www.intechopen. com/books/air-pollution-new-developments/air-pollution-andadverse-pregnancy-outcome.
- 67. Maisonet M, Correa A, Misra D, Jaakkola JJ. A review of the literature on the effects of ambient air pollution on fetal growth. Environ Res 2004;95(1):106-115.
- Proietti E, Röösli M, Frey U, Latzin P. Air pollution during pregnancy and neonatal outcome: a review. J Aerosol Med Pulm Drug Deliv 2013;26(1):9-23.
- 69. Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci 2008;15(7):631-650.
- Dadvand P, Parker J, Bell ML, Bonzini M, Brauer M, Darrow LA, et al. Maternal exposure to particulate air pollution and term BW: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect 2013;121(3):267-373.
- 71. Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. Environ Health Perspect 2008;116(11):1480-1486.
- Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008;359(1):61-73.

Study (published year)	Q1	Q2	Q3	Q5	QG	Q7	Q9	Q10	œ	Q11	Q12	ш	Q16	Q17	Q18	Q20	—	Q21	Q22	Q25	Q26	ပ	Q27	۵	⊢	Outcome
Bell et al. (2007)	-	-	-	2			0	-	œ	-	-	2	-	-			4		-		0	ო	2	2	19	BW
Brauer et al. (2008)	-			2				0	∞		0						4				0	co	0	0	16	PTB
Chen et al. (2002)	-			2				0	œ	, -	. 	2	. 				4		. 		0	с	0	0	17	BW
Currie et al. (2009)	-		0	2			0		7			2					4		0		0	2	0	0	15	BW
Darrow et al. (2011)	-						0		7		0			0			с			0	0	2			14	BW
Geer et al. (2012)	-						0		7			2		0			က		0	0	0		0		14	BW
Gouveria et al. (2004)	-							0	7			2					4				0	с	0	0	16	BW
Gray et al. (2010)	-			2			0	0	7	, -		2	. 	0			က				0	က	0	0	15	BW
Ha et al. (2004)	-						0	0	9	. 	0			0			က			0	0	2	0	0	12	PTB
Hansen et al. (2006)	-						0	0	9	.	0			0			က			0	0	2	0	0	12	PTB
Hansen et al (2007)	-	-	-	-	-	-	0	0	9	-	0	-	-	0		-	с	-	-	0	0	2	0	0	12	BW
Jalaludin et al. (2007)	-			2				0	œ		0						4				0	с	0	0	16	PTB
Kim et al. (2007)	-						0	0	9		0		-				4		-		0	с	0	0	14	BW
Lee et al. (2013)	-	-	-	-	-		-	0	7		0	-	-				4		-		0	c	-	-	16	PTB
Leem et al. (2006)	-	-	-	-	-	-	0	-	7	-	0	-	-	-	-	-	4	-	-	0	-	က	0	0	15	PTB
Madson et al. (2010)	-						0	0	9		0						4				0	с	0	0	14	BW
Mannes et al. (2005)	-			2				0	œ		0		-				4		-		0	с	-	-	17	BW
Medeiros and Gouveia (2005)	-			-			0		7	0	0	0					4	0		0	0		0	-	13	BW
Morello-Frosch et al. (2010)	-						0	0	9	, -		2		0			က		. –	0	0	2	0		14	BW
Pedersen et al. (2013)	-		-	2			0		œ	0		-	-				4		-		0	с	0	0	16	BW
Ritz et al. (2000)	-	-	-	2	-		0	-	œ	-	-	2	-	-			4		-		0	с	0	0	17	PTB
Rogers and Dunlop (2006)	-			2			0		œ			2					4		-		0	с	0	0	17	PTB
Salam et al. (2005)	-			2			0	. –	œ	, -		2					4		. –		0	с	0	0	17	BW
Suh et al. (2009)	-				0		0	. 	9		0						4			0	0	2			14	PTB
Wilhelm and Ritz (2005)	-	-	-	-	-		0	0	9	-	-	2	-	-			4		-	0	0	2	0	0	14	PTB
Yang et al. (2003)	-		0				0	0	2	0	0	0	-				4		-	0	0	2	0	0	÷	BW
Zhao et al. (2015)	-		, -	-	0	-	0	. 	9	. 	.	2	-	0	-	-	က	-	-	0	0	2	0	0	13	PTB

Environmental Health and Toxicology 2015;30:e2015011

http://e-eht.org/ EHT

Study ID	ES (95% CI)	% Weight
Trimester 1 Gehring et al. (2011)	13.97 (-14.74, 42.69)	0.78
Mannes et al. (2005)	3.60 (-22.90, 30.10) -6.00 (-7.30, -4.70)	0.90
Bell et al. (2010)	-2.78 (-16.67, 11.11)	2.41
Parker and Woodruff (2008)	-4.10 (-7.50, -0.70)	5.97
Hyder et al. (2014) Subtotal (I-squared = 85.1%, <i>p</i> = 0.000)	-25.73 (-32.78, -18.67) -8.03 (-14.54, -1.53)	4.55 21.10
Trimester 2		
Mannes et al. (2005)	-41.00 (-67.90, -14.10) -2 60 (-4 00 -1 20)	0.88
Bell et al. (2010)	0.00 (-13.89, 13.89)	2.41
Parker and Woodruff (2008)	-5.90 (-8.90, -2.90)	6.10
Hyder et al. (2014) Subtotal (I-squared = 88.0%, <i>p</i> = 0.000)	-14.52 (-19.09, -9.96) -7.90 (-13.70, -2.09)	5.55 21.41
Trimester 3	0.00 / 07 40 47 00	0.04
Morello-Frosch et al. (2010)	-9.80 (-37.40, 17.80) -4.70 (-6.00, -3.40)	6.49
Bell et al. (2010)	-5.56 (-22.22, 11.11)	1.88
Parker and Woodruff (2008)	-6.30 (-9.20, -3.40)	6.13
Hyder et al. (2011)	-10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98)	2.44
Kloog et al. (2012)	-9.20 (-15.00, -3.40)	5.06
Subtotal (I-squared = 14.6%, p= 0.318)	-6.04 (-7.69, -4.39)	28.22
Entire pregnancy Gehring et al. (2011)	6.52 (-44.13, 57.17)	0.27
Morello-Frosch et al. (2010)	-12.80 (-14.30, -11.30)	6.46
Bell et al. (2010)	-8.33 (-25.00, 8.33) -13 30 (-22 80 -3 80)	1.88
Gray et al. (2014)	-13.48 (-13.91, -13.04)	6.58
Hyder et al. (2014)	-25.73 (-32.78, -18.67)	4.55
Kloog et al. (2012)	-13.80 (-21.10, -6.50)	4.45
Subtotal (I-squared = 47.5%, p = 0.064)	-13.88 (-15.70, -12.06)	29.27
Overall (I-squared = 95.0%, p = 0.000)	-9.89 (-12.59, -7.18)	100.00
Note: weights are from random effects analysis		
-90 0	90	(
Study ID	ES (95% CI)	% Weight
Study ID Trimester 1	ES (95% CI)	% Weight
Study ID Trimester 1 Gehring et al. (2011)	ES (95% Cl) 13.97 (-14.74, 42.69)	% Weight 12.13
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10)	% Weight 12.13 13.25
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodcuff (2008)	ES (95% CI) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, 0.70)	% Weight 12.13 13.25 21.39 27.38
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hvdre ret al. (2014)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25 73 (-32 78 - 18.67)	% Weight 12.13 13.25 21.39 27.38 25.85
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, <i>p</i> = 0.000)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, <i>p</i> = 0.000) Trimester 2	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, <i>p</i> = 0.000) Trimester 2 Mannes et al. (2005) Dell et al. (0000)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) -20 (-12.90, -14.10)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, p = 0.000) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) 5.90 (8.90, 2.90)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, <i>p</i> = 0.000) Trimester 2 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Hyder et al. (2014) Parker and Woodruff (2008) Hyder et al. (2014)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09 - 9.96)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) 5.56 (-20.22, 41.41)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.84
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.20 (-9.20, 24.0)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8% , $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0% , $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2014)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -0.75 (-24.50, 3.00) -9.96 (-14.94, -4.98)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Hyder et al. (2011) Hyder et al. (2012)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, 4.98) -9.20 (-15.00, -3.40)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Bell et al. (2011) Hyder et al. (2011) Hyder et al. (2011) Hyder et al. (2012) Subtotal (I-squared = 0.0%, $p = 0.819$)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2011) Hyder et al. (2012) Subtotal (I-squared = 0.0%, $p = 0.819$) Entire pregnancy Bell et al. (2007)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Entire pregnancy Bell et al. (2007) Gebring et al. (2011)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -9.96 (-14.94, 4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44 13, 57 17)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8% , $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0% , $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Entire pregnancy Bell et al. (2010) Bell et al. (2011) Bell et al. (2011)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-38.0, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-25.00, 8.33)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Entire pregnancy Bell et al. (2007) Gehring et al. (2010) Parker and Woodruff (2008)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, 4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-25.00, 8.33) -13.30 (-22.80, -3.80)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2012) Subtotal (I-squared = 0.0%, $p = 0.819$) Entire pregnancy Bell et al. (2007) Gehring et al. (2011) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, 4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-22.00, -3.80) -25.73 (-32.78, -18.67)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30 16.74
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8% , $p = 0.000$) Trimester 2 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0% , $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Hyder et al. (2012) Subtotal (I-squared = 0.0% , $p = 0.819$) Entire pregnancy Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2011) Bell et al. (2011) Bell et al. (2011) Hyder et al. (2014) Kloog et al. (2012)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, 4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-25.00, 8.33) -13.30 (-22.10, -3.80) -25.73 (-32.78, -18.67) -13.80 (-21.10, -6.50)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30 16.74 16.70
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2012) Subtotal (I-squared = 0.0%, $p = 0.819$) Entire pregnancy Bell et al. (2017) Gehring et al. (2011) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2011) Bell et al. (2012) Subtotal (I-squared = 92.3%, $p = 0.000$)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-22.80, -3.80) -25.73 (-32.78, -18.67) -13.80 (-21.10, -6.50) -14.00 (-34.00, 6.00) -22.17 (-37.93, -6.41)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30 16.74 16.70 13.54 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2014) Subtotal (I-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2005) Bell et al. (2010) Parker and Woodruff (2008) Hyder et al. (2014) Subtotal (I-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2010) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2011) Entire pregnancy Bell et al. (2012) Subtotal (I-squared = 0.0%, $p = 0.819$) Trime pregnancy Bell et al. (2011) Bell et al. (2011) Bell et al. (2011) Parker and Woodruff (2008) Hyder et al. (2011) Parker and Woodruff (2008) Hyder et al. (2012) Parker and Woodruff (2008) Hyder et al. (2011) Bell et al. (2011) Parker and Woodruff (2008) Hyder et al. (2012) Pedersen et al. (2012) Pedersen et al. (2013) Subtotal (I-squared = 92.3%, $p = 0.000$)	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -10.75 (-24.50, 3.00) -9.96 (-14.94, -4.98) -9.20 (-15.00, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-22.80, -3.80) -25.73 (-32.78, -18.67) -13.80 (-21.10, -6.50) -14.00 (-34.00, 6.00) -22.17 (-37.93, -6.41)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30 16.74 16.70 13.54 100.00
Study ID Trimester 1 Gehring et al. (2011) Mannes et al. (2005) Bell et al. (2014) Subtotal (1-squared = 87.8%, $p = 0.000$) Trimester 2 Mannes et al. (2015) Bell et al. (2016) Parker and Woodruff (2008) Hyder et al. (2017) Subtotal (1-squared = 82.0%, $p = 0.001$) Trimester 3 Mannes et al. (2015) Bell et al. (2011) Parker and Woodruff (2008) Darrow et al. (2011) Hyder et al. (2012) Subtotal (1-squared = 0.0%, $p = 0.819$) Thire pregnancy Bell et al. (2017) Bell et al. (2017) Parker and Woodruff (2008) Hyder et al. (2012) Subtotal (1-squared = 0.0%, $p = 0.819$) Thire pregnancy Bell et al. (2017) Parker and Woodruff (2008) Hyder et al. (2017) Parker and Woodruff (2008) Hyder et al. (2017) Parker and Woodruff (2008) Hyder et al. (2017) Bell et al. (2017) Parker and Woodruff (2008) Hyder et al. (2013) Subtotal (1-squared = 92.3%, $p = 0.000$) Note: weights are from random effects analysis	ES (95% Cl) 13.97 (-14.74, 42.69) 3.60 (-22.90, 30.10) -2.78 (-16.67, 11.11) -4.10 (-7.50, -0.70) -25.73 (-32.78, -18.67) -6.20 (-19.51, 7.12) -41.00 (-67.90, -14.10) 0.00 (-13.89, 13.89) -5.90 (-8.90, -2.90) -14.52 (-19.09, -9.96) -10.57 (-18.95, -2.20) -9.80 (-37.40, 17.80) -5.56 (-22.22, 11.11) -6.30 (-9.20, -3.40) -7.60 (-9.84, -5.36) -66.82 (-77.73, -55.91) 6.52 (-44.13, 57.17) -8.33 (-25.00, 8.33) -13.30 (-22.10, -3.80) -5.73 (-32.78, -18.67) -13.80 (-21.10, -6.50) -14.00 (-34.00, 6.00) -22.17 (-37.93, -6.41)	% Weight 12.13 13.25 21.39 27.38 25.85 100.00 7.79 18.97 37.75 35.49 100.00 0.66 1.81 59.70 2.66 20.25 14.93 100.00 15.99 6.21 14.51 16.30 16.74 16.70 13.54 100.00

Figure S1. Effect size (ES) and 95% confidence interval (CI) of change in birth weight (g) per 10 µg/m³ PM_{2.5}, by exposure period; size of shaded area around point estimate is proportional to weight in calculating pooled estimate. (A) Forest plot of pooled studies and (B) forest plot of pooled studies adjusting for smoking. PM_{2.5}, particulate matter less than or equal to 2.5 µm in diameter.

Study ID	ES (95% CI)	% Weight
Trimester 1		
Gehring et al. (2011)	0.97 (0.69, 1.37)	2.26
Wilhelm and Ritz (2005)	➡ 0.85 (0.70, 1.03)	4.73
Pereira et al. (2013)	1.34 (1.00, 1.79)	1.83
Ha et al. (2014)	• 1.12 (1.08, 1.16)	6.96
Hyder et al. (2014)	• 1.00 (0.96, 1.04)	6.96
Subtotal (1-squared = 83.3% , p = 0.000)	• 1.03 (0.93, 1.14)	22.75
Trimester 2		
Pereira et al. (2013)	0.84 (0.64, 1.11)	3.52
Ha et al. (2014)	 1.55 (1.49, 1.60) 	6.83
Hyder et al. (2014)	• 1.04 (1.00, 1.09)	6.95
Subtotal $(1-squared = 99.1\%, p = 0.000)$	1.15 (0.75, 1.56)	17.29
Trimester 3		
Wilhelm and Ritz (2005)	➡ 1.09 (0.91, 1.31)	4.14
Pereira et al. (2013)	1.14 (0.88, 1.47)	2.72
Ha et al. (2014)	 ◆ 1.11 (1.04, 1.19) 	6.45
Hyder et al. (2014) Kloog et al. (2012)	• 1.00 (0.96, 1.04)	6.96
Subtotal (1-squared = 52.8% , p= 0.076)	1.03 (0.98, 1.09)	27.13
Entire pregnancy		
Gehring et al. (2011)		0.18
Huynn et al. (2008) Wu et al. (2009)	• 1.15 (1.15, 1.16) 1.24 (1.08, 1.44)	7.19
Pereira et al. (2013)	1.24(1.08, 1.44) 1 69(1 04 2 74)	0.50
Ha et al. (2014)	 1.05 (1.01, 2.74) 1.28 (1.22, 1.34) 	6.72
Hyder et al. (2014)	• 1.00 (0.96, 1.04)	6.96
Kloog et al. (2012)	• 1.06 (1.01, 1.11)	6.85
Subtotal (1-squared = 92.5%, p = 0.000)	♦ 1.14 (1.06, 1.22)	32.84
Overall (1-squared = 96.0%, p= 0.000)	1.10 (1.04, 1.17)	100.00
Note: weights are from random effects analysis		
-3.56	1 3.56	Â
		\sim
Study		%
Study ID	ES (95% CI)	% Weight
Study ID Trimester 1	ES (95% CI)	% Weight
Study ID Trimester 1 Gehring et al. (2011)	ES (95% CI)	% Weight 3.85
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013)	ES (95% CI)	% Weight 3.85 3.25
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014)	ES (95% CI)	% Weight 3.85 3.25 8.24
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014)	ES (95% CI)	% Weight 3.85 3.25 8.24 8.24 8.25
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, p = 0.000)	ES (95% CI)	% Weight 3.85 3.25 8.24 8.25 23.59
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, p = 0.000)	ES (95% CI)	% Weight 3.85 3.25 8.24 8.25 23.59
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, p = 0.000) Trimester 2	ES (95% CI)	% Weight 3.85 3.25 8.24 8.25 23.59
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013)	ES (95% CI)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, p = 0.000) Trimester 2 Pereira et al. (2013) Ha et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.55 (1.49, 1.60)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, p = 0.000) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.04 (1.00, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 0.84 (0.64, 1.11) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Hyder et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 62.1% , $p = 0.048$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1% , $p = 0.048$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 62.1% , $p = 0.048$) Entire pregnancy	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1%, $p = 0.048$) Entire pregnancy Gehring et al. (2011)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2013) Ha et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1% , $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2013)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1% , $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3%, $p = 0.000$) Trimester 2 Pereira et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1%, $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2011) Pereira et al. (2011) Ha et al. (2014) Hyder et al. (2014)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1% , $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2011) Ha et al. (2014) Kloog et al. (2012)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04) 1.00 (0.96, 1.04) 1.03 (0.97, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25 8.17
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3% , $p = 0.000$) Trimester 2 Pereira et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2014) Subtotal (1-squared = 99.1% , $p = 0.000$) Trimester 3 Pereira et al. (2013) Ha et al. (2014) Kloog et al. (2014) Subtotal (1-squared = 62.1% , $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2011) Have et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 93.0% , $p = 0.000$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04) 1.00 (0.96, 1.04) 1.03 (0.97, 1.09)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25 8.17 25.89
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3%, $p = 0.000$) Trimester 2 Pereira et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Hyder et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1%, $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 93.0%, $p = 0.000$) Overall (1-squared = 96.3%, $p = 0.000$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.15 (0.75, 1.56) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.13 (0.98, 1.28) 1.11 (1.02, 1.20)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25 8.17 25.89 100.00
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Subtotal (1-squared = 83.3%, $p = 0.000$) Trimester 2 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Hyder et al. (2013) Ha et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1%, $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 93.0%, $p = 0.000$) Note: weights are from random effects analysis	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.13 (0.98, 1.28) 1.11 (1.02, 1.20)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25 8.17 25.89 100.00
Study ID Trimester 1 Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 83.3%, $p = 0.000$) Trimester 2 Pereira et al. (2013) Ha et al. (2014) Hyder et al. (2014) Subtotal (1-squared = 99.1%, $p = 0.000$) Trimester 3 Pereira et al. (2014) Hyder et al. (2013) Ha et al. (2014) Hyder et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 62.1%, $p = 0.048$) Entire pregnancy Gehring et al. (2011) Pereira et al. (2013) Ha et al. (2014) Kloog et al. (2012) Subtotal (1-squared = 93.0%, $p = 0.000$) Overall (1-squared = 96.3%, $p = 0.000$)	ES (95% CI) 0.97 (0.69, 1.37) 1.34 (1.00, 1.79) 1.12 (1.08, 1.16) 1.00 (0.96, 1.04) 1.07 (0.96, 1.18) 0.84 (0.64, 1.11) 1.55 (1.49, 1.60) 1.04 (1.00, 1.09) 1.15 (0.75, 1.56) 1.14 (0.88, 1.47) 1.11 (1.04, 1.19) 1.00 (0.96, 1.04) 0.99 (0.94, 1.04) 1.03 (0.97, 1.09) 1.54 (0.67, 3.56) 1.69 (1.04, 2.74) 1.28 (1.22, 1.34) 1.00 (0.96, 1.04) 1.06 (1.01, 1.11) 1.13 (0.98, 1.28) 1.11 (1.02, 1.20)	% Weight 3.85 3.25 8.24 8.25 23.59 5.36 8.16 8.24 21.76 4.44 7.90 8.25 8.17 28.76 0.38 1.01 8.08 8.25 8.17 25.89 100.00

Figure S2. Effect size (ES) (odds ratio) and 95% confidence intervals (Cl) for preterm birth per 10 µg/m³ PM_{2.5}, by exposure period. (A) Forest plot of pooled studies and (B) forest plot of pooled studies adjusting for smoking. PM_{2.5}, particulate matter less than or equal to 2.5 µm in diameter.

Study ID	% ES (95% CI) Weight
Trimester 1	
Jalaludin et al. (2007)	0.88 (0.76, 1.01) 6.13
Ritz et al. (2000)	• 1.02 (1.00, 1.04) 40.36
Zhao et al. (2015)	1.00 (0.74, 1.36) 1.12
Lee et al. (2013)	1.05 (0.92, 1.20) 5.09
Subtotal (1-squared = 41.6%, <i>p</i> = 0.162)	0.99 (0.92, 1.07) 52.69
Trimester 2	
Zhao et al. (2015) -	• 1.10 (0.74, 1.65) 0.51
Subtotal (1-squared = .%, p = .)	1.10 (0.65, 1.56) 0.51
Trimester 3	
Jalaludin et al. (2007)	0.89 (0.77, 1.03) 5.77
Ritz et al. (2000)	 1.03 (1.00, 1.05) 37.35
Chao et al. (2015)	0.90 (0.66, 1.23) 1.33
ubtotal (1-squared = 57.9%, p = 0.093)	0.97 (0.86, 1.08) 44.44
Entire pregnancy	
Rogers and Dunlop (2006)	1.24 (1.04, 1.48) 2.17
Chao et al. (2015)	1.22 (0.66, 2.24) 0.18
Subtotal (1-squared = 0.0% , $p = 0.960$)	1.24 (1.03, 1.45) 2.35
Dverall (1-squared = 37.1% , $p = 0.111$)	1.01 (0.98, 1.05) 100.00
Vote∶weights are from random effects analysis	
-2.24	1 2.24
Study	9/0
D	ES (95% CI) Weight
frimester 1	
Hansen et al. (2006)	1.36 (1.14, 1.64) 1.38
Lim et al. (2007)	0.93 (0.85, 1.02) 7.02
uh et al. (2009)	• 0.94 (0.90, 0.99) 10.93
uh et al. (2009) Vilhelm and Ritz (2005)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90
Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (I-squared = 74.4%, p = 0.008)	 ● 0.94 (0.90, 0.99) 10.93 ● 0.98 (0.94, 1.02) 11.90 ● 0.98 (0.91, 1.05) 31.23
Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Kim et al. (2007)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Crimester 2 Kim et al. (2007) Sub et al. (2009)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95
Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0% , $p = 0.466$)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06
Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Kim et al. (2007) Suh et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0% , $p = 0.466$) Trimester 3	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (I-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (I-squared = 0.0% , $p = 0.466$) Frimester 3 Hansen et al. (2006)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0% , $p = 0.466$) Frimester 3 Hansen et al. (2006) Kim et al. (2007)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (0.99, 1.11) 9.14
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, p = 0.008) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, p = 0.466) Frimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2009)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (0.99, 1.11) 9.14 1.05 (1.02, 1.08) 12.65
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Sim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Trimester 3 Tansen et al. (2006) Sim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (0.99, 1.11) 9.14 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Frimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.449$)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (0.99, 1.11) 9.14 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Trimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.449$) Entire pregnancy	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (0.99, 1.11) 9.14 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Trimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.449$) Entire pregnancy Hansen et al. (2006)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10 1.19 (0.87, 1.64) 0.62
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Trimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.449$) Entire pregnancy Hansen et al. (2006) Subtotal (1-squared = .%, $p = .$)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10 1.19 (0.87, 1.64) 0.62 1.19 (0.80, 1.58) 0.62
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Trimester 2 Sim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Trimester 3 Hansen et al. (2006) Sim et al. (2007) Sub et al. (2007) Subtotal (1-squared = 0.0%, $p = 0.449$) Entire pregnancy Hansen et al. (2006) Subtotal (1-squared = .%, $p = .$) Overall (1-squared = 75.4%, $p = 0.000$)	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10 1.19 (0.87, 1.64) 0.62 1.00 (0.97, 1.03) 100.00
Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 74.4%, $p = 0.008$) Frimester 2 Kim et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.466$) Frimester 3 Hansen et al. (2006) Kim et al. (2007) Sub et al. (2007) Sub et al. (2009) Wilhelm and Ritz (2005) Subtotal (1-squared = 0.0%, $p = 0.449$) Entire pregnancy Hansen et al. (2006) Subtotal (1-squared = .%, $p = .$) Dverall (1-squared = 75.4%, $p = 0.000$) Hote: weights are from random effects analysis	 0.94 (0.90, 0.99) 10.93 0.98 (0.94, 1.02) 11.90 0.98 (0.94, 1.02) 11.90 0.98 (0.91, 1.05) 31.23 1.00 (0.93, 1.08) 8.03 0.98 (0.94, 1.03) 11.07 0.96 (0.93, 0.99) 12.95 0.97 (0.95, 0.99) 32.06 1.07 (0.87, 1.32) 1.70 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.11) 9.14 1.05 (1.02, 1.08) 12.65 1.02 (0.99, 1.05) 12.61 1.04 (1.02, 1.06) 36.10 1.19 (0.87, 1.64) 0.62 1.19 (0.87, 1.64) 0.62 1.00 (0.97, 1.03) 100.00

Figure S3. Effect size (ES) (odds ratio) and 95% confidence intervals (CIs) for preterm birth per 10 μ g/m³ PM₁₀, by exposure period. (A) Forest plot of pooled studies adjusted for smoking and (B) forest plot of pooled studies not adjusting for smoking. PM₁₀, particulate matter less than or equal to 10 μ m in diameter.

Study ID	% ES (95% CI) Weight	
Trimester 1		
Ritz et al. (2000)	 1.02 (1.00, 1.04) 12.70 	
Suh et al. (2009)	• 0.94 (0.90, 0.99) 9.53	
Jalaludin et al. (2007)	0.88 (0.76, 1.01) 3.20	
Wilhelm and Ritz (2005)	 0.98 (0.94, 1.02) 10.66 	
Lee et al. (2013)	1.05 (0.92, 1.20) 2.71	
Subtotal (1-squared = 73.0% , $p = 0.005$)	0.98 (0.94, 1.02) 38.80	
Trimester 2		
Suh et al. (2009)		
Wilhelm and Ritz (2005)	• 0.96 (0.93, 0.99) 11.96	
Subtotal (I-squared = 0.0% , $p = 0.394$)	0.97 (0.94, 0.99) 21.65	
Trimester 3		
Jalaludin et al. (2007)	0.89 (0.77, 1.03) 3.03	
Ritz et al. (2000)	• 1.03 (1.00, 1.05) 12.18	
Suh et al. (2009)	▲ 1.05 (1.02, 1.08) 11.58	
Wilhelm and Ritz (2005) Subtotal (1-squared = 57.2% $n = 0.072$)	• $1.02(0.99, 1.05)$ 11.53	
	V 1.03 (1.00, 1.00) 58.52	
Entire pregnancy		
Rogers and Dunlop (2006)		
Subtotal (1-squared = $.\%$, p = .)	1.24 (1.02, 1.46) 1.23	
Overall (1-squared = 77.6% , $p = 0.000$)	1.00 (0.97, 1.02) 100.00	
Note: weights are from random effects analysis		
-1.48	1 1.48	A
Study ID	% ES (95% CI) Weight	
Study ID Trimester 1	% ES (95% CI) Weight	
Study ID Trimester 1 Hansen et al. (2006)	ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007)	ES (95% CI) % Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004)	ES (95% CI) % Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015)	ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47	·
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015)	% % ES (95% CI) Weight ▲ 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2	% Weight ■ 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2 Kim et al. (2007)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 ■ 1.00 (0.93, 1.08) 6.78	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 ■ 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2015)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 ■ 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.91, 1.05) 0.21	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, p = 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Subtotal (1-squared = 0.0%, p = 0.891)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Zhao et al. (2015) Subtotal (1-squared = 0.0%, p= 0.891) Trimester 3	% Weight ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p= 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, p= 0.891) Trimester 3 Kim et al. (2007)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, p = 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Subtotal (1-squared = 0.0%, p = 0.891) Trimester 3 Kim et al. (2007) Hansen et al. (2006)	% % ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015)	% Weight ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 • 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 • 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, p = 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Subtotal (1-squared = 0.0%, p = 0.891) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, p = 0.566)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p = 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, p = 0.891) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, p = 0.566) Entire pregnancy	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 • 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.100 (0.98, 1.02) 25.21 1.00 (0.98, 1.01) 32.21 • 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, $p = 0.566$) Entire pregnancy Hansen et al. (2006)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 • 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 • 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, $p = 0.566$) Entire pregnancy Hansen et al. (2006) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.566$)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 • 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 • 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65 1.19 (0.87, 1.64) 0.30 1.22 (0.66, 2.24) 0.07	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, $p = 0.566$) Entire pregnancy Hansen et al. (2006) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.951$)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.00 (0.98, 1.01) 32.21 1.00 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65 1.19 (0.87, 1.64) 0.30 1.22 (0.66, 2.24) 0.07 1.20 (0.85, 1.54) 0.37	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2007) Ha et al. (2015) Subtotal (1-squared = 71.1%, $p = 0.015$) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.891$) Trimester 3 Kim et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, $p = 0.566$) Entire pregnancy Hansen et al. (2006) Zhao et al. (2015) Subtotal (1-squared = 0.0%, $p = 0.951$) Overall (1-squared = 41.6%, $p = 0.057$)	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.10 (0.74, 1.65) 0.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65 1.19 (0.87, 1.64) 0.30 1.22 (0.66, 2.24) 0.07 1.20 (0.85, 1.54) 0.37 1.00 (0.98, 1.02) 100.00	
Study ID Trimester 1 Hansen et al. (2006) Kim et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 71.1%, p = 0.015) Trimester 2 Kim et al. (2007) Ha et al. (2007) Ha et al. (2007) Ha et al. (2004) Zhao et al. (2015) Subtotal (1-squared = 0.0%, p = 0.891) Trimester 3 Kim et al. (2007) Hansen et al. (2006) Zhao et al. (2015) Ha et al. (2004) Subtotal (1-squared = 0.0%, p = 0.566) Entire pregnancy Hansen et al. (2006) Zhao et al. (2015) Subtotal (1-squared = 0.0%, p = 0.951) Overall (1-squared = 41.6%, p = 0.057) Note: weights are from random effects analysis	% ES (95% CI) Weight 1.36 (1.14, 1.64) 0.70 0.93 (0.85, 1.02) 5.38 0.98 (0.97, 1.00) 26.22 1.00 (0.74, 1.36) 0.47 1.01 (0.91, 1.11) 32.77 1.00 (0.93, 1.08) 6.78 1.00 (0.98, 1.02) 25.21 1.100 (0.98, 1.02) 25.21 1.00 (0.98, 1.01) 32.21 1.05 (0.99, 1.11) 8.67 1.07 (0.87, 1.32) 0.88 0.90 (0.66, 1.23) 0.56 1.01 (0.99, 1.03) 24.54 1.02 (1.00, 1.04) 34.65 1.19 (0.87, 1.64) 0.30 1.22 (0.66, 2.24) 0.07 1.00 (0.98, 1.02) 100.00	

Figure S4. Effect size (ES) (odds ratio) and 95% confidence interval (Cl) of preterm birth per 10 μg/m³ PM₁₀, by exposure period; size of shaded area around point estimate is proportional to weight in calculating pooled estimate. (A) Forest plot of pooled relatively better quality studies and (B) forest plot of pooled relatively low quality studies. PM₁₀, particulate matter less than or equal to 10 μm in diameter.

Figure S5. Effect size (odds ratio) and 95% confidence interval (CI) of preterm birth per 10 µg/m³ PM₁₀ exposure during third trimester or entire pregnancy and stratified by smoking status. PM₁₀, particulate matter less than or equal to 10 µm in diameter.