Universal augmentation schemes for network navigability

- Overcoming the \sqrt{n}-barrier

Pierre FRAIGNIAUD (CNRS & U. Paris 7, France)
Cyril GAVOILLE (U. Bordeaux, France)
Adrian KOSOWSKI (U. Gdansk, Poland)
Emmanuelle LEBHAR (CNRS & U. Paris 7, France)
Zvi LOTKER (U. Ben Gurion, Israël)
Network navigability: the small world effect

- Very short paths exist.
- People are able to discover them locally.

Milgram 1967
Kleinberg model (2000)

- Mesh: global geographical knowledge
- Red random arcs: local and private knowledge

$Pr(u \rightarrow v) \propto \frac{1}{|u-v|^2}$
Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

1. it knows all links of the mesh,

2. it discovers locally the extra random links.
Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

1. it knows all links of the mesh,
2. it discovers locally the extra random links.

Greedy routing computes paths of expected length $O(\log^2 n)$ between any pair in this model.
Augmented graphs
\(f(n)\)-navigability

Problem:

- A graph \(G\) + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length \(f(n)\)?
Augmented graphs $f(n)$-navigability

Problem:

- A graph G + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length $f(n)$?

Ex: d-dimensional meshes are $O(\log^2 n)$-navigable (with d-harmonic distribution of links).
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
- Bounded treewidth graphs [Fraigniaud 05]
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham&Gavoille 06]
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham&Gavoille 06]

BUT: not all graphs can be augmented.
Polylog(n)-navigability

- Bounded growth graphs [DHLS 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham & Gavoille 06]

BUT: not all graphs can be augmented.

For some graphs, greedy paths are of length at least \(\Omega(n^{1/\sqrt{\log n}}) \) for any augmentation. [FLL 06]
Navigability of arbitrary graphs

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.

- Upper bound: $O(n^{1/2})$ with uniform augmentation.
Navigability of arbitrary graphs

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.
Navigability of arbitrary graphs

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.
Navigability of arbitrary graphs

- Lower bound: \(\Omega(n^{1/\sqrt{\log n}}) \).
- Upper bound: \(O(n^{1/2}) \) with uniform augmentation.
Navigability of arbitrary graphs

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.
Improvement of the upper bound to $\tilde{O}(n^{1/3})$

Theorem:

Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}(n^{1/3})$ between any pair.
Improvement of the upper bound to $\tilde{O}(n^{1/3})$

Theorem:
Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}(n^{1/3})$ between any pair.

- **Augmentation process:**
 1. Node u picks a level k in $0...\log n$ (u.a.r.)
 2. Node u picks a node v in $B(u,2^k)$ (u.a.r)
Proof idea: $O(n^{2/5})$

Ex:
1. With proba. 1/2 pick v u.a.r. in G
2. With proba. 1/2 pick v u.a.r. in $B(u,n^{2/5})$

Ex: set of size $n^{3/5}$

Diagram:
- Target set of size $n^{3/5}$
Proof idea: $O(n^{2/5})$

Ex:
1. with proba. 1/2 pick v u.a.r. in G
2. with proba. 1/2 pick v u.a.r. in $B(u,n^{2/5})$

Diagram:
- Set of size $n^{3/5}$
- Target
- $B(u,n^{2/5})$
Proof idea: $O(n^{2/5})$

Ex:
1. with proba. 1/2 pick v u.a.r. in G
2. with proba. 1/2 pick v u.a.r in $B(u,n^{2/5})$

![Diagram showing shortest path and set of size $n^{3/5}$]
Proof idea: $O(n^{2/5})$

Ex:
1. with proba. 1/2 pick v u.a.r. in G
2. with proba. 1/2 pick v u.a.r in $B(u, n^{2/5})$

$\Pr(u \rightarrow \text{blue}) \geq \frac{1}{2} \times \frac{n^{2/5}/2}{B_u(n^{2/5})} = \Omega(1/n^{1/5})$
Proof idea: $O(n^{2/5})$

Ex:
1. with proba. 1/2 pick v u.a.r. in G
2. with proba. 1/2 pick v u.a.r. in $B(u,n^{2/5})$

Pr($u \rightarrow$ blue) \geq (1/2) \times (n^{2/5}/2) / B_u(n^{2/5})
= \Omega(1/n^{1/5})

At most $n^{1/5}$ blue intervals
Proof idea: $O(n^{2/5})$

Ex:
1. with proba. 1/2 pick v u.a.r. in G
2. with proba. 1/2 pick v u.a.r in $B(u,n^{2/5})$

At most $n^{1/5}$ blue intervals

$E(\# \text{ steps}) \leq O(n^{2/5}) + O(n^{1/5}) \times n^{1/5} = O(n^{2/5})$.
Another perspective: matrix augmentation

- A gap remains between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.

- A new perspective to augment arbitrary graphs: a priori augmentation by giving a matrix of links distribution.
An augmentation matrix

$p_{i,j} =$ probability that the link of node i is node j

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1/5</td>
<td>0</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>4</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>1/3</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
<td>1/6</td>
</tr>
</tbody>
</table>

$M = (p_{i,j})_{1 \leq i, j \leq 6}$
An augmentation matrix

$p_{i,j} = \text{probability that the link of node } i \text{ is node } j$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1/5</td>
<td>0</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
</tr>
<tr>
<td>4</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/2</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
<td>1/3</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
<td>1/6</td>
</tr>
</tbody>
</table>

$M = (p_{i,j})_{1 \leq i, j \leq 6}$

$\sum \leq 1$

Nodes destinations of the links

Diagram: Nodes 1, 2, 3, 4, 5, 6 with links and probabilities.
Name-independent matrix augmentation

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?
Name-independent matrix augmentation

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?

Theorem:

If the matrix is given independently from the graph labeling, the uniform matrix is optimal.
Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i,j} < 1$ on this set.
Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i,j} < 1$ on this set.

- **BUT:** $\sum p_{i,j}$ on a set of indices I is the expected number of links going out from I into I.
Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\Sigma p_{i,j} < 1$ on this set.
Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i,j} < 1$ on this set.

\sqrt{n}

Source

Target
Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i,j} < 1$ on this set.

- An adversary can label an interval with the bad set of indices.
- The expected number of shortcuts is <1 inside the interval: $\Omega(\sqrt{n})$ greedy steps.
Matrix augmentation with labeling

• The idea: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.
Matrix augmentation with labeling

- **The idea**: keep the a priori augmentation (given matrix) but *associate a proper labeling scheme*.

Ex: the matrix fits well with the labels, paths $O(\log^2 n)$
Matrix augmentation with labeling

- **The idea**: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

Ex: the matrix fits well with the labels, paths $O(\log^2 n)$

Here: different labels, paths may rise up to $\Omega(\sqrt{n})$
Matrix augmentation with labeling

- The key of efficient augmentations: find good separators in the graphs to distribute the links hierarchically.
Matrix augmentation with labeling

Matrix augmentation with labeling:
Matrix augmentation with labeling

- Matrix augmentation with labeling:

 1. Build an augmentation matrix with "hierarchical" distribution among indices,
Matrix augmentation with labeling

- **Matrix augmentation with labeling:**

 1. Build an augmentation matrix with “hierarchical” distribution among indices,

 2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.
Matrix augmentation with labeling

Matrix augmentation with labeling:

1. Build an augmentation matrix with “hierarchical” distribution among indices,

2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.

\Rightarrow Done through a path-decomposition.
Theorem:
There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in:

$$O\left(\min\left(\log^2 n \times \text{pathshape}(G), \sqrt{n}\right)\right)$$

steps.

Pathshape: $\min(\text{pathwidth}, \text{pathlength})$

- $\text{distance} \leq \text{pathlength}$
- $\text{size} \leq \text{pathwidth}$
Matrix augmentation
with labeling

Theorem:
There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in:
$$O\left(\min\left(\log^2 n \times \text{pathshape}(G), \sqrt{n}\right)\right)$$ steps.

Pathshape: $\min(\text{pathwidth}, \text{pathlength})$

\Rightarrow Improvement from $O(\sqrt{n})$ to $O(\log^2 n)$ for paths.
Matrix augmentation with labeling

Theorem:
There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in:

$O\left(\min(\log^2 n \times \text{pathshape}(G), \sqrt{n})\right)$ steps.

Pathshape: $\min(\text{pathwidth}, \text{pathlength})$

- Improvement from $O(\sqrt{n})$ to $O(\log^2 n)$ for paths.
- New $O(\text{polylog } n)$-navigable graphs: interval, AT-free...
Conclusion & Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.
Conclusion & Perspectives

• Augmentation of arbitrary graphs: still a gap between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.

• $\tilde{O}(n^{1/k})$ for any $k<\sqrt{\log n}$?
Conclusion & Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.
 - $\tilde{O}(n^{1/k})$ for any $k<\sqrt{\log n}$?
 - But raises graph decomposition Q°.
Conclusion & Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.
 - $\tilde{O}(n^{1/k})$ for any $k<\sqrt{\log n}$?
 - But raises graph decomposition Q°.

- Matrix augmentation: can we get rid of $O(\sqrt{n})$ in the bound?