Transcription Factor Foxq1 Controls Mucin Gene Expression and Granule Content in Mouse Stomach Surface Mucous Cells

MICHAEL P. VERZI,*+ ABDUL H. KHAN,*+ SUSUMU ITO,§ and RAMESH A. SHIVDASANI*+,‡

*Dana-Farber Cancer Institute and Department of Medicine, ‡Brigham & Women’s Hospital and Harvard Medical School, and §Department of Cell Biology, Harvard Medical School, Boston, Massachusetts

Background & Aims: The gastric mucosa provides a stringent epithelial barrier and produces acid and enzymes that initiate digestion. In this regenerating tissue, progenitors differentiate continually into 4 principal specialized cell types, yet underlying mechanisms of differentiation are poorly understood. We identified stomach-restricted expression of the forkhead transcription factor FOXQ1. **Methods:** We used a combination of genetic, histochemical, ultrastructural, and molecular analysis to study gastric cell lineages with respect to FOXQ1. **Results:** Within the developing and adult gastrointestinal tract, Foxq1 messenger RNA (mRNA) is restricted to the stomach and expressed predominantly in foveolar (pit) cells, the abundant mucin-producing cells that line the mucosal surface. Mice carrying Foxq1 coding mutations show virtual absence of mRNA and protein for the backbone of the major stomach mucin MUC5AC. These observations correspond to a paucity of foveolar cell secretory vesicles and notable loss of stomach mucous function of FOXQ1. This study is the first to identify stomach-restricted expression of the forkhead transcription factor FOXQ1. Selective inactivation of Foxq1 in the stomach results in a deficit in gastric mucin production and secretory granule biogenesis in gastric foveolar cells and traced these defects to virtually complete absence of MUC5AC and its glycosylated end products. We confirmed the findings in independent strains of Foxq1 mutant mice.

The gastric mucosa contains 4 highly specialized cell types that differentiate from a common progenitor and help execute the stomach’s digestive functions. Although much is known about the morphology and physiology of these cell types, few transcriptional regulators that govern their differentiation have been characterized.1–3 Surface mucous cells, also known as foveolar or pit cells, line the lumen of the glandular stomach in the corpus and antrum, including mucosal pits that vary in depth in different areas.4 Acid-secreting parietal cells dominate the corpus mucosa, which also houses zymogenic chief cells. These 2 cell lineages are excluded from the gastric antrum, where the proportion of foveolar cells is accordingly increased. Foveolar cells constitutively secrete a viscous mucus that protects the gastric epithelium from damage.

Secretory epithelial cells in different organs utilize distinct mucin polypeptides as the backbone for extensive glycosylation and mucus synthesis. Although more than one mucin may be present in a cell lineage, single mucin types tend to predominate and represent the major product of specialized secretory cells. Intestinal goblet cells produce only MUC2; in the stomach, mucous neck cells and basal cells in the antrum produce MUC6, whereas foveolar cells produce MUC5AC.5 Whereas production of particular mucin peptides is a hallmark of gastric mucous cells, other markers distinguish these cell lineages further: pit cells express gastrokine-1 and Trefoil factor (Tff) 1, whereas mucous neck cells produce Tff2.6,7 MUC5AC is also produced by goblet cells in the conjunctiva, the stratified columnar epithelial lining of the eye.8 Regulation of individual mucin genes can thus provide important clues about lineage-specific cell differentiation in surface epithelia.

In a screen for transcription factor (TF) genes that are differentially expressed in developing mouse stomach and intestine,9 we observed that Foxq1 messenger RNA (mRNA) is excluded from the intestine and expressed selectively in the stomach. Previous studies have noted Foxq1 expression in the stomach of various species, but its exact function in this organ is unknown.10–13 To understand these functions, we studied Satin mice, a radiation-induced mutant strain that is homozygous for a null Foxq1 allele.14 We observed a specific and significant defect in gastric mucin production and secretory granule biogenesis in gastric foveolar cells and traced these defects to virtually complete absence of MUC5AC and its glycosylated end products. We confirmed the findings in independent strains of Foxq1 mutant mice.

Abbreviations used in this paper: ENU, ethylnitrosourea; PAS, periodic acid-Schiff; TF, transcription factor.

© 2008 by the AGA Institute
0016-5085/08/$34.00
and also found absence of MUC5AC in conjunctival goblet cells. A combination of studies in vitro and in animals indicated that the forkhead protein FOXQ1 has a limited but essential function in Muc5AC gene regulation. FOXQ1 is the first TF to be implicated in terminal differentiation of stomach foveolar cells.

Materials and Methods

Mice

Mice were housed under pathogen-free conditions and handled according to protocols approved by an institutional Animal Care and Use Committee. Satin (SB/LeJ), Beige, 129/Sv, and C57/BL6 mice were obtained from The Jackson Laboratories (Bar Harbor, ME) and CD1 mice from Charles River Laboratories (Wilmington, MA), and mixed genetic background mice were generated by interbreeding. Foxq1ENU/+ mice were resurrected from cryopreserved sperm at the Mutant Mouse Regional Resource Center at the University of California, Davis. Genotyping for Foxq1 alleles was done by polymerase chain reaction (PCR) as described previously. 14

Expression Analyses, Histology, Immunohistochemistry, Electron Microscopy, and Transcriptional Reporter Assays

Details on expression analyses, histology, immunohistochemistry, electron microscopy, and transcriptional reporter assays are all included in the Supplementary Materials (see Supplementary Materials online at www.gastrojournal.org).

Microarray Expression Analysis

Stomachs from age-matched C57BL/6, Beige, and SB/LeJ mice were harvested immediately after mice were killed, then washed, and the antrum isolated. RNA was extracted with Trizol reagent, labeled, and hybridized to 430A2.0 Mouse Expression Arrays (Affymetrix, Santa Clara, CA). Data were analyzed using dChip software15 and deposited in the GEO public database, with accession number GSE8943.

Results

Stomach-Restricted Foxq1 Expression

Transcriptional regulation of cell-specific gene expression in the gastrointestinal (GI) tract is not well understood. To take steps toward identifying relevant pathways, we recently surveyed the temporal and spatial expression of all known and predicted TF genes in developing mouse gut.9 Among mRNA that are restricted to the stomach, we identified the forkhead TF Foxq1. Foxq1 transcripts first appear on embryonic day 13, and stomach-restricted expression is maintained throughout development (Figure 1A). Similarly, Foxq1 transcripts are restricted to the adult stomach and absent from adult intestine (Figure 1B). Further inspection of Foxq1 expression in the stomach corpus (where foveolar, parietal, and chief cells are evident by histochemical staining; Figure 1C) by in situ hybridization indicated that Foxq1 transcripts in the adult stomach are restricted largely to surface mucous (pit or foveolar) cells (Figure 1D), which are characterized by robust expression of the lineage marker Muc5AC (Figure 1F). Foxq1 transcripts were also detected in pepsinogenic chief cells at the base of gastric gland units (Figure 1D), although signals were considerably weaker than in surface mucous cells and may represent nonspecific background staining. Control (sense) probes typically gave no staining (Figure 1E). Previous studies using laser capture microdissection found foveolar cells enriched and chief cells lacking in Foxq1 transcripts, consistent with our results.3,16

Delineation of Foxq1sa/sa Stomach Abnormalities

To study FOXQ1, we took advantage of an existing recessive mutant mouse strain, Satin (Sa), which was generated by radiation mutagenesis17 and recognized originally by a shiny pelage resulting from disorganized hair-shaft medullae.14,18 The genetic defect maps to a Foxq1 nonsense mutation that eliminates the C-terminal 112 amino acids of a 400-residue protein.14 Serial backcrosses isolated the mutation on a homogeneous genetic background with tight linkage to an additional mutation, beige; the resulting strain, SB/LeJ, is thus homozygous for both Foxq1sa and Lystsa alleles.17 Beige, a mutant allele of the Lyst lysosomal transport gene, increases susceptibility to infection owing to immune dysfunction but has no known role in stomach mucosa. The hair follicle defect in the Satin strain is well characterized,14,24 but the animals seem otherwise normal and stomach defects have not been investigated.

SB/LeJ mice (which we designate Foxq1sb/sb) show normal activity, feeding, growth, fertility, and life span; and gross stomach morphology is intact, without mucosal ulceration or tumors. Histologic examination of Foxq1sa/sa stomachs revealed a normal mucosa (Figure 2A), with differentiated cell types present in normal numbers and distribution, judging by the following immunohistochemical markers: H/K-ATPase for parietal cells, gastrin for antral G-cells, and pepsinogen and intrinsic factor for chief cells (Figure 2I, and data not shown). Alcian blue staining for acidic mucins also showed the typical weak signal in basal mucous cells in the antrum (data not shown). By contrast, periodic acid-Schiff (PAS) staining, which identifies the neutral mucins secreted by foveolar cells, revealed a dramatic and completely penetrant defect (Figure 2B and C) compared with Figure 2F and G; n = 10): some glands retained a faint rim of extracellular signal, but none displayed the prominent intracellular apical staining characteristic of control animals. The full scope of the defect can be appreciated in low-magnification photomicrographs (see Supplementary Figure 1A–D online.
at www.gastrojournal.org) and quantitation of stained gland units (see Supplementary Figure 2A online at www.gastrojournal.org). Defective mucin expression was confined to the stomach surface; PAS staining of intestinal goblet cells was unaffected (Figure 2D and H).

High-resolution light microscopy revealed absence of the apical zone of PAS staining in Foxq1^{+/−} pit cells (Figure 3A and B), and we used transmission electron microscopy to characterize the defect further. We observed normal size, shape, and polarity of Foxq1^{+/−} foveolar cells (Figure 3E), but apical mucous granule numbers were markedly reduced compared with controls (Figure 3C and D). In mutant animals, a few of these granules showed the typical morphology and electron density, but most were reduced in both size and density. The prominent reduction in PAS staining can thus be attributed to a significant defect in the organelles that store and release neutral gastric mucin.

Selective Loss of MUC5AC in the Absence of Foxq1 Function

To distinguish whether paucity of apical granules in Foxq1^{+/−} pit cells reflects absence of MUC5AC synthesis or a failure to glycosylate and store the protein, we used a specific antibody. MUC5AC protein was completely absent from Foxq1^{+/−} stomach samples (Figure 4A, n = 5), indicating that FOXQ1 is required to produce the polypeptide backbone for neutral stomach mucin. Judging by other stains, including Alcian blue, synthesis of other mucins, Muc2 and Muc6, is intact in the absence of FOXQ1 function (data not shown). Gastrokine-1, another secreted and granule-bound pit cell product of unknown function,7 is also expressed normally in Foxq1^{+/−} surface mucous cells (Figure 4A). Finally, quantitative reverse transcription (RT)-PCR analysis of Foxq1^{+/−} stomach revealed normal gastrokine-1, Mucin 1, and stomach trefoil-family factor TFF1 mRNA levels, whereas Muc5ac transcripts were reduced to <3% of levels observed in control samples (Figure 4B).

These results reveal virtual absence of Muc5ac mRNA and hint at selective loss of MUC5AC among apical granule contents. To determine the potentially broader...
to absence of Foxq1 function should be most evident in this region. Because Foxq1^{−/−} mice carry tightly linked mutations in the Foxq1 and Lyst genes, we also used expression profiling to compare Foxq1^{−/−} stomach with that from the Beige strain, which carries a mutation only in the Lyst gene and is congenic with the C57BL/6 line. Analysis of antral RNA from Foxq1^{−/−}, Beige, and C57BL/6 control mice disclosed fewer than 20 genes with >4-fold reduction in Foxq1^{−/−} samples, and Muc5ac was 1 of only 4 transcripts reduced >10-fold in Foxq1^{−/−} antrum (Figure 4C). RT-PCR on independent stomach samples validated the change in Fabp1 mRNA recorded in expression profiling (see Supplementary Figure 2B online at www.gastrojournal.org). These results together impli-
cate stomach Foxq1 function in a restricted range of activities; Foxq1^{1^{sb/sb}} surface mucous cells seem intact in most respects but deficient in apical granules and their principal protein product, MUC5AC, likely reflecting substantially reduced Muc5ac gene transcription.

Validation of the Role of Foxq1 in Foveolar Cell Function

Because the parental strain on which the Foxq1^{1^{sb/sb}} mutations appeared is no longer available, in the foregoing histochemical analyses we used a panel of laboratory mouse strains (CD1, C57BL/6, and 129/Sv-C57BL/6 hybrids) as controls. In contrast to Foxq1^{1^{sb/sb}} stomach, we observed abundant apical mucus staining in every control (Figure 5A, and data not shown), suggesting that strain background is unlikely to account for the Foxq1^{1^{sb/sb}} phenotype. The only other mutation in this strain maps to the closely linked Lyst gene, which regulates biogenesis and transport of membranous organelles and enables lysosome-mediated plasma membrane repair. In hierarchical analysis of mRNA expression profiles, Beige and C57BL/6 antra clustered together, whereas Satin samples clustered separately (Figure 4C; the cluster dendrogram reflects the complete array data set). To exclude further the possibility that pit cell defects in Foxq1^{1^{sb/sb}} mice might reflect Lyst gene inactivity, we examined bg/bg mice more closely. PAS staining and MUC5AC immunohistochemistry of adult bg/bg stomach were similar to congenic C57BL/6 controls, with abundant signal in surface mucous cells (Figure 5A and see Supplementary Figure 3 online at www.gastrojournal.org). Thus, LYST deficiency alone cannot account for the foveolar cell defect, which likely results from the Foxq1^{sa} mutation rather than the Lyst^{bg} allele.

These results do not, however, exclude the formal possibility that combined mutation of the Foxq1 and Lyst genes is required to produce the stomach pit cell phenotype. Because tight linkage of the satin and beige loci prohibits their separation, we asked whether another Foxq1 mutant strain, generated independently by ethynitrosourea (ENU) mutagenesis, carries the same foveolar cell defect. In a previous study, Foxq1^{enu} mice phenocopied the hair defect when crossed to Satin mice, but Foxq1^{enu/sb} stomachs were not examined. Because Foxq1^{enu/enu} mice were not viable at weaning in our crosses, we asked whether another Foxq1 mutant strain, generated independently by ethynitrosourea (ENU) mutagenesis, carries the same foveolar cell defect. In a previous study, Foxq1^{enu} mice phenocopied the hair defect when crossed to Satin mice, but Foxq1^{enu/sb} stomachs were not examined. Because Foxq1^{enu/enu} mice were not viable at weaning in our crosses.

![Figure 4](https://www.gastrojournal.org)
mutations. (Foxq1enu provide genetic proof that Foxq1 gastrojournal.org/n5 phenotype. Very weak MUC5AC expression in tary Figure 4 online at www.gastrojournal.org), implies stain (immunohistochemistry (Figure 5 stomachs, which we detected by in situ hybridization and (Foxq1sb/sb Figure 5. Muc5ac in situ hybridization (Figure 5), showing normal expression of neutral FOXQ1 may regulate the Muc5ac gene directly. Previous study of the mouse Muc5ac promoter found that it could be activated by transforming growth factor-β signaling, along with Smad- and Sp1-family TFs.38 Whereas FOXQ1 is reported to bind an AT-rich sequence in the telokin promoter, its consensus DNA recognition sequence is unknown.13 However, most forkhead TFs recognize the sequence RYMAAYA,29 and the binding preference for FOXF2, which is closely related to FOXQ1,30 has been determined empirically.31 We identified an evolutionarily conserved forkhead consensus binding sequence in the mouse Muc5ac promoter, 100 base pairs upstream of the transcriptional start site (Figure 6A). To assess the function of this site, we cloned the Muc5ac promoter sequence from −199 to +3 upstream of the firefly luciferase gene and tested its ability to activate reporter gene expression. Compared with a promoterless reporter construct, this Muc5ac promoter fragment induced robust expression of the reporter gene in CMT-93 colonic epithelial cells, a cell line chosen on the basis of demonstrated Smad- and Sp1-family TFs.28 Whereas FOXQ1 is reported to bind an AT-rich sequence in the telokin promoter, its consensus DNA recognition sequence is unknown.13

The Role of FOXQ1 in Muc5ac Gene Regulation

Because FOXQ1 is a forkhead protein with a likely role in transcriptional regulation and Muc5ac mRNA levels are low in its absence, we asked whether FOXQ1 may regulate the Muc5ac gene directly. Previous study of the mouse Muc5ac promoter found that it could be activated by transforming growth factor-β signaling, along with Smad- and Sp1-family TFs.28 Whereas FOXQ1 is reported to bind an AT-rich sequence in the telokin promoter, its consensus DNA recognition sequence is unknown.13 However, most forkhead TFs recognize the sequence RYMAAYA,29 and the binding preference for FOXF2, which is closely related to FOXQ1,30 has been determined empirically.31 We identified an evolutionarily conserved forkhead consensus binding sequence in the mouse Muc5ac promoter, 100 base pairs upstream of the transcriptional start site (Figure 6A). To assess the function of this site, we cloned the Muc5ac promoter sequence from −199 to +3 upstream of the firefly luciferase gene and tested its ability to activate reporter gene expression. Compared with a promoterless reporter construct, this Muc5ac promoter fragment induced robust expression of the reporter gene in CMT-93 colonic epithelial cells, a cell line chosen on the basis of demonstrated Muc5ac promoter activity,27 as well as in the human gastric cancer cell line Kato-III (Figure 6B). However, deletion of 2 core nucleotides in the putative forkhead element (TGTTTAC → TG–TAC) had little effect on promoter activity (Figure 6B), and cotransfection of a Foxq1 expression plasmid did not increase it (data not shown).

To identify potential Muc5ac enhancers that may fall under FOXQ1 control, we searched for conserved intergenic sequences. Only 2 conserved regions (75% and 72% homology between mouse and human) contained forkhead consensus sequences (Figure 6C); no other regions are conserved in either direction until the next structural genes. We cloned these regions upstream of the Muc5ac promoter-reporter and tested FOXQ1-dependent transcriptional activation but observed no enhancement over promoter activity alone (data not shown). Thus, despite identification of putative FOXQ1 cis-elements, we gathered no conclusive evidence for direct Muc5ac gene regulation by FOXQ1. It is, however, important to note that Fox proteins may remodel chromatin, a function not accurately reflected in plasmid-based reporter assays.32,33

(P = .008), we generated Foxq1enu/lb mice. Unlike Foxq1enu/+ or Foxq1lb/+ littermates, compound heterozygous Foxq1enu/lb mice showed loss of PAS staining (Figure 5B and see Supplementary Figure 4 online at www. gastrojournal.org, n = 3), similar to SB/LeJ, and hence provide genetic proof that Foxq1 is responsible for the phenotype. Very weak MUC5AC expression in Foxq1enu/lb stomachs, which we detected by in situ hybridization and immunohistochemistry (Figure 5B and see Supplementary Figure 4 online at www.gastrojournal.org), implies that the Foxq1enu allele is hypomorphic for stomach func-
Muc5ac Expression Defects in Satin Mice Are Not Restricted to the Stomach

More than half of Foxq1^{1_{sb/sb}} mice over 9 months old developed ocular surface abnormalities and accumulated surface debris, which impaired opening of one or both eyes (Figure 7A). Other animals maintained in the same colony never showed the same pathology, and we noted that Muc5ac is also present in conjunctival goblet cells.8 Most conjunctival epithelial cells produce the membrane-spanning mucins Muc1 and Muc4.8 Goblet cells occupy the conjunctival fornix; resemble intestinal goblet cells in morphology; and, like mucus in the GI tract, secrete products that function to lubricate the surface, clear debris, and provide antimicrobial defense.34 Initial inspection revealed the typical frequency and appearance of goblet cells in Foxq1^{1_{sb/sb}} conjunctivae, and mutant goblet cells stained with both PAS and Alcian blue, similar to controls (Figure 7B–G); these findings differ from the dramatic loss of PAS signal in Foxq1^{1_{sb/sb}} stomach (Figure 2A). However, conjunctival goblet cells differ from gastric pit cells, which express only MUC5AC, in that they express multiple mucin glycoproteins.34 Indeed, immunostaining revealed striking absence of MUC5AC in Foxq1^{1_{sb/sb}} conjunctival goblet cells (Figure 7H). Muc5ac gene expression thus appears to depend on Foxq1 function in more than one tissue, and its absence from the conjunctiva is sufficient to produce an overt ocular phenotype.

Discussion

Surface GI epithelia engage in continuous self-renewal and differentiation of highly specialized cells. Few genetic studies have identified TFs that are responsible for particular cell features, especially in the stomach.1–3 Here, we report the characterization of a TF required for normal gastric foveolar cell differentiation. We show that Foxq1 mutations in mice severely limit foveolar cells’ ability to synthesize MUC5AC and to fill the secretory granules that characterize this unique cell lineage. Besides MUC5AC, other foveolar cell products such as TFF1 and Gkn1, which are also stored in mucous granules,7,35–37 are unaffected by loss of Foxq1 function, and expression profiling revealed a narrow spectrum of dysregulated genes. In this light, we expected to find normal numbers and appearance of pit cell mucous granules, but Foxq1^{1_{sb/sb}} stomach ultrastructure disclosed fewer and smaller granules. This suggests that absence of MUC5AC, the backbone for the major content of these granules (neutral stomach-specific mucin), may preclude normal mucous granule formation or stability, similar to the effect of MUC2 loss on intestinal goblet cells.38

On the other hand, mutant pit cells are not devoid of granules,
and gastrokine-1 immunostaining localizes correctly to the cell apex. The sum of these findings is explained most conservatively by failure of granule filling when cellular MUC5AC levels are limiting, which suggests that Foxq1 may have evolved to fulfill a limited but essential function in pit cells. RNA microarray analysis revealed a handful of additional genes that are dysregulated in Foxq1 mutant stomach, including Rpgrip, Sec22, and Stk25, which have known roles in assembly and function of membranous organelles. These data raise the particular possibility that FOXQ1 makes additional contributions toward assembly, stability, or the structure of pit cell apical granules.

Although our data establish that Foxq1 is required for Muc5ac expression in diverse tissues, the underlying mechanisms remain unresolved. Our analysis of a limited promoter region and putative enhancers do not support the elementary possibility that FOXQ1 directly activates Muc5ac gene transcription. On the one hand, cell transfection assays may limit the ability to determine FOXQ1 functions if, for example, an essential cofactor is missing or the epigenetic state is nonpermissive. On the other hand, FOXQ1 may regulate Muc5ac transcription through a distant enhancer that eluded our detection or via intermediary effectors; FOXQ1 may also be just one of several TFs that regulates Muc5ac. These possibilities will require specific antibodies and other tools to resolve definitively. One group previously suggested that FOXQ1 may repress transcription, in which case, its effects on Muc5ac gene expression could be complex.

The gastric phenotype of Foxq1^{1b/b} and Foxq1^{1b/en} mice notably resembles that reported in mice with Slp2a gene mutations, specifically in the reduced number of pit cell mucous granules. Slp2a is a synaptotagmin-like protein that interacts selectively with Rab27, a small GTPase known to regulate intracellular vesicle transport in diverse cells, and Slp2a-Rab interaction seems to be essential for mucous granule formation and exocytosis. Quantitative RT-PCR analysis of Foxq1^{1b/b} stomach did not uncover altered RNA levels of Slp- or Rab-family genes (data not shown). Stable synthesis of foveolar cell mucous granules thus requires at least 2 independent processes: intact Slp2a-Rab function and Foxq1-dependent synthesis of MUC5AC and a small number of other gene products.

Elaboration of mucus is an essential function of certain epithelia, and properties of the mucus secreted in

Figure 7. Absence of MUC5AC expression in Foxq1^{f_f} conjunctiva. (A) Ocular phenotype of >50% of aged (≥6 months) Foxq1^{f_f} mice: accumulation of debris (arrow) around the eye. (B–I) Histochemical analysis of serial tissue sections of adult murine conjunctiva from Foxq1^{f_f} (B, D, F, H) and age-matched wild-type (C, E, G, I) mice. B and C: H&E stained; D and E: PAS stained; F and G: Alcian blue stained; H and I: MUC5AC immunostain. Scale bars, 60 μm.
different tissues are dictated in part by the mucin polypeptide. MUC5AC is by far the predominant mucin produced in gastric pit cells; secretion of the mature, glycosylated product protects the epithelium from acid, enzymatic, or physical damage. Foxq1 is selectively expressed in surface mucous cells, and our data argue for its requirement in Muc5ac gene regulation. Nearly complete absence of MUC5AC does not produce overt disease in the stomach, including ulcers, inflammation, or tumors, which may reflect the artificial environment of animals maintained in the laboratory; by contrast, aging Foxq1−/− mice develop ocular symptoms that can be attributed in principle to chronic MUC5AC deficiency. In some human dry-eye (keratitis sicca) conditions such as Sjögren’s syndrome, reduced Muc5ac mRNA and protein levels correlate with disease severity.44 Future studies might thus apply Foxq1 mutant mice to investigate pathophysiology of gastric and ocular mucus deficiency.

Supplementary Data

Note: To access the supplementary material accompanying this article, visit the online version of Gastroenterology at www.gastrojournal.org, and at doi: 10.1053/j.gastro.2008.014.019.

References

Received September 4, 2007. Accepted April 13, 2008.

Address requests for reprints to: Ramesh A. Shivdasani, MD, PhD, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115. e-mail: ramesh_shivdasani@dfci.harvard.edu; fax: (617) 582-8490.

Supported by grant R01DK61139 (to R.A.S.) and fellowship training grants T32DK007533 (to A.H.K.) and T32DK07477 (to M.P.V.) from the National Institutes of Health and a Crohn's and Colitis Foundation Fellowship (to M.P.V.).

The authors thank Luanne Peters, Qiang Liu, and members of our laboratory for critical review of the manuscript; Karin Oien for gastrokine-1 antiserum; David Alpers for antibody against gastric intrinsic factor; and Adam Bass and Dan Podolsky for gifts of gastric cancer cell lines.

Conflicts of interest: No conflicts of interest exist.

M.P.V. and A.H.K. contributed equally to this study.