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Abstract. For flows with strong periodic content, time-spectral methods can be used to obtain
time-accurate solutions at substantially reduced cost compared to traditional time-implicit meth-
ods which operate directly in the time domain. However, these methods are only applicable in
the presence of fully periodic flows, which represents a severe restriction for many aerospace en-
gineering problems. This paper presents an extension of the time-spectral approach for problems
that include a slow transient in addition to strong periodic behavior, suitable for applications such
as transient turbofan simulation or maneuvering rotorcraft calculations. The formulation is based
on a collocation method which makes use of a combination of spectral and polynomial basis func-
tions and results in the requirement of solving coupled time instances within a period, similar to
the time spectral approach, although multiple successive periods must be solved to capture the
transient behavior.

The implementation allows for two levels of parallelism, one in the spatial dimension, and an-
other in the time-spectral dimension, and is implemented in a modular fashion which minimizes
the modifications required to an existing steady-state solver. For dynamically deforming mesh
cases, a formulation which preserves discrete conservation as determined by the Geometric Con-
servation Law is derived and implemented. A fully implicit approach which takes into account the
coupling between the various time instances is implemented and shown to preserve the baseline
steady-state multigrid convergence rate as the number of time instances is increased. Accuracy and
efficiency are demonstrated for periodic and non-periodic problems by comparing the performance
of the method with a traditional time-stepping approach using a simple two-dimensional pitching
airfoil problem, a three-dimensional pitching wing problem, and a more realistic transitioning rotor
problem.
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1. Introduction
The use of frequency domain methods for solving periodic flow problems is now a relatively well
established technique in computational aerodynamics and aeroelasticity. The basic idea is to refor-
mulate a time-dependent periodic problem into a steady-state frequency domain problem through
the use of Fourier transforms. Considerable success has been demonstrated with the Harmonic bal-
ance method [5, 6, 13, 14] for important applications such as turbomachinery flows. More recently,
a time-spectral approach has been formulated which operates directly on solution variables in the
time domain [3, 18]. These methods have shown the potential for large increases in computational
efficiency for periodic problems since they replace a time-dependent problem with a steady-state
problem which can be solved efficiently with a variety of non-linear solution techniques. Addi-
tionally, the requirement of time-stepping through initial transient behavior to establish the final
periodic solution is removed in these approaches, since they target directly the final periodic be-
havior of the flow problem.

The time spectral approach is essentially a pseudo-spectral or spectral collocation method (in
time) where the time-dependent flow variables are represented in the space spanned by a set of
harmonic functions, and the collocation points represent discrete instances in time at which the
unknowns are to be solved. By operating directly in the time-domain, the time-spectral approach
obviates the use of Fourier transforms and can be implemented into existing CFD solvers with
relative ease.

However, a principal disadvantage of all these methods is that they are strictly only valid for
purely periodic flows. A large class of difficult simulation problems in aerospace engineering in-
volves quasi-periodic flows, i.e. flows with strong periodic content, but with the presence of a
slow transient behavior which makes these problems not truly periodic and thus not amenable to
frequency domain methods. These may include turbomachinery transient behavior, maneuvering
rotorcraft problems, or the simulation of a wind turbine with varying inlet conditions. For example,
in the rotorcraft example, the flow is strongly periodic due to the rotor motion, although subject to
a slow transient produced by the maneuvering aircraft. Such problems are notoriously difficult to
simulate because the time step is restricted due to accuracy considerations by the fast periodic mo-
tion, although a long time history must be simulated to model the transient non-periodic behavior.

In this paper, we present a novel approach for simulating quasi-periodic flows through the
formulation of a hybrid backwards-difference time-spectral (BDFTS) discretization of the time
derivative of the governing equations. The idea is rooted in the concept of polynomial subtrac-
tion for spectral methods, discussed by Gottlieb and Orzag [4] and originally credited to Lanczos
[8]. In this approach, the non-periodic (transient) portion of a quasi-periodic function is subtracted
from the function and represented with a polynomial basis set. The remaining function is peri-
odic and thus can be approximated efficiently with spectral basis functions. Our implementation
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corresponds to a collocation method, where the time variation of the flow variables is represented
by a linear combination of spectral/harmonic basis functions and polynomial basis functions. In
practice, the spectral basis functions are chosen such that the method reverts to the time-spectral
approach described in reference [3, 18] in the presence of purely periodic flows, while the poly-
nomial basis is chosen to reproduce a first- or second-order backwards difference scheme in the
limit of vanishing periodic content. This approach offers the potential for large improvements in
computational efficiency for quasi-periodic problems by resolving the periodic flow effects with
spectral accuracy, while enabling a BDF-type time step suited to the time scale of the slower tran-
sient effects. Furthermore, the simulation of start-up non-periodic transient effects still can be
avoided by specifying a vanishing initial slow transient, in which case the first period of simulation
corresponds to a traditional time-spectral method.

In order to be competitive with traditional implicit time-domain approaches, the proposed
method must be able to deal with dynamically deforming meshes in a consistent manner, and
the computational cost associated with the solution of the large implicit systems generated by the
time discretizations must be kept manageable.

To this end, the proposed BDFTS approach is formulated for the general case of dynamically
deforming meshes, and the geometric conservation law which guarantees discrete conservation
for this temporal discretization is derived and implemented. A commonly employed strategy for
solving the coupled time-spectral equations consists of adding an explicit pseudo-time term and
time-stepping these equations in pseudo-time to the steady-state. However, it is well known that
this approach suffers stability restrictions and results in convergence degradation as the number
of harmonics increases [6]. In this work, we employ a fully (time and space) implicit solution
strategy originally described by Sicot [16] which in principle is capable of delivering convergence
rates that are independent of the number of harmonics or time instances used in the time-spectral
discretization. This approach is further accelerated through the application of a line-implicit ag-
glomeration multigrid algorithm applied to the spatially implicit system. Efficient convergence
of the implicit system is even more critical for the BDFTS method, since the solution of a large
number of implicit problems may be required in the context of a long time-history simulation, as
opposed to the original time-spectral approach, where only a single (pseudo) steady-state problem
must be solved.

In the following section, we first outline the baseline time-spectral approach, and then describe
the full BDFTS method. The geometric conservation law for these methods is then described and
formulated in subsection 2 2.4. Next, the implicit solution strategy is described in subsection 2 2.5.
The parallel implementation of the method is also described taking into consideration optimization
on multi-core architectures and through a strategy that requires minimal modifications to existing
CFD solvers, as described in subsection 2 2.6. Verification of the method and representative results
are given in Section 3 and conclusions are given in Section 4.
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2. Formulation

2.1. Base Solver
The Navier-Stokes equations in conservative form can be written as:

∂U

∂t
+∇ ⋅ (F(U) + G(U)) = 0 (2.1)

where U represents the vector of conserved quantities (mass, momentum, and energy), F(U) rep-
resents the convective fluxes and G(U) represents the viscous fluxes. Integrating over a (moving)
control volume Ω(t), we obtain:∫

Ω(t)

∂U

∂t
dV +

∫
∂Ω(t)

(F(U) ⋅ ñ)dS +

∫
∂Ω(t)

(G(U) ⋅ ñ)dS = 0 (2.2)

Using the differential identity

∂

∂t

∫
Ω(t)

UdV =

∫
Ω(t)

∂U

∂t
dV +

∫
∂Ω(t)

U(ẋ ⋅ ñ)dS (2.3)

where ẋ and ñ are the velocity and normal of the interface ∂Ω(t), respectively, equation (2.2)
becomes:

∂

∂t

∫
Ω(t)

UdV +

∫
∂Ω(t)

(F(U)−Uẋ) ⋅ ñdS +

∫
∂Ω(t)

G(U) ⋅ ñdS = 0 (2.4)

Considering U as cell averaged quantities, these equations are discretized in space as:

∂

∂t
(VU) + R(U, x̄(t), ñ(t)) + S(U, ñ(t)) = 0 (2.5)

where R(U, x̄, ñ) =
∫
∂Ω(t)

(F(U)− ẋU) ⋅ ñdS represents the discrete convective fluxes in ALE
form, S(U, ñ) represents the discrete viscous fluxes, and V denotes the control volume. In the dis-
crete form, [x̄(t) = ẋ(t).ñ(t)] and ñ(t) now represent the time varying face-integrated velocities
and surface normals of the control-volume boundary faces. Note that only the product ẋ(t).ñ(t)
appears in the residual, thus the functional dependence is on x̄(t) in the place of ẋ(t).

The Navier-Stokes equations are discretized by a central difference finite-volume node-based
scheme with additional matrix-based artificial dissipation on hybrid meshes which may include
triangular and quadrilateral elements in two dimensions, or tetrahedra, pyramids, prisms and hex-
ahedra in three dimensions. Second-order accuracy is achieved using a two-pass construction of
the artificial dissipation operator, which corresponds to an undivided biharmonic operator. A sin-
gle unifying edge-based data-structure is used in the flow solver for all types of elements. For
multigrid calculations, a first-order accurate discretization is employed for the convective terms on
coarse grid levels [11, 10].
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2.2. Time Spectral Method
If the flow is periodic in time, the variables U can be represented by a discrete Fourier series. The
discrete Fourier transform of U in a period of T is given by [3]

Ûk =
1

N

N−1∑
n=0

Une−ik
2�
T
nΔt (2.6)

where N is the number of time intervals and Δt = T/N . The Fourier inverse transform is then
given as

Un =

N
2
−1∑

k=−N
2

Ûke
ik 2�

T
nΔt (2.7)

Note that this corresponds to a collocation approximation, i.e. the function U(t) is projected
into the space spanned by the truncated set of complex exponential (spectral) functions, and the
expansion coefficients (in this case the Ûk) are determined by requiring U(t) to be equal to its
projection at N discrete locations in time, as given by equations (2.6) and (2.7).
Differentiating equation (2.7) in time (where the time variable corresponds to nΔt), we obtain:

∂

∂t
(Un) =

2�

T

N
2
−1∑

k=−N
2

ikÛke
ik 2�

T
nΔt (2.8)

Substituting equation (2.6) into equation (2.8), we get[1, 7]

∂

∂t
(Un) =

N−1∑
j=0

djnU
j (2.9)

where

djn =

{
2�
T

1
2
(−1)n−jcot(�(n−j)

N
) n ∕= j

0 n = j

for an even number of time instances and

djn =

{
2�
T

1
2
(−1)n−jcosec(�(n−j)

N
) n ∕= j

0 n = j

for an odd number of time instances. The collocation approach for solving equation (2.5) consists
of substituting the collocation approximation for the continuous function U(t) given by equation
(2.7) into equation (2.5), and requiring equation (2.5) to hold exactly at the same N discrete loca-
tions in time (i.e. multiplying (2.5) by the dirac delta test function �(t − tn) and integrating over
all time), yielding:

N−1∑
j=0

djnV
jUj + R(Un, x̄n, ñn) + S(Un, ñn) = 0 n = 0, 1, 2, ..., N − 1 (2.10)
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This results in a system of N equations for the N time instances Un which are all coupled through
the summation over the time instances in the time derivative term. The spatial discretization op-
erators remain unchanged in the time-spectral approach, with only the requirement that they be
evaluated at the appropriate location in time. Thus, the time-spectral method may be implemented
without any modifications to an existing spatial discretization, requiring only the addition of the
temporal discretization coupling term, although the multiple time instances must be solved simul-
taneously due to this coupling.

2.3. Hybrid BDF/Time Spectral Method
The idea of polynomial subtraction for quasi-periodic functions is to subtract out the non-periodic
transient, which can be modeled using a polynomial basis set, and to approximate the remaining
purely periodic component with a spectral basis set [4]. From the point of view of a collocation
method, this corresponds to using a mixed spectral/polynomial basis set for the projection of the
continuous solution (in the time dimension).

We proceed by splitting the quasi-periodic temporal variation of the solution into a periodic
and slowly varying mean flow as:

U(t) =

N
2
−1∑

k=−N
2

Ûke
ik 2�

T
nΔt + Ū(t) (2.11)

where the slowly varying mean flow is approximated by a collocation method using a polynomial
basis set as:

Ū(t) = �12(t)Um+1 + �11(t)Um (2.12)

for a linear variation and

Ū(t) = �23(t)Um+1 + �22(t)Um + �21(t)Um−1 (2.13)

for a quadratic variation in time. Here Um and Um+1 represent discrete solution instances in time
usually taken as the beginning and ending points of the considered period in the quasi-periodic
motion (and Um−1 corresponds to the beginning point of the previous period). In the first case,
�12(t) and �11(t) correspond to the linear interpolation functions given by:

�11(t) =
tm+1 − t

T
(2.14)

�12(t) =
t− tm

T
(2.15)

with the period given as T = tm+1 − tm. Similarly, the �23(t), �22(t), �21(t) are given by the cor-
responding quadratic interpolation functions. Note that in this case, the collocation approximation
leads to the determination of the Fourier coefficients as:

Ûk =
1

N

N−1∑
n=0

Ũne−ik
2�
T
nΔt (2.16)
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with Ũn = Un−Ūn defined as the remaining periodic component of the function after polynomial
subtraction. Differentiating equation (2.11) and making use of equations (2.9) and (2.16) we obtain
the following expression for the time derivative:

∂

∂t
(Un) =

N−1∑
j=0

djnŨ
j + �′12(tn)Um+1 + �′11(tn)Um (2.17)

for the case of a linear polynomial functions in time. The �′12(tn) and �′11(tn) represent the time
derivatives of the polynomial basis functions (resulting in the constant values −1

T
and 1

T
in this

case), and the various time instances are given by:

tj = tm +
j

N
(tm+1 − tm), j = 0, . . . , N − 1

We also note that Ū(tm) = Um = U(tm) and thus we have Ũ0 = 0. In other words, the constant
mode in the spectral representation must be taken as zero, since it is contained in the polynomial
component of the function representation. Therefore, the j = 0 component in the summation can
be dropped, and rewriting equation (2.17) in terms of the original time instances Un we obtain:

∂

∂t
(Un) =

N−1∑
j=1

djnU
j − (

N−1∑
j=1

djn�12(tj)− �′12(tn))Um+1 − (
N−1∑
j=1

djn�11(tj)− �′11(tn))Um (2.18)

Finally, the above expression for the time derivative is substituted into equation (2.5) which is then
required to hold exactly at time instances j = 1, 2, ..., N − 1 and j = N (which corresponds to the
m+ 1 time instance):

N−1∑
j=1

djnV
jUj − (

N−1∑
j=1

djn�12(tj)− �′12(tn))V m+1Um+1 − (
N−1∑
j=1

djn�11(tj)− �′11(tn))V mUm(2.19)

+R(Un, x̄n, ñn) + S(Un, ñn) = 0 n = 1, 2, ..., N

As previously, we have N coupled equations with N unknown time instances, although in this case
the j = 0 time instance which corresponds to the Um values are known from the solution of the
previous period, while the j = N or Um+1 values are not known, since these are not equal to the
j = 0 values as they would be in a purely periodic flow. In the case of vanishing periodic content,
summation terms involving the djn coefficients vanish by virtue of equation (2.17) with Ũj = 0 and
it is easily verified that the above formulation reduces to a first-order backwards difference scheme
with a time step equal to the period T . On the other hand, for purely periodic motion, we have
Um+1 = Um which results in cancellation of the polynomial derivative terms �′12(tn) and �′11(tn).
Furthermore, using the identities �12(tj) + �11(tj) = 1, and

∑N−1
j=0 djn = 0, it can be seen that the

remaining polynomial terms reduce to the missing j = 0 instance in the summation. Given the
equality Um+1 = Um, the last equation at j = N becomes identical to the j = 0 equation and the
time-spectral method given by equation (2.10) is recovered.
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In this description we have used linear polynomials corresponding to a BDF1 time-stepping
scheme for clarity. In practice, BDF2 time-stepping schemes provide higher (second-order) accu-
racy at equivalent cost and are most often employed for practical calculations. A BDF2 scheme
can be obtained using quadratic polynomials and is given as:

N−1∑
j=1

djnV
jUj − (

N−1∑
j=1

djn�23(tj)− �′23(tn))V m+1Um+1 (2.20)

−(
N−1∑
j=1

djn�22(tj)− �′22(tn))V mUm − (
N−1∑
j=1

djn�21(tj)− �′21(tn))V m−1Um−1

+R(Un, x̄n, ñn) + S(Un, ñn) = 0 n = 1, 2, ..., N

where the values Um−1 and Um, which correspond to the time instances at the beginning and
end of the previous period are known from the solution of earlier periods, and Um+1 = UN as
previously.

2.4. Geometric Conservation Law
For dynamically deforming meshes, the individual cell volumes or control volumes V (t) are func-
tions of time, and strictly speaking, it is the product V (t)U(t) which must be represented by the
Fourier series

V nUn =

N
2
−1∑

k=−N
2

V̂Uke
ik 2�

T
nΔt (2.21)

in order to obtain the first term as written in equations (2.10), (2.19) or (2.20). However, since
the Fourier coefficients V̂Uk are never required, and the values of the volumes at the specific
time instances are known or computable, this does not lead to any complications in the solution
of equations (2.10) and (2.20). On the other hand, the geometric conservation law states that in
order to maintain discrete conservation, equations (2.10) and/or (2.20) must preserve uniform flow
as an exact (discrete) solution [2, 12]. Substituting Un = constant into equation (2.10) the R
operator reduces to the ALE term (i.e. second term in second integral in equation (2.4)), and the
S operator vanishes due to its dependence on gradients of U, yielding the following constraint for
the face-integrated grid speeds in the case of the time-spectral method:

∑
CV Faces

x̄n =
N−1∑
j=0

djnV
j (2.22)

where the sum on the left hand side is over the faces which delimit the cell or control volume V j .
The right hand side of this equation represents a known quantity, since the cell volumes at each
time instance are computable given the known grid point locations. However, equation (2.21) does
not in itself enable the prescription of the face integrated grid speeds, since there are more grid
faces than volumes. Following references [12, 19] the right hand side can be further decomposed
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into the time derivative of the volume swept by each constituent face, providing a set of equations
determining the face integrated grid speed terms as:

x̄n = ẋn ⋅ nn =
N−1∑
j=0

djnF
j (2.23)

where F j now represents the volume swept by the face corresponding to x̄. For example, in the
case of three-dimensional tetrahedral faces, each term in the right hand side summation represents
the volume swept by the face F j between the current ntℎ and the jtℎ time instance. These swept
volumes are computed by discretizing the trajectories of the faces between the two time levels into
a large number of discrete steps (usually 360 per period) and computing the volume swept between
each step using a two-point integration rule in time, as discussed in references [2, 12].

For the BDFTS method, the corresponding GCL condition becomes:

∑
CV Faces

x̄n =
N−1∑
j=1

djnV
j − (

N−1∑
j=1

djn�23(tj)− �′23(tn))V m+1 (2.24)

−(
N−1∑
j=1

djn�22(tj)− �′22(tn))V m − (
N−1∑
j=1

djn�21(tj)− �′21(tn))V m−1

and the volumes are decomposed into constituent faces, and the volume swept by these faces are
computed in an analogous manner to that described above for the time-spectral method, in order to
determine the GCL compliant face integrated grid speeds.

2.5. Fully Implicit Method
A common approach for solving the system of equations resulting from the time spectral method
(c.f. equation (2.10)) consists of adding a pseudo-time term as:

∂

∂�
(V nUn) +

N−1∑
j=0

djnV
jUj + R(Un, x̄n, ñn) + S(Un, ñn) = 0 (2.25)

and time-stepping these equations until a pseudo-time steady state is achieved. However, for ex-
plicit pseudo-time stepping approaches, it has been shown that the pseudo-time step is limited by
stability considerations as [18]:

Δ�n = CFL
V n

∥ � ∥ +N
2
V n

(2.26)

where � is the spectral radius of the spatial discretization operator R(Un, x̄n, ñn) + S(Un, ñn)
and N represents the number of time instances that must be solved together. This restriction re-
sults in convergence degradation as the number of time instances or harmonics is increased. This
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restriction can be removed by resorting to an implicit approach in pseudo-time. Such an approach
has been derived in reference [16] using a first-order backwards difference scheme in pseudo time.

An alternate strategy consists of devising a Newton approach for solving the fully coupled non-
linear equations at all time instances given by equation (2.10) or (2.20). The Newton scheme takes
the form:

AΔU = −
N−1∑
j=0

djnV
jUj −R(Un, x̄n, ñn)− S(Un, ñn) (2.27)

with the resulting Jacobian matrix given by [16]:

A =

⎡⎢⎢⎢⎢⎣
V 0

Δ�0
I + J0 V 1d1

0I . . . V N−1dN−1
0 I

V 0d0
1I

V 1

Δ�1
I + J1 . . . V N−1dN−1

1 I
...

... . . .
...

V 0d0
N−1I V 1d1

N−1I . . . V N−1

Δ�N−1
I + JN−1

⎤⎥⎥⎥⎥⎦ (2.28)

where a diagonal pseudo-time term can be included as shown for enhanced diagonal dominance
of the Jacobian matrix. In the above matrix, Jj corresponds to the Jacobian of the spatial dis-
cretization operator evaluated at time instance j. Keeping only the diagonal blocks in this matrix
and discarding all other terms corresponds to a spatially implicit method with explicit treatment
of the different time instances. On the other hand, if all terms are retained, and a block Jacobi
strategy is used to solve equation (2.27), a fully implicit solution strategy which takes into account
the coupling between all time instances is obtained. An iteration of the block Jacobi strategy can
be written as: [

V n

Δ�n
I + Jn

]
ΔUl+1

n = (2.29)

−
N−1∑
j=0

djnV
jUj −R(Un, x̄n, ñn) − S(Un, ñn)−

∑
j ∕=n

[
V jdjnI

]
ΔUl

j

with n = 0, 1, 2, ..., N − 1 , and where l represents the linear block Jacobi cycle index. Each cycle
of this solution strategy requires the inversion of the matrix block on the left-hand side of equa-
tion (2.29), which corresponds to a spatially implicit solution. This is achieved using a line-implicit
agglomeration linear multigrid solver previously developed for steady-state and time implicit prob-
lems in the baseline solver [11, 9]. Note that the off-diagonal blocks of the matrix A which also
appear on the right-hand side of equation (2.29) are rather simple, as they involve a scalar multi-
plication of the identity matrix. However, the size of each block corresponds to a complete spatial
field for one time instance. The fully implicit method can be implemented with little additional
memory and requires only a small amount of additional floating point operations. However, for
parallel implementations, each time instance solution must broadcast its entire solution field to all
other solution instances. In order to reduce overall communication, this coupling is performed
at the end of every multigrid cycle, rather than after each iterative smoothing cycle. Although
the implicit method has been described in the context of the TS method, it extends readily to the
BDFTS method by considering the equivalent Newton scheme and associated linearization applied
to equation (2.20).
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2.6. Parallel Implementation
A principal advantage of the TS and BDFTS approaches is that they can be implemented with rel-
ative ease into existing steady-state codes because the spatial discretization operator is unchanged
from the baseline code. However, both approaches result in multiple time instances which are
coupled and must be solved simultaneously. On the one hand, this provides the opportunity for ex-
ploiting parallelism in the time direction, as compared to traditional time-stepping schemes which
necessarily advance sequentially in time. This feature may prove to be particularly enabling with
the advent of rapidly expanding hardware parallelism, particularly for cases where parallelism in
the spatial dimension has been exhausted (perhaps due to the adequacy of moderate grid sizes).
A non-intrusive approach for implementing TS/BDFTS methods in parallel can be achieved by
introducing separate MPI communicators. The baseline solver operates in parallel and makes
use of an MPI communicator to exchange information between neighboring spatial grid parti-
tions. Our strategy consists of replicating instances of the entire solver on additional processors
for each required time instance in the TS/BDFTS formulation. In this manner, the code remains
unchanged apart from the addition of a source term which provides the coupling between time
instances due to the TS time derivative term. This fully parallel implementation contains two types
of inter-processor communication: communication between spatial partitions within a single time
instance, and communication between all of the time instances. A simple approach is to use a
separate additional MPI communicator for the latter type of communication, leaving all original
spatial communication routines unchanged. One of the drawbacks of the TS/BDFTS methods is
that each time instance must broadcast its entire solution field to all other time instances, which can
result in a significant amount of communication. We mitigate this to some degree, as mentioned
previously in the implicit solution strategy, by only updating the coupling terms from other time
instances after each multigrid cycle. On machines with high-bandwidth interconnects we achieve
good scalability using this approach. However, on inexpensive clusters with Gigabit ethernet, sig-
nificant slowdown due to communication volume has been observed. One approach to relieve
this bottleneck is through careful placement of the time instance partitions. For multicore and/or
multiprocessor hardware nodes within a distributed memory parallel machine, the optimal strategy
consists of placing all time instances of a particular spatial partition on the same node, with each
time instance being assigned to a local core, while the individual spatial partitions are distributed
across the nodes of the machine. In this manner, all time-instance communication generated by
the TS/BDFTS methods (which is spatially local) becomes node local and benefits from the shared
memory and/or faster local communication bandwidth within a node. The current popularity of
4,8 or 16 core nodes makes this approach well suited for the typical number of time instances used
in the TS/BDFTS methods.
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3. Results and Discussion

3.1. Verification of the Time Spectral Method
A two-dimensional inviscid flow test case is constructed using a forced oscillation NACA0012
airfoil, at a Mach number of 0.755, and a mean incidence �0 of 0.016 degrees. A periodic pitching
motion is prescribed at the quarter chord point of the airfoil:

�(t) = �0 + �Asin(!t) (3.1)

where the reduced frequency ! is equal to 0.1628 and the amplitude �A is equal to 2.51 degrees.
The unstructured mesh consists of 4379 nodes and 8543 triangles. Figure (1a) shows the near field
mesh. For each time interval n, a three level multigrid sequence is used in the solver. Figure (1b)
shows the comparison of the convergence histories between the fully coupled implicit method and
the spatially implicit method where the off-diagonal blocks in the A matrix are discarded. For
the local implicit method, the CFL number decreases as the harmonics increase, resulting in a
degradation of the convergence rate. For the fully coupled implicit method, the CFL number and
the convergence rate remain constant as the number of harmonics is increased. Figure (2a) shows
the comparison of the lift coefficient versus the angle of attack between the time accurate method
(using the second-order accurate BDF2 time discretization) with Δt = T/64 where T denotes the
period, and the time spectral method with N = 4, 8, 12 time instances. For this case, the time
spectral method with even 1 harmonic or 4 time intervals shows equivalent accuracy compared
to the time accurate method. Figure (2b) shows the comparison of the moment coefficient versus
the angle of attack between the time accurate method (BDF2) with Δt = T/64 and the time
spectral method with N = 4, 8, 12. The moment history contains multiple harmonics and thus is
not captured accurately with N = 4 in the TS method. However, the results show convergence
of the TS method to the time accurate BDF2 results as the number of harmonics or time intervals
increases.

In the next test case, the time spectral method is compared with the BDF2 time accurate method
for a more complicated case involving a wider range of frequencies. A periodic pitching motion is
prescribed at the quarter chord point of the airfoil as:

�(t) =
�A

5− 4cos(!t)
(3.2)

where the reduced frequency ! equals 0.1628 and the amplitude �A equals 2.51 degrees. This
motion is no longer purely harmonic and should prove to be more difficult to model accurately
with small numbers of time instances. The mesh employed for this case is identical to that used
in the previous case. Figure (3a) shows the comparison of the lift coefficient versus the angle of
attack between the time accurate method (BDF2) with Δt = T/128 and the time spectral method
with N = 4, 8, 12, 16. Because the motion of this case consists of a wide range of frequencies,
the result using a single harmonic or four time intervals shows relatively large error. As the time
intervals N increases, the results of the time spectral method show convergence to the results of
the BDF2 time accurate method. Figure (3b) shows the comparison of the moment coefficient
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versus the angle of attack between the time accurate method (BDF2) with Δt = T/128 and the
time spectral method with N = 4, 8, 12, 16 where good agreement is seen using N = 16.

The last time-spectral validation case corresponds to a three-dimensional inviscid flow test case
which is constructed by forced oscillation of an AGARD 445.6 wing at a Mach number of 0.701.
The periodic pitching motion is prescribed at the quarter chord point of the airfoil by equation
(3.1) with the reduced frequency ! equal to 0.1745 and amplitude �A equal to 5 degrees. Figure
(4a) shows the near field mesh for the AGARD 445.6 wing. This mesh consists of 40460 nodes
and 224531 tetrahedra. Figure (4b) shows the comparison of the lift coefficient versus the angle of
attack between the time accurate method (BDF2) with Δt = T/72 and the time spectral method
with N = 4, 6, 8. In this case, only one harmonic (i.e. N = 4) is sufficient to obtain good accuracy
compared to the time accurate method.

3.2. Verification of the BDF/Time Spectral Method

3.2.1. Two-dimensional case

First, a two-dimensional inviscid pitching-climbing airfoil case was constructed by using the same
NACA0012 mesh as the previous section. The Mach number is set to 0.555. A periodic pitching
motion is prescribed at the quarter chord point of the airfoil. Simultaneously, over a sequence of
ten periods, the mean angle of attack of the airfoil changes, while the airfoil translation accelerates
due to prescribed vertical and horizontal velocity transients. The motion of the airfoil is illustrated
in in Figure (5a), while the periodic pitching motion, mean angle of attack, and horizontal and
vertical velocities of the airfoil are plotted in Figure (5b).

The angle of attack is prescribed as:

�(t) = �0 + �̄(t) + �1sin(!1t) + �2sin(!2t) (3.3)

where the mean angle of attack is given as:

�̄(t) =

{
0 t < t1

�m
1
2
(1− cos(!m(t− t1))) t ≥ t1

where t1 is the prescribed time at which the transient motion begins (taken as 1 period) and with
the constants taken as:

�0 = 0.016∘, �m = 2∘, �1 = 2.51∘, �2 = 1.25∘

!1 = 0.1632, !2 = 3!1, !m = 0.1!1

The angle of attack and the forward/upward velocity are shown in Figure (5b), which clearly illus-
trates that the variations in the mean angle of attack and the airfoil translational motion represent
slow transients compared to the periodic pitching motion, which itself contains multiple harmon-
ics. Figure (6a) shows the comparison of the computed lift coefficient in the first period (based
on the frequency !1). Because the highest mode of the pitching motion !2 is three times that of
the base mode !1, 7 time instances are need to produce an accurate solution. From the figure,
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the BDFTS scheme with five time instances shows poor agreement with the reference BDF2 re-
sults obtained using 512 time steps per period. On the other hand, using 7 or more time instances
with the BDFTS scheme produces very good agreement with the reference BDF2 solution over
the complete time history which includes 11 periods, as shown in Figure (6b). The response of
the drag coefficient shows twice as many modes as that of the lift coefficient, and at least 13 time
instances are need to produce an accurate drag coefficient with the BDFTS scheme. Figure (7a)
shows the comparison of the computed drag coefficients over the first period. The results of the
BDFTS scheme with fewer than 13 time instances show poor agreement with the reference BDF2
solution (using 512 time steps per period), while the BDFTS results using 13 time instances show
very good agreement with the BDF2 solution, not only over the first period, but over the entire 11
periods of slow transient motion, as shown in Figure (7b). Figure (8) shows the convergence his-
tory of the BDFTS scheme for this case over a selected period of motion. Using the fully implicit
block-Jacobi scheme driven by a spatial agglomeration multigrid algorithm and temporal-instance
communication updates after each multigrid cycle, robust convergence rates which are independent
of the number of time instances are obtained.

3.2.2. Three-dimensional cases

The next case is a three-dimensional inviscid pitching-climbing wing which uses the same mesh
as the AGARD 445.6 wing in the previous section. The Mach number is set to 0.511. The wing
undergoes a forced pitching motion, while at the same time undergoing a slow change in mean
angle of attack and a transient rising motion similar to that prescribed in the previous case. The
time dependent angle of attack and the prescribed airfoil forward and upward velocities are shown
in Figure (9a). Figure (9b) shows the comparison of the computed lift coefficient. The BDFTS
scheme with N = 3, 5, 7 time instance shows good agreement with the reference BDF2 solu-
tion computed using 64 time steps per period. The computed drag coefficients using the BDFTS
scheme are seen to compare well with the BDF2 reference solution as well in Figure (10a) over
the entire time history. Figure (10b) shows additional detail for the comparison of the computed
drag coefficients, where it can be seen that the BDFTS results converge uniformly to the BDF2
reference solution as the number of time instances is increased. Figure (11) shows the convergence
history of the BDFTS scheme for this case over a typical time period, illustrating convergence rates
which are independent of the number of time instances in the BDFTS scheme.

The next case consists of a more realistic three-dimensional problem based on the three-bladed
rotor configuration from the TRAM experiment, which is a quarter scale V-22 model. This case
consists of a Reynolds-averaged Navier-Stokes simulation using the Spalart-Allmaras turbulence
model [17] and operating on a hybrid unstructured mesh of mixed prismatic and tetrahedral ele-
ments. The mesh consists of 1.8 million grid points and rotates with the body, although no mesh
deformation is required, since the configuration is assumed to be rigid. The rotational speed of the
rotor is constant, while the rotor shaft undergoes a pitch and translation maneuver representative
of the transition from hover to forward flight, as shown in Figure (12a). The shaft angle and the
forward/upward velocity are shown in Figure (12b). This case is similar to the case described in
reference[15]. Figures (13a and b) show the comparison of the computed forces in the x and z
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coordinate directions between the BDF2 approach using a 1 degree of rotation time step and the
BDFTS method using 7 and 9 time instances per rotational period. Reasonable agreement between
the BDF2 and BDFTS calculations is observed, considering the BDFTS approach comprises only
7 or 9 time instances for every 360 time steps (i.e. a factor of 40∼ 50 less) in the BDF2 simulation.
This case also represents a relatively difficult test for the BDFTS approach, since the time scale of
the transient motion is relatively fast compared to the period of revolution (i.e. only 5 rotor revo-
lutions are executed during the transient motion). The overall force variations are well predicted
by the BDFTS method, although agreement near the end of the maneuver for the x-direction force
degrades and some of the finer details of the force histories are not matched. However, the results
using 9 time instances show better agreement with the BDF2 simulation than the result using 7
time instances, and simulations with larger number of harmonics or time instances N per period
can be expected to deliver even closer agreement with the reference solution, due to the increasing
spectral resolution in time.

3.2.3. Performance comparisons

A comparison of total wall clock time is made between the BDFTS and BDF2 simulations for the
last case in order to demonstrate the efficiency of the BDFTS approach. Approximately 24.1 sec-
onds of wall clock time are required to complete one multigrid cycle for BDF2 using 8 processors
or cores (Intel Xeon CPU). Because the BDFTS solver operates in parallel both in space and time
the BDFTS simulation with 7 time instances is run on 56 cores and takes 31.2 wall clock seconds
per multigrid cycle, while the BDFTS simulation with 9 time instances takes 32.9 seconds per
multigrid cycle using 72 cores. For BDF2 using a time step of 1 degree (360 time steps per revolu-
tion) and pseudo time integration of 50 multigrid cycles per time step, the total computational wall
clock time is 24.1 × 50 × 360 × 6 = 2,602,800 seconds. For BDFTS using 7(9) time instances
and 300 multigrid cycles per pseudo time integration, the total computational wall clock time is
31.2(32.9) × 300 × 6 = 56,160(59,220) seconds. Thus, the speed up factor between BDFTS and
BDF2 for these cases varies between 43.9 and 46.4 using the same spatial partitioning (but differ-
ent overall numbers of cores). In order to compare the speedup on equivalent number of cores, the
number of spatial partitions for the BDF2 case must be increased to match the number of cores
used in the BDFTS cases. Assuming 100% parallel efficiency, BDF2 would require 2,602,800/7 =
371,828 seconds using 56 cores and 2,602,800/9 = 289,200 seconds using 72 cores. Thus, using
the same number of cores, the speed up factor between BDFTS with 7(or 9) time instances and
BDF2 is about 6.63(or 4.88). In practice, when large numbers of cores are available, the BDFTS
approach provides more opportunity for effective parallelism compared to BDF2 or other stan-
dard time-implicit approaches. It should be noted that these comparisons are only qualitative in
nature, since a precise performance comparison would require the non-trivial task of establishing
equivalent levels of accuracy and convergence for both methods.
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Figure 1: Near field mesh for pitching NACA0012 airfoil case (a), and comparison of convergence
histories for local implicit and fully implicit method for varying numbers of time instances (b).

4. Concluding Remarks
The BDFTS method has been shown to enable the extension of time-spectral methods to quasi-
periodic flows with slow transient behavior. While the BDFTS method is capable of delivering high
accuracy with relatively few time instances per period for such flows, the precise order of accuracy
of this temporal discretization remains to be investigated. For the TS approach, one would expect
spectral accuracy in the presence of smooth time histories. For the BDFTS approach, the design
accuracy may be expected to be highly dependent on the solution behavior. The method appears
to be best suited for cases with two disparate time scales, a fast periodic motion and a slow tran-
sient motion. Furthermore, a controlled study of computational efficiency of the BDFTS approach
versus a traditional BDF2 scheme at equivalent levels of accuracy is warranted. Extension of the
approach to include higher-order polynomial functions and comparisons with other approaches
such as fully implicit Runge-Kutta, spectral-element in time, and discontinuous Galerkin in time
are planned in future work. Additionally, application of this methodology to practical maneuvering
rotorcraft problems will also be considered.
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Figure 2: Comparison of computed lift coefficient (a), and moment coefficient (b) using time-
accurate and time-spectral solvers for pitching NACA0012 airfoil problem.
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Figure 3: Comparison of computed lift coefficient (a), and moment coefficient (b) using time-
accurate and time-spectral solvers for pitching NACA0012 airfoil problem with wide frequency
content.
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Figure 4: Three dimensional mesh for pitching AGARD 445.6 test case (a), and comparison of
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Figure 5: Illustration of climbing airfoil motion (a), and forward/upward speed and angle of attack
(b) for pitching-climbing airfoil.
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Figure 6: Comparison of computed lift coefficient in first period (a), and 11 periods (b) for pitching-
climbing airfoil.
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Figure 7: Comparison of computed drag coefficient in first period (a), and in 11 periods (b) for
pitching-climbing airfoil.
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Figure 8: Comparison of convergence history for pitching-climbing airfoil.
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Figure 9: Forward/upward speed and angle of attack (a), and comparison of computed lift coeffi-
cient (b) for pitching-climbing wing.
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Figure 10: Comparison of computed drag coefficient (a), and zoom in (b) for pitching-climbing
wing.
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Figure 11: Comparison of convergence history for pitching-climbing wing.
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Figure 12: Illustration of transient three-bladed rotor maneuver from hover condition to forward
flight (a). Forward (um) and vertical (wm) speed and shaft angle (b).
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Figure 13: Comparison of computed force in x (a) and z(b) directions between BDF/Time spectral
method and BDF2.
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