On Modal Components of the S_4-logics

Alexei Y. Muravitsky
Louisiana Scholars’ College
Northwestern State University
Natchitoches, LA 71497, U.S.A.
alexeim@nsula.edu

Abstract
We consider the representation of each extension of the modal logic S_4 as sum of two components. The first component in such a representation is always included in Grzegorczyk logic and hence contains "modal resources" of the logic in question, while the second one uses essentially the resources of a corresponding intermediate logic. We prove some results towards the conjecture that every S_4-logic has a representation with the least component of the first kind.

1 Preliminaries
We consider the intuitionistic propositional logic Int and modal propositional logic S_4, both defined with the postulated rule of substitution, along with the lattices of their normal consistent extensions, $N\text{Ext}\text{Int}$ (intermediate logics) and $N\text{Ext}\text{S}_4$ (S_4-logics), respectively. The lattice operations are the set intersection \cap as meet and the deduction closure \oplus as joint. Other logics from $N\text{Ext}\text{Int}$ and $N\text{Ext}\text{S}_4$ will also appear in the sequel.

The mappings $\rho : N\text{Ext}\text{S}_4 \rightarrow N\text{Ext}\text{Int}$ and $\tau : N\text{Ext}\text{Int} \rightarrow N\text{Ext}\text{S}_4$ were defined in [3]. It is well known that the former mapping is a lattice epimorphism and the latter is an embedding; see [3]. Another mapping, $\sigma : N\text{Ext}\text{Int} \rightarrow N\text{Ext}\text{Grz}$, defined by the equality $\sigma L = \text{Grz} \oplus \tau L$ for any $L \in N\text{Ext}\text{Int}$, where Grz is Grzegorczyk logic, is an isomorphism; see [1] and [2]. This, along with inequalities obtained in [3], implies that

$$\tau \rho M \subseteq M \subseteq \text{Grz} \oplus \tau \rho M,$$

(Blok-Esakia inequality)

for any logic $M \in N\text{Ext}\text{S}_4$.

Thus it can be suggested that any $M \in N\text{Ext}\text{S}_4$ is equal to $M^* \oplus \tau \rho M$ for some logic $M^* \subseteq \text{Grz}$. Indeed, for M^* one can always take $M \cap \text{Grz}$; see [4]. Furthermore, we have the following.

Let $\mathcal{L} = \{\tau L \mid L \in N\text{Ext}\text{Int}\}$. An unspecified element of \mathcal{L} will be denoted by τ. Then any $M \in N\text{Ext}\text{S}_4$ can be represented as $M = M^* \oplus \tau$, where $M^* \subseteq \text{Grz}$, i.e. $\rho M^* = \text{Int}$. In this representation of M, the first term, M^*, is called the modal component of M and the second term, τ, is its assertoric (or superintuitionistic) component (or τ-component). Such a representation of M we call a τ-representation.

It has been noticed [4] that the assertoric component of M is uniquely determined by M and equals $\tau \rho M$, but its modal component may vary. Given an S_4-logic M, the modal components of M constitute a dense sublattice of $N\text{Ext}\text{S}_4$ with the top element $M \cap \text{Grz}$. This on-going research aims at proving the conjecture: Every S_4-logic has a least modal component.

2 Examples of the modal components of some S_4-logics

Below one can see different situations related to modal components of some S_4-logics.
• Each logic in $[\text{S4, Grz}]$ itself is its only modal component.
• All logics $\tau \in \mathcal{L}$ have S4 their only modal component.
• If $\text{Grz} \subseteq \text{S4.1} \oplus \tau$ then the logics of $[\text{S4.1, Grz}]$ constitute all the modal components of $\text{Grz} \oplus \tau$.

In the sequel we obtain more examples.

3 S-series slicing of NExtS4

We arrange the Scroggs logics as follows:

$$S5 = S_0 \subset \ldots \subset S_2 \subset S_1 = \text{S4} + p \rightarrow \Box p.$$ \hspace{1cm} (S-series)

Definition 3.1 (S-series slicing). A logic M belongs to the nth S-slice, $n \geq 1$, if $M \subseteq S_n$ and $M \not\subseteq S_{n+1}$. If $M \subseteq S_n$, for all $n \geq 1$, that is to say, $M \in [\text{S4}, S_0]$, then M lies in the 0th S-slice. We denote the nth S-slice by S_n, $n \geq 0$.

Thus $\mathcal{S}_0 = [\text{S4, S5}]$. Also, it is obvious that $\{\mathcal{S}_n\}_{n \geq 0}$ is a partition of NExtS4. As well known, S_n, $n \geq 1$, is the logic of an n-atomic finite interior algebra with only two open elements. We denote such an algebra by B_n.

Definition 3.2 (logics K_n). Let χ_n be the characteristic formula of algebra B_n, $n \geq 1$. We define $K_n = \text{S4} + 2\chi_{n+1}$, for $n > 0$, and $K_0 = \text{S4}$.

Proposition 3.1. Each S-slice is an interval. For $n \geq 1$, logic S_n is the top of the nth slice and logic K_n is its bottom. In particular, $\mathcal{S}_1 = [\text{S4.1, S1}]$.

Corollary 3.1.1. For each $n \geq 1$, (K_n, S_{n+1}) is a splitting pair in NExtS4.

Proposition 3.2. Let $\tau \in \mathcal{L}$. All logics from the nth S-slice having τ as their τ-component constitute the interval $[K_n \oplus \tau, M_n \oplus \tau]$.

In addition, we prove the following:

- $K_{n+1} \subset K_n$ for any $n \geq 1$; and
- $\bigcap_{n \geq 1} K_n = \text{S4}$.

4 M-series slicing of $[\text{S4, Grz}]$

We will be using the following notation:

$$M_0 = \text{Grz} \cap S5 \text{ and } M_1 = \text{Grz}.$$ \hspace{1cm} (M-series)

We note that the interval $[M_0, M_1]$ is ordered by \subset in type $1 + \omega^*$:

$$M_0 \subset \ldots \subset M_2 \subset M_1,$$

where $M_n = M_1 \cap S_n$ and $\bigcap_{n \geq 1} M_n = M_0$. To this, we add the following:

- $M_n \cap S_l$, whenever $M_l \subseteq M_n$ or $S_l \subseteq S_n$;
- $K_n \oplus S_l = S_n$, whenever $S_l \subseteq S_n$;
• $K_n \oplus M_l = M_n$, whenever $M_l \subseteq M_n$;
• $M_n \cap S_{n+1} = M_{n+1}$, for any $n \geq 1$.

Definition 4.1 (M-series slicing). A logic M from $[\mathbf{S4}, \mathbf{Grz}]$ belongs to the nth M-slice if and only if M is in the nth S-slice. In other words, the nth M-slice equals $[K_n, S_n] \cap [\mathbf{S4}, \mathbf{Grz}]$. We denote the nth M-slice, $n \geq 0$, by E_n.

We prove that for any $M \in [\mathbf{S4}, \mathbf{Grz}]$ and $n \geq 0$, the following conditions are equivalent:

a) $M \in E_n$;

b) $M \in [K_n, M_n]$;

c) $M \oplus M_0 = M_n$.

For any $n \geq 1$, each of (a) – (c) is equivalent to:

d) $M \subseteq M_n$ and $M \not\subseteq M_{n+1}$.

Proposition 4.1. Let us fix $n \geq 0$. If a modal logic M lies in \mathcal{L}_n, then any its modal component M^* belongs to E_n. Conversely, for any modal logic M^* in E_n and any τ in \mathcal{L}, the logic $M^* \oplus \tau$ lies in \mathcal{L}_n.

From Proposition 4.1 and some properties mentioned above we derive:

• For any $n \geq 0$, all modal logics of E_n are the modal components of the logic S_n.

Also, we obtain the following: Given $\tau \in \mathcal{L}$,

• if $M_n \subseteq K_n \oplus \tau$ then the logics of $[K_n, M_n]$ constitute all the modal components of $M_n \oplus \tau$;

5 Least modal components

In this section we will show that the existence of the least modal component of a logic M can be reduced to the question of definability of some function of M. The proposition of this section states that the definability of this function should be checked for some logics of the 0th S-slice.

Definition 5.1 (Mappings h_n, h_{n0}, and g_{n0}). For any $n \geq 0$, we define: $h_n : M \mapsto M \cap S_n$, where $M \in \text{NEstS4}$. We denote by h_{n0} and by g_{n0} the mapping h_0 restricted to \mathcal{L}_n and E_n, respectively.

We observe the following:

• h_{n0} a lattice embedding of \mathcal{L}_n into \mathcal{L}_0;

• g_{n0} is a lattice embedding of E_n into E_0.

Proposition 5.1. Given an $\mathbf{S4}$-logic $M \in \mathcal{L}_n$, M has a least modal component if and only if $h_{n0}(M)$ has it.

Definition 5.2 (difference operation $d(X,Y)$). Given two logics X and Y, a logic $C \subseteq X$ is called the difference of the subtraction of Y from X, if for any logic Z, the following equivalence holds:

$$C \subseteq Z \subseteq X \iff X = Z \oplus Y.$$

If such C exists for given X and Y, it is obviously unique. We denote it by $d(X,Y)$.
The operation \(d(X,Y) \) is certainly partial. For instance, \(d(M_0, \text{Dum}) \) is undefined, where
\[
\text{Dum} = S4 + \Box(\Box(p \rightarrow \Box p) \rightarrow p) \rightarrow (\Box \Box p \rightarrow p).
\]

Next we define: Given \(M \in NExtS4 \),
\[
d^*(M) = d(M, \tau \rho M).
\]

Proposition 5.2. Given \(M \in NExtS4 \), \(d^*(M) \) is defined if and only if \(d^*(M) \) is the least modal component of \(M \).

The next theorem shows that our search for the definability of the \(d^* \) function on \(NExtS4 \) can be reduced to the 0th S-slice.

Proposition 5.3. Every \(S4 \)-logic has its least modal component if and only if for any \(M^* \in \lbrack S4, M_0 \rbrack \) and \(\tau \in L \), \(d(M^*, \tau \cap M^*) \) is defined, or, equivalently, \(d^*(M^* \oplus \tau) \) is defined, providing that \(\tau \cap Grz \subseteq M^* \).

6 Greatest modal components

We remind the reader that any logic \(M \in NExt(S4) \) has its greatest modal component which is \(M \cap \text{Grz} \). Also, we know from Proposition 3.2 that all \(S4 \)-logics of the \(n \)th S-slice that have a logic \(\tau \in L \) constitute the interval \(\lbrack K_n \oplus \tau, M_n \oplus \tau \rbrack \). The next proposition reads that the greatest modal components of the logics of the last set form an interval.

Proposition 6.1. Let \(\tau \in L \). The greatest modal components of all logics from the \(n \)th S-slice having \(\tau \) as their \(\tau \)-component constitute the interval \(\lbrack K_n \oplus (Grz \cap \tau), M_n \rbrack \).

References

