Hand Gesture Recognition in Real-Time for Automotive Interfaces: A Multimodal Vision-based Approach and Evaluations

Eshed Ohn-Bar and Mohan Manubhai Trivedi, Fellow, IEEE

Abstract—In this work, we develop a vision-based system that employs a combined RGB and depth descriptor in order to classify hand gestures. The method is studied for a human-machine interface application in the car. Two interconnected modules are employed: one that detects a hand in the region of interaction and performs user classification, and the second performing the gesture recognition. The feasibility of the system is demonstrated using a challenging RGBD hand gesture data set collected under settings of common illumination variation and occlusion.

Index Terms—Human-machine interaction, hand gesture recognition, driver assistance systems, infotainment, depth cue analysis.

I. INTRODUCTION

Recent years have seen a tremendous growth in novel devices and techniques for human-computer interaction (HCI). These draw upon human-to-human communication modalities in order to introduce a certain intuitiveness and ease to the HCI. In particular, interfaces incorporating hand gestures have gained popularity in many fields of application. In this paper, we are concerned with the automatic visual interpretation of dynamic hand gestures, and study these in a framework of an in-vehicle interface. A real-time, vision-based system is developed, with the goal of robust recognition of hand gestures performed by driver and passenger users. The techniques and analysis extend to many other application fields requiring hand gesture recognition in visually challenging, real-world settings.

Motivation for in-vehicle gestural interfaces: In this paper, we are mainly concerned with developing a vision-based, hand gesture recognition system that can generalize over different users and operating modes, and show robustness under challenging visual settings. In addition to the general study of robust descriptors and fast classification schemes for hand gesture recognition, we are motivated by recent research showing advantages of gestural interfaces over other forms of interaction for certain HCI functionalities.

Among tactile, touch, and gestural in-vehicle interfaces, gesture interaction was reported to pose certain advantages over the other two, such as lower visual load, reduced driving errors, and a high level of user acceptability [1]–[3]. The reduction in visual load and non-intrusive nature led many automotive companies to research such HCI [4] in order to alleviate the growing concern of distraction from interfaces with increasingly complex functionality in today’s vehicles [5]–[7]. Following a trend in other devices where multi-modal interfaces opened ways to new functionality, efficiency, and comfort for certain users (as opposed to interaction approaches based solely on tangible controllers), we propose an alternative or supplementary solution to the in-vehicle interface. As each modality has its strengths and limitations, we believe a multi-modal interface should be pursued for leveraging advantages from each modality and allowing customization to the user.

Advantages for developing a contact-less vision-based interface solution: The system proposed in this paper may offer several advantages over a contact interface. First, camera input could possibly serve multiple purposes, in addition to the interface. For instance, it allows for analysis of additional hand activities or salient objects inside the car (as in [8]–[12]), important for advanced driver assistance systems. Furthermore, it allows for the determination of the user of the system (driver or passenger), which can be used for further customization. Second, it offers flexibility to where the gestures can be performed, such as close to the wheel region. A gestural interface located above the wheel using a heads up display was reported to have high user acceptability in [2]. In addition to allowing for interface location customization and a non-intrusive interface, the system can lead to further novel applications, such as for use from outside of the vehicle. Third, there may be some potential advantages in terms of cost, as placing a camera in the vehicle involves a relatively easy installation. Just as contact gestural interfaces showed certain advantages compared to conventional interfaces, contact-free interfaces and their effect on driver visual and mental load should be similarly studied. For instance, accurate coordination may be less needed when using a contact-free interface as opposed to when using a touch screen, thereby possibly reducing glances at the interface.

Challenges for a vision-based system: The method must generalize over users and variation in the performance of the gestures. Segmentation of continuous temporal gesture events is also difficult. In particular, gesture recognition in the volatile environment of the vehicle’s interior differs significantly from gesture recognition in the constrained environment of an office. Firstly, the algorithm must be robust to varying global illumination changes and shadow artifacts. Secondly, since the camera is mounted behind the front-row seat occupants in our study and gestures are performed away from the sensor, the hand commonly self-occludes itself throughout the performance of the gestures. Precise pose estimation (as in [13], [14]) is difficult and was little studied before in settings of harsh illumination changes and large self-occlusion, yet many approaches rely on such pose information for producing the discriminatory features for gesture classification. Finally, fast computation (ideally real-time) is desirable.

In order to study these challenges, we collected a RGB-
(a) Large variation in illumination and performance of the gestures. (b) Example gestures in the dataset.

Fig. 1: Examples of the challenges for a vision-based in-vehicle gesture interface. Illumination artifacts (saturation, high contrast shadows, etc.) throughout the performance of the gestures in the dataset are shown. Gestures are performed away from the sensor, resulting in frequent self-occlusion. The type of gestures varies from coarse hand motion to fine finger motion. (b) The gestures shown are (top to bottom): clockwise O swipe, rotate clockwise, scroll up, pinch/zoom-in.

Depth (RGBD) dataset of 19 gestures, performed 2-3 times by 8 subjects (each subject preformed the set as both driver and passenger) for a total of 886 instances. Examples of gesture samples and the challenging settings are shown in Fig. 1. The dataset collected allows for studying user and orientation invariance, the effects of occlusion, and illumination variability due to the position of the interface in the top part of the center console. Different common spatio-temporal feature extraction methods were tested on the dataset, showing its difficulty (Table IV).

In this paper, we pursue a no-pose approach for recognition of gestures. A set of common spatio-temporal descriptors [15]–[17] are evaluated in terms of speed and recognition accuracy. Each of the descriptors is compared over the different modalities (RGB and depth) with different classification schemes (kernel choices for a Support Vector Machine classifier [18]) for finding the optimal combination and gaining insights into the strengths and limitations of the different approaches. Finally, the gesture dataset is used to study effects of different training techniques, such as user-specific training and testing, on recognition performance. The results of this study demonstrate the feasibility of an in-vehicle gestural interface using a real-time system based on RGBD cues. The gesture recognition system studied is shown to be suitable for a wide range of functionalities in the car.

II. RELATED RESEARCH STUDIES

As the quality of RGB and depth output from cameras improve and hardware prices decline, a wide array of applications spurred an interest in gesture recognition in the research community. Relevant literature related to gesture recognition and user interfaces is summarized below.

Video descriptors for spatio-temporal gesture analysis: Recent techniques for extracting spatio-temporal features from video and depth input for the purpose of gesture and activity recognition are surveyed in [19], [20]. Generally, hand gesture recognition methods may extract shape and motion features that represent temporal changes corresponding to the gesture performance, as in [17], [39]. These can be extracted locally using spatio-temporal interest points (as in [22], [23]) or sampled densely. Such features may be hand crafted, as done in this paper, or learned using a convolutional network [24]. Information of pose, although difficult to obtain in our application, is also highly useful for recognition, as demonstrated in [25]–[30].

Hand gesture recognition with RGBD cues: The introduction of high-quality depth sensors at a lower cost, such as the Microsoft Kinect, facilitated the development of many gesture recognition systems. In particular, hand gesture recognition systems were developed with applications in fields of sign language recognition [31]–[34], driver assistance [35], [36], smart environments [37]–[39], video games [40], medical instrumentation [41], [42], and other human-computer interfaces [43]–[45]. Hand gesture recognition systems commonly use depth information for background removal purposes [46]–[49]. [46] proposed using a Finger-Earth Mover’s Distance (FEMD) for recognizing static poses. Hand detection is commonly performed using skin analysis [33], [48]. In [33], depth information is used to segment the hand and estimate its orientation using PCA with a refinement step. The classification of static gestures is performed using an average neighborhood margin maximization classifier combined with depth and hand rotation cues. In [34], a nearest neighbor classifier with a dynamic time warping (DTW) measure was used to classify dynamic hand gestures of digits from zero to nine. A Hidden Markov Model (HMM) may also be used [50] for gesture modeling. Minnen et al. [51] used features of global image statistics or grid coverage, and a randomized decision forest for depth-based static hand pose recognition. There has been some work in adapting color descriptors to be more effective when applied to depth data. As noted by [52], common RGB based techniques (e.g. spatio-temporal interest points as in Dollár et al. [53])
Fig. 2: Outline of the main components of the system studied in this paper for in-vehicle gesture recognition. First, the hand detection module provides segmentation of gestures and determines the user, which is either the passenger or the driver. This is followed by spatio-temporal feature analysis for performing gesture classification.

may not work well on the output of some depth sensors, and need to be adjusted as in [54].

In this work we focus on approaches that do not involve tracking of hand pose. Each descriptor is applied to the RGB and depth modality separately, and finally these are early-fused together by concatenation. Common spatio-temporal feature extraction methods such as a histogram of 3D oriented gradients (HOG3D) [16], motion boundary descriptors and dense trajectories [17], and other forms of gradient-based spatio-temporal feature extraction techniques [15] will be evaluated on the challenging dataset. For classification, an SVM classifier is employed [18].

Hand gesture interfaces in the car: Finally, we briefly review works with affinity to the vehicle domain. A similar effort to ours was reported in Zobl et al. [55], where a CCD camera and NIR LEDs illumination in a simulator were used to perform gesture recognition out of an elaborate gesture inventory of 15 gestures. The gestures used were both static and dynamic. Static gestures may be used to activate the dynamic gesture recognizer. A HMM is employed to perform the dynamic gesture recognition. The inventory is not explicitly mentioned, as well as the speed of the algorithm, and only one subject was used. There also has been some work towards standardization of the in-vehicle gestural interaction space [56]. Althoff et al. [57] studied 17 hand gestures and six head gestures using an infrared camera, and a HMM and rule-based classifier. Endres et al. [58] used a Theremin device, a contact-less device consisting of two metal antennas. Moving the hand alters the capacity of an oscillating current, generating a signal which is fed to a DTW classifier.

III. HAND GESTURE RECOGNITION IN THE CAR

A. Experimental Setup and Dataset

The proposed system uses RGB and depth images in a region of interest (ROI). In our experiments, this ROI was chosen to be the instrument panel (shown in Fig. 1 and Fig. 3). In order to demonstrate the feasibility of the system, we collected a dataset containing 19 hand gestures. The dataset is publicly available at http://cvrr.ucsd.edu/LISA/hand.html. Each gesture was performed about three times by eight subjects. Each subject performed the set two times, once as the driver and once as the passenger. The gestures are all dynamic, as these are common in human-to-human communication and existing gestural interfaces. The size of the RGB and depth maps are both 640 × 480, and the ROI is 115 × 250. Altogether, the dataset contains 886 gesture samples. The main focus of this work is recognition of gestures under illumination artifacts, and not the effects of the interface on driving. Therefore, subjects were requested to drive slowly in a parking lot while performing the gestures, as the gestures were verbally instructed. Subjects 1 and 4 performed the gestures in a stationary vehicle. It was observed that following the initial learning of the gesture set, both passenger and driver carried the gestures more naturally. At times this resulted in the hand partially leaving the pre-defined infotainment ROI, as strokes became large and more flowing. These large and inaccurate movements provided natural variations which were incorporated into the training and testing set.

Fig. 4 shows the illumination variation among videos and subjects. A temporal sum was performed over the number of pixel intensities above a threshold in each gesture video to produce an average intensity score for the video, which is publicly available at http://cvrr.ucsd.edu/LISA/hand.html.

Intensity Score \(I_t(x, y) > 0.95 \)
To Appear in IEEE Transactions on Intelligent Transportation Systems 2014

Fig. 3: Camera setup (color, depth, and point cloud) for the in-vehicle vision-based gesture recognition system studied in this work.

Fig. 4: Illumination variation among different videos and subjects as the average percent of high pixel intensities (see Eqn. 1). Each point corresponds to one gesture sample video. The triangles plot the overall mean for each subject. Videos with little to no illumination variation were taken using subjects 1 and 4.

as shown in Fig. 3. We chose a position that would be difficult for a vision-based system due to illumination artifacts and self-occlusion. In future design, the location of the interface should depend on whether the system aims to replace or supplement existing secondary controls, and the type of feedback that will be used.

Gesture inventory: The inventory is as follows. Two-finger swipe gestures: swipe left, swipe right, swipe down, swipe up, swipe V, swipe X, swipe + (plus). The motion in these is mostly performed with the fingers, and not with the hand, as opposed to the scroll where the fingers move with the entire hand in the direction of the scrolling: scroll left, scroll right, scroll down, and scroll up. One tap gestures can be done with one or three fingers, one tap-1 and one tap-3. Next we have the open and close, a fist following a spread open palm or vice-versa. Finally, we use a two finger pinch as shown in Fig. 1-bottom, and the expand (opposite motion), as well as rotate counter-clockwise and rotate clockwise (Fig. 1-second row). We note that there were small variations in the performance of some of the gestures; for instance the swipe X and swipe + can be performed in multiple ways, depending on the starting position of the hand.

Gesture functionality: The 19 gestures are grouped into three subsets with increasing complexity for different in-vehicle applications as shown in Table II A set of functionalities is proposed for each gesture.

For GS1 (phone), the open and close gestures are used to answer or end a call. Scrolls provide volume control, and the swipe + provides the ‘info/settings/bring up menu’ button. GS2 involves additional gestures for music control. Swipes provide the ‘next’ and ‘previous’ controls. A tap with one finger pauses, and with three fingers allows for a voice search of a song. Finally, the X and V swipes provide feedback and ranking of a song; so that the user can ‘like’ or ‘dis-like’ songs. This gesture set contains gestures that can be used for general navigation through other menus if needed. Finally, the more complex GS3 contains refined gestures purposed for picture or navigation control. A one finger tap is used for ‘select’, the scrolls for moving throughout a map, two finger rotation gestures rotate the view, and expand and pinch allows for zoom control. Swipe up and swipe down are used for transition between bird-eye view to street view.

B. Hand Detection and User Determination

Both recognition and temporal segmentation must be addressed. Since recognition was found to be a challenging task on its own, it is the main focus of this paper. In particular, spatio-temporal features are evaluated in terms of speed, intensity score, and subject for each gesture sample video.
performance, and varying generalization. Although temporal segmentation is a difficult problem as well, in this work we employ a simple segmentation of temporal gestures using a hand presence detector, so that the hand must leave the ROI between different gestures.

The first module in the system performs hand detection in a chosen ROI. The classification may be binary, detecting whether a hand or not is present in the ROI, or multiclass for user determination, as in [59]. In the latter case, a three class classification performs recognition of the user: 1) no one; 2) driver; or 3) passenger. This is done with a simplified version of the histogram of oriented (HOG) algorithm [60] which will be described below and an SVM classifier. For clarity and reproducibility, we detail the implementation of the visual features extraction used in this work.

HOG spatial feature extraction: Let \(I(x, y) \) be an \(m \times n \) signal. The discrete derivatives \(G_x \) and \(G_y \) are approximated using a 1D centered first difference \([-1, 0, 1]\) to obtain the magnitude, \(G \), and quantized orientation angles into \(B \) bins, \(\Theta \). The image is split into \(M \times N \) blocks. We found that overlapping the blocks produces improved results, and throughout the experiments a 50\% overlap between the cells is used. Let \(G^s \), \(\Theta^s \) denote a cell for \(s \in \{1, \ldots, M \cdot N\} \), so that the \(q^{th} \) bin for \(q \in \{1, \ldots, B\} \) in the histogram descriptor for the cell is

\[
 h^s(q) = \sum_{x,y} G_{x,y}^s \cdot \mathbf{1}[\Theta(x, y) = \theta]
\]

where \(\theta \in \{-\pi + \frac{2\pi}{B}, \ldots, \frac{2\pi}{B}: \pi\} \) and \(\mathbf{1} \) is the indicator function. The local histogram is normalized using an L2-normalization: \(h^s \rightarrow h^s/\sqrt{\|h^s\|^2 + \epsilon} \). Finally, the descriptor at frame \(t \) is the concatenation of the histograms from the cells

\[
 h_t = [h_1, \ldots, h_{M \cdot N}].
\]

For additional details and analysis on this part of the algorithm we refer the reader to [59].

Region integration for improved hand detection: The specific setup of location and size of the ROI can have a significant impact on the illumination variation and background noise in the ROI. Because the location of the ROI in our setup produces common illumination artifacts, we found that using visual information from other ROIs in the scene improves hand detection performance under ambiguous and challenging settings [61]. For instance, features extracted from the wheel, gear shift, and side hand-rest regions were shown to increase detection accuracy for the driver’s hand in the ROI (Fig. 5).

C. Spatio-Temporal Descriptors from RGB and Depth Video

The first module described in the previous section produces a video sequence, which then requires spatio-temporal feature extraction for the classification of the gesture instance. We consider four approaches, each is applied to the RGB and depth video independently. These are compared in Table III in terms of extraction time and dimensionality. In calculation of extraction time, we time feature extraction for each video, divide by the number of frames, and average over the videos in the dataset. Given a set of video frames, we choose a descriptor function, \(\phi : \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^2 \rightarrow \mathbb{R}^d \), for producing the \(d \) dimensional feature vector for gesture classification.

HOG: A straightforward temporal descriptor is produced by choosing a vectorization operator on the spatial descriptors in each frame, \(h_t, t \in \{1, \ldots, T\} \). In this case, the video is first resized to \(T = 20 \) frames by linear interpolation so that the descriptor is fixed in size.

\[
 \phi(I_1, \ldots, I_T) = [h_1, \ldots, h_T]
\]

The pipeline for this algorithm contains three parameters, namely \(M, N, \) and \(B \). We use \(B = 8 \) orientation bins in all of the experiments, and fix \(M = N \), so that only one parameter can be varied, as shown in Fig. 6.

HOG2: Another choice of \(\phi \) is motivated by [15], [62]. In this case, the spatial descriptors are collected over time to form a 2D array (visualized in Fig. 3) of size \(T \times (M \cdot N \cdot B) \). Changes in the feature vector correspond to changes in the shape and location of the hand. Consequently, the spatial HOG algorithm described in Section III-B is applied again using a \(M^1 \times N^1 \) grid of cells and \(B^3 \) angle quantization bins to extract a compact temporal descriptor of size \(M^1 \cdot N^1 \cdot B^3 \). The approach is termed HOG2, since it involves applying the same algorithm twice (once in the spatial domain, and then again on
TABLE III: Comparison of average extraction time per frame in milliseconds for each descriptor and for one modality - RGB or depth. Note that extracting RGBD cues from both modalities will require about twice the time. Experiments were done in C++ on a Linux 64-bit system with 8GB RAM and Intel Core i7 950 @ 3.07 GHz x 8. Asterisk * prefix - requires codebook construction.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Extraction Time (in ms)</th>
<th>Dimensionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG</td>
<td>2.8</td>
<td>2560</td>
</tr>
<tr>
<td>HOG²</td>
<td>2.83</td>
<td>256</td>
</tr>
<tr>
<td>HOG-PCA</td>
<td>3.25</td>
<td>256</td>
</tr>
<tr>
<td>DTM[17]</td>
<td>54</td>
<td>2000*</td>
</tr>
<tr>
<td>HOG3D[16]</td>
<td>372</td>
<td>1000*</td>
</tr>
</tbody>
</table>

D. Classifier Choice

SVM [18] is used in the experiments due to its popularity in the action recognition literature with varying types of descriptors [16, 17]. In SVM classification, a Mercer similarity or kernel function needs to be defined. We study the following three kernel choices. Given two data points, \(x_i, x_j \in \mathbb{R}^d \), the linear kernel is given as,

\[
K_{LIN}(x_i, x_j) = x_i^T x_j
\]

an RBF-\(\chi^2\) kernel,

\[
K_{\chi^2}(x_i, x_j) = \exp\left(-\frac{1}{2C} \sum_{k=1}^{d} \frac{(x_{ik} - x_{jk})^2}{x_{ik} + x_{jk}}\right)
\]

where \(C \) is the mean value of the \(\chi^2 \) distances over the training samples, and a histogram intersection kernel (HIK),

\[
K_{HIK}(x_i, x_j) = \sum_{k=1}^{d} \min(x_{ik}, x_{jk})
\]
are outperformed by the rest, possibly since these are densely sampled over the ROI yet background information does not contain useful information for the recognition (unlike other action recognition scenarios).

Inspecting the different HOG descriptors studied in this work, we observe that although the HOG2 shows comparable results to DTM and HOG3D, it is outperformed by the HOG scheme. Interestingly, it appears to contain complementary information to the HOG scheme when combined, more so than when using the HOG-PCA scheme (although the two descriptors have the same dimensionality). This is the main reason for which HOG-PCA was studied in this work, and not for improving the results over HOG. Because HIK SVM with the HOG+HOG2 descriptor showed good results, it is used in the remaining experiments.

Evaluation on gesture subsets: As mentioned in Section III-A, a 19 gesture dataset may not be suitable for the application of an automotive interface. A set of three subsets was chosen and experiments were done using three testing methods, with results shown in Table VII. The three test settings are as follows: 1/3-Subject: a 3-fold cross validation where each time a third of the samples from each subject are reserved for training and the rest for testing. 2/3-Subject: Similarly to 1/3-Subject, but two thirds of the samples are reserved for training from each subject and the remaining third for testing. Cross-subject: leave-one-subject-out cross validation. Results are done over 8 subjects and averaged.

The purpose of such a study is mostly in evaluating the generalization of the proposed algorithm, as well as the effect of user-specific training. The confusion matrix for each gesture subset using 2/3-Subject test settings are shown in Fig. VIII Table VII reveals a lower accuracy on the challenging cross-subject testing, as expected. The reason is that within the 8 subjects there were large variations in the execution of each gesture.

Basic interface with a mode switch: Equipped with insight on the least ambiguous gestures from Fig. VIII we study a final gesture subset (Fig. VII) that provides a basic gesture interaction at high recognition accuracy (shown in Table VII). We propose to use one of the gestures, such as a one tap with three fingers (OneTap3) in order to navigate among functionality modes while keeping the same gesture set.

V. CONCLUDING REMARKS

In this paper, we studied the feasibility of an in-vehicle, vision-based gesture recognition system. Although our work is concerned with gesture recognition in naturalistic settings and not the psychological aspects of the interface, our experimental design attempted to accompany other successful existing gestural interaction interfaces. Following a trend in other devices where multi-modal interfaces opened ways to new functionality and efficiency, with additional comfort for some users, we sought a similar solution to the in-vehicle interface. As each interaction modality has its strengths and limitations, we believe a multi-modal interface should be pursued for leveraging advantages from each modality and allowing customization to the user. Each should be designed and studied carefully in order to avoid a high mental workload in remembering or performing gestures, provide appropriate feedback, and maximize intuitiveness.

In an attempt to propose a complete system, first a hand detection and user determination step was used, followed...
TABLE V: Recognition accuracy and standard deviation over cross-validation using different evaluation methods discussed in Section [IV]. Increasing the number of user-specific samples results in improved recognition. RGB+Depth is the two descriptors concatenated and a HIK SVM. The overall category is the mean over the column for each modality, for showing the best modality settings and the effects of the test settings.

<table>
<thead>
<tr>
<th>Gesture Set</th>
<th>1/3-Subject</th>
<th>2/3-Subject</th>
<th>Cross-Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1</td>
<td>95.0 ± 1.1</td>
<td>96.5 ± 2.7</td>
<td>75.5 ± 16.7</td>
</tr>
<tr>
<td>GS2</td>
<td>91.0 ± 1.7</td>
<td>94.7 ± 1.3</td>
<td>63.8 ± 16.6</td>
</tr>
<tr>
<td>GS3</td>
<td>91.4 ± 2.0</td>
<td>94.6 ± 1.7</td>
<td>56.2 ± 14.7</td>
</tr>
<tr>
<td>Overall</td>
<td>92.5 ± 1.6</td>
<td>96.3 ± 1.9</td>
<td>60.2 ± 16.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (%)</th>
<th>92.7 ± 0.3</th>
<th>94.1 ± 1.6</th>
<th>80.9 ± 12.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1</td>
<td>90.5 ± 1.6</td>
<td>93.6 ± 1.9</td>
<td>72.6 ± 19.4</td>
</tr>
<tr>
<td>GS2</td>
<td>87.0 ± 2.1</td>
<td>90.3 ± 2.1</td>
<td>67.3 ± 16.0</td>
</tr>
<tr>
<td>GS3</td>
<td>90.1 ± 1.3</td>
<td>92.3 ± 1.9</td>
<td>73.6 ± 15.9</td>
</tr>
<tr>
<td>Overall</td>
<td>93.9 ± 1.6</td>
<td>96.2 ± 1.7</td>
<td>76.1 ± 14.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RGB+Depth (%)</th>
<th>95.6 ± 1.1</th>
<th>96.5 ± 1.6</th>
<th>82.4 ± 15.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1</td>
<td>92.9 ± 1.8</td>
<td>96.1 ± 1.2</td>
<td>73.8 ± 13.7</td>
</tr>
<tr>
<td>GS2</td>
<td>93.2 ± 1.9</td>
<td>96.0 ± 2.2</td>
<td>72.0 ± 15.6</td>
</tr>
<tr>
<td>GS3</td>
<td>93.9 ± 1.6</td>
<td>96.2 ± 1.7</td>
<td>76.1 ± 14.8</td>
</tr>
</tbody>
</table>

by a real-time spatio-temporal descriptor and gesture classification scheme. Out of a set of 19 gestures, four subsets were constructed for different interactivity applications. A careful evaluation of different temporal descriptors showed the challenging nature of the dataset, with RGBD fusion proving to be beneficial for recognition.

Future extensions should further analyze the role of each of the spatio-temporal descriptors in increasing illumination-, occlusion-, and subject-invariance of the system. Temporal segmentation of gestures without requiring the hand to leave the ROI may result in a more comfortable interface to use. The studied RGBD feature set might be useful for studying naturalistic hand gestures [8], [9]. The location of the ROI can be studied in order to determine optimal natural interactivity and the gesture subset can be further refined and evaluated. Since incorporating samples of a subject in training resulted in a significantly higher recognition performance for that subject in testing, online learning could further improve classification rates. Finally, we hope that the evaluation in this work and the public dataset will inspire the development of new and improved hand gesture recognition techniques.

VI. ACKNOWLEDGMENTS

This research was performed at the UCSD Computer Vision and Robotics Research and LISA: Laboratory for Intelligent and Safe Automobiles. The authors would like to thank Dr. Cuong Tran and Mr. Ashish Tawari for their helpful advice. We thank our colleagues for their help in the data collection process, and the reviewers and editor for their helpful comments.

REFERENCES

Fig. 8: Results for the three gesture subsets for different in-vehicle applications using 2/3-Subject test settings, where 2/3 of the samples are used for training and the rest for testing in a 3-fold cross validation. A RGB+Depth combined descriptor was used. Average correct classification rates are shown in Table V.

Eshed Ohn-Bar (S’14) received his M.S. degree in electrical engineering in 2013 from the University of California, San Diego (UCSD). He is currently working towards a Ph.D. degree with specialization in signal and image processing. His research interests include computer vision, intelligent vehicles, and driver assistance systems.

Mohan Manubhai Trivedi (S’14) received the B.E. (with honors) degree in electronics from Birla Institute of Technology and Science, Pilani, India, in 1974 and the M.S. and Ph.D. degrees in electrical engineering from Utah State University, Logan, UT, USA, in 1976 and 1979, respectively. He is currently a Professor of electrical and computer engineering and he is the Founding Director of the Computer Vision and Robotics Research Laboratory, University of California San Diego (UCSD), La Jolla, CA, USA. He has also established the Laboratory for Intelligent and Safe Automobiles, Computer Vision and Robotics Research Laboratory, UCSD, where he and his team are currently pursuing research in machine and human perception, machine learning, human-centered multimodal interfaces, intelligent transportation, driver assistance, active safety systems and Naturalistic Driving Study (NDS) analytics. His team has played key roles in several major research initiatives. These include developing an autonomous robotic team for Shinkansen tracks, a human-centered vehicle collision avoidance system, a vision-based passenger protection system for smart airbag deployment, and lane/turn/merge intent prediction modules for advanced driver assistance. He regularly serves as a Consultant to industry and government agencies in the United States, Europe, and Asia. He has given over 70 Keynote/Plenary talks at major conferences. Prof. Trivedi is a Fellow of the International Association of Pattern Recognition (for contributions to vision systems for situational awareness and human-centered vehicle safety) and the Society for Optical Engineering (for contributions to the field of optical engineering). He received the IEEE Intelligent Transportation Systems Society’s highest honor, Outstanding Research Award in 2013, the Pioneer Award (Technical Activities) and the Meritorious Service Award of the IEEE Computer Society, and the Distinguished Alumni Award from Utah State University, Logan, UT, USA. He is a co-author of a number of papers winning Best Papers awards. Two of his students were awarded Best Dissertation Awards by the IEEE ITS Society (Dr. Shinko Cheng 2008 and Dr. Brendan Morris 2010) and his advisee Dr. Anup Doshis dissertation judged among the five finalists in the 2011 by the Western (USA and Canada) Association of Graduate Schools. He serves on the Board of Governors of IEEE ITS Society and on the Editorial advisory board of the IEEE Trans on Intelligent Transportation Systems.