Integration of modern data management practice with scientific workflows

Neil E B Killeen1,2, Jason M Lohrey3, Michael Farrell4, Wilson Liu1, Slavisa Garic5, David Abramson5, Hoang Nguyen5 and Gary Egan6

1 Centre for Neuroscience Research, University of Melbourne, Victoria, Australia
2 Information Technology Services, University of Melbourne, Victoria, Australia
3 Arcitecta Pty. Ltd, Victoria, Australia
4 Florey Neuroscience Institutes, Melbourne, Victoria, Australia
5 Faculty of Information Technology, Monash University, Clayton, 3800, Victoria, Australia
6 Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, 3800, Victoria, Australia
Overview

• Introduction
• Tools & Technologies used
• Integration of those tools
• New Components
• Case Study and Results
 – Application and Computation results
• Conclusions and future work
Introduction

• Practical limitations with data handling processes
 – Poor data management
 • raw and processed
 – Poorly defined quality controls
 – Poorly defined processing workflows

• Researchers should aim to
 – Automate data capture
 – Automate processing via workflows
 – Integrate workflows with data management
Introduction

• The goal of the work presented
 – Create an integrated software environment
 • Address the challenges mentioned earlier

• Technologies
 – MediaFlux - Asset management platform
 – DaRIS - PSSD data model framework
 – Kepler - Scientific Workflow Management System
 – Nimrod - Nimrod/G and Nimrod/K
Introduction

• Case Study
 – Automated analysis of fMRI brain scans
 – Look for correlation between cerebral blood flow and the pain experienced by patients
MediaFlux
(Arcitecta Pty Ltd)

• Service oriented data operating system
 – Manages provenance of all data
 – Manages relationships of all data

• Server is developed in Java
 – Client access by HTTP, NFS, Java, .Net, JavaScript

• Manages datasets in “Assets”
 – May have 0 or more content components (binary or other data)
 – Associated metadata which is egested as plain text XML

http://www.arcitecta.com/Products/Mediaflux
MediaFlux
(Arcitecta Pty Ltd)

• Capabilities presented as set of services
 – Services used for finding, storing and retrieving assets
 – Services for data analysis and transformation

• MediaFlux servers can be grouped
 – Globally servers are identified with a unique ‘uuid’
 – Globally assets are identified with a unique (‘uuid’, ‘asset id’) pair

• Strong authorization model
 – Each repository has independent access control

http://www.arcitecta.com/Products/Mediaflux
DaRIS
(Centre for Neuroscience Research, University of Melbourne)

- **Data model – PSSD**
 - Applies to studies on variety of subject types
 - Objects have citable identifiers

- **Set of MediaFlux Plugin service**
 - Data-model driven
 - DaRIS includes clients for uploading specialised data formats

- **Web base portal**
 - Google Web Toolkit implementation
 - It has knowledge of the framework
 - Has no knowledge of domain specific metadata or Methods

DaRIS
(Centre for Neuroscience Research, University of Melbourne)

Nimrod Tools
(MeSSsAGE Lab - Monash University)

- Nimrod/G
 - Parametric experiment execution
 - Distributed scheduling
 - Manages the scheduling across all available resources
 - Can scheduler to meet user defined time or budget constrains
 - Interfaces with Grid Middleware
 - Condor, SGE, Globus Toolkit
 - Cloud systems – Amazon’s EC2 or Microsoft’s Azure

http://messagelab.monash.edu.au
Nimrod Tools
(MeSSsAGE Lab - Monash University)

• Nimrod/K
 – Provides Nimrod/G functionality
 • Built on Kepler’s runtime engine
 • Uses Nimrod/G to run computations on the Grid
 – Scheduler that can be changed dynamically
 – New custom Tagged Dataflow Arcitecture Director
 • TDA supports concurrent threads of execution in the workflow itself
 • No change required to existing actors to run under TDA Director

http://messagelab.monash.edu.au
Nimrod/K – GridJob Actor
Integration
(Arcitecture – PSSD Methods)

• Presently experimental methods have
 – Subject state change – a record of state change in the experimental system
 – Data Set – the acquisition of data and related metadata
 – Branching – a decision point where one or more paths may be followed

• Transition between these steps is manual
Integration
(Arcitecture – PSSD Methods)

• Transform Step
 – Context on how to execute data transformation – eg. computational workflow

• Defines
 – Inputs/outputs
 – Optional parameters
 – Transformation itself

• Output of one Transform Step may be used as an input to another Transform Step
Integration
(Architecture – PSSD Methods)

- **Transform Service Provider**
 - MediaFlux Service
 - Must be able to control and monitor executions of Transform Steps

- **Executed on one or more resources**
 - Researcher is provided with options to choose

- **Re-execute option available**
 - With new parameters
 - Existing data could be kept or discarded – decision made by a researcher
New Components
(Implementation)

• MediaFlux Transform Framework
 – Transform Provider – controls and monitors the transformation
 – Transform Definition – definition of transform process
 • Parameter definitions
 – Transform Instance – actual instance of the transform in MediaFlux
 • Current state of the execution
 • Parameter values
 – Transform Output – stored as assets in MediaFlux

http://www.arcitecta.com/Products/Mediaflux
New Components
(Arictecture – PSSD Methods)

http://www.arcitecta.com/Products/Mediaflux
New Components
(Implementation)

• PSSD Data Model
 – Transform Step in PSSD
 • References Transform Definition (how to execute external process or computational workflow)
 • Select inputs and outputs for the Transform Step
 – Virtual Subjects
 – PSSD Services
 – New metadata for processed data

New Components
(Implementation)

• Nimrod/K
 – Kepler Transform Service Provider
 – Remote control of the Workflow Execution
 • Start, Suspend, Resume and Terminate
 – MediaFlux Actors
 • Retrieve assets from a MediaFlux repository
 • Create and store new assets to a MediaFlux repository
 – Improvements to the Nimrod/K core
 • Nimrod/K Director – Execution control
 • GridJob Actor – Directory transfers, file filtering, placeholder substitution

http://messagelab.monash.edu.au
Case Study - Background
(Imaging Clinical Pain)

- Identify brain activation associated with the low back pain in people with musculoskeletal disease
 - fMRI for acquired for two groups of participants
 - Data acquired consisted of
 - Structural brain image
 - Functional brain images acquired every 6 seconds
 - Participants pain rating acquired every minute
 - Identical analysis of data for all participants
 - Healthy participants used pain ratings of matched patient with low back pain
• Measured regional cerebral blood flow (rCBF)
 – Estimated from fMRI
• Correlated with pain ratings acquired during fMRI scan
 – Together with rCBF these help identify brain structures that have some relation to pain intensity
• Healthy to in-pain participant matching was done on basis of age and sex
Case Study - Data
(Imaging Clinical Pain)

• Data was captured manually and stored in a DaRIS repository at University of Melbourne
• PSSD model was used to organise the data
 – Asset created for each subject (participant)
 – Pain rating was included with corresponding acquired data
Case Study - Execution
(Imaging Clinical Pain)

• Created a Kepler Workflow
• Process manually started in PSSD model
• Nimrod/K runs the selected workflow with user specified parameters
 – Dataset IDs, server IDs etc
• Produces a DataSet for each analyzed subject
Case Study - Execution
(Imaging Clinical Pain)
Case Study - Execution
(Imaging Clinical Pain)
Case Study – Results
(Imaging Clinical Pain)

• Results show that low back pain participants have
 – Decreased levels of blood flow in subgenual cingulate cortex
 – Increased levels of blood flow in left inferior frontal gyrus
Case Study

Computational Results
Conclusion & Future Work

• This paper discusses the enhancement done to DaRIS repository and Nimrod/K workflow environment
 – Transform Framework
 – Remote control of Nimrod/K workflow execution
 – New actors that interact with MediaFlux
 – Improvement of current Nimrod/K components
 • Nimrod/K Director
 • GridJob actor
Conclusion & Future Work

• Identity management
• DaRIS user interface
• New data transport mechanisms in Nimrod/K
• Improve remote control interface
 – Have a service that allows users to execute workflows on dedicated remote hosts
Questions?