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ABSTRACT: 

 

Location Determination Problem (LDP) is a classic and interesting problem both for photogrammetry and computer vision 

community: Given an image depicting a set of landmarks with known locations, determine that point in space from which the image 

was obtained. In this paper we try to use image sequences to automatically solve LDP in local Euclidean space in which no 

georeference information is needed. Overlapping image sequences are preferable for matching images obtained in cities. We 

implement a method which can semi-automatically solve LDP in urban scenario with state-of-the-art 3D reconstruction system. 

 

1. INTRODUTION 

Nowadays Google Maps and other city-scale 3D reconstruction 

systems with street view are widely used for visual exploration 

of cities. Those systems often rely on structured photos captured 

using sensors equipped with GPS and Inertial Navigation Units 

which make post-processing much easier. However, these 

systems only cover large cities and famous avenues attractive to 

tourists. Furthermore, many people do not need absolute 

georeference information in daily vision-related applications 

such as augmented reality. Only location information in local 

space is enough. For example, given an image taken from a 

place (Figure 1a), one can guess that the photo was taken from a 

window of a nearby building (Figure 1b) according to viewing 

direction of the given image. But it’s difficult to locate the 

precise location. The authors of this paper are interested in such 

a problem: given an image I, locate the place in another image J 

where image I is taken. 

 

        
                Figure 1a                                       Figure 1b 

Figure 1: Given image and building where the image was taken 

 

The problem is defined as ‘space resection’ in photogrammetry 

community and ‘pose estimation’ or ‘extrinsic camera 

calibration’ in computer vision community. Extrinsic camera 

calibration is often carried in calibration field using well-

designed targets/rigs. This is not the case in our problem 

because there’re no pre-installed rigs and image I is taken 

arbitrarily. The difference between space resection and pose 

estimation is that the given image points in space resection is 

georeferenced, whereas pose estimation is usually in local 

Euclidean space. Location Determination Problem is a general 

definition both for the photogrammetry and computer vision 

communities: Given a set of m control points, whose 3-

dimensional coordinates are known in some coordinate frame, 

and given an image in which some subset of the m control 

points is visible, determine the location (relative to the 

coordinate system of the control points) from which the image 

was obtained. (Fischler, Bolles, 1981) presented the well known 

model-fitting paradigm Random Sample Consensus (RANSAC) 

and use model inliers to solve the "perspective-n-point" 

problem (PnP). The PnP problem which is an equivalent but 

mathematically more concise statement of the LDP is originally 

defined in (Fischler, Bolles, 1981) as: Given the relative spatial 

locations of n control points, and given the angle to every pair 

of control points from an additional point called the Center of 

Perspective (CP), find the lengths of the line segments ("legs") 

joining the CP to each of the control points. The aim of the 

Perspective-n-Point problem (PnP) is to determine the position 

and orientation of a camera given its intrinsic parameters and a 

set of n correspondences between 3D points and their 2D 

projections (Moreno-Noguer, Lepetit, Fua, 2007). Therefore, 

the solution to our problem mainly resorts to pose estimation in 

reconstructed local Euclidean space. To automate the process, 

3D reconstruction of the scene depicted in image I should be 

done first. Then the 3D reconstructed scene is used to determine 

the 3D position of the view point of image I. And the calculated 

3D coordinate of view point is projected to image J to visually 

locate the position. 

 

Nowadays, given a set of overlapping images of a scene shot 

from nearby camera locations, it’s easy to create a panorama 

that seamlessly combines the original images and reconstruct 

the 3D scene using extracted correspondences among several 

images. (Fitzgibbon, Zisserman, 1998) presented method that 

could simultaneously localize the cameras and acquire the 

sparse 3D point cloud of the imaged objects using closed or 

open image sequences. (Lowe, 1999; Lowe, 2004) presented 

Scale Invariant Feature Transform (SIFT) operator to extract 

features that are invariant to image scale and rotation, which can 

be used to robustly match images across a substantial range of 

affine distortion and change in 3D viewpoint. (Zhang and 

Koseca, 2006) used SIFT to geo-locate images by finding geo-

tagged image match in pre-built database. But we don’t assume 

geo-location information such as geo-tags in our research for 

generality purpose. (Snavely et al., 2006; Snavely et al., 2008) 

presented state-of-the-art system (called Bundler) that can 

automatically structure large collections of unordered images 

and they have scaled up the Structure From Motion (SFM) 

vision algorithms to work on entire cities (Agarwal et al., 2011) 

using photographs obtained from image resource website like 

Flickr. 
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While systems like Bundler can automatically reconstruct 3D 

scenes using a large number of unordered images, the system 

might produce erroneous result due to lack of enough overlap 

between images and good estimate of focal length of images. 

The second problem can be solved by adding the CCD width 

database to the EXIF reading script. As to the second problem, 

the authors of the system recommend at least 15 degrees 

interval between nearby viewpoints, but this condition cannot 

be satisfied in our case as we don’t limit the angle of viewpoints 

between image I and other images. As a result, the image I will 

not be registered with the other photos, because there weren't 

enough matches and angle between camera viewpoints is 

relatively large.  

 

Based on the above observation, we present a method detailed 

in section 2 to solve the LDP problem in urban environment. 

The experiment result and discussion is described in section 3. 

 

 

2. METHODOLOGY 

If we’ve got an image I depicting a set of landmarks with known 

locations, then we can determine that point in space from which 

the image was obtained by space resection or pose estimation. 

So we can first reconstruct the 3D scene appears in image I 

using overlapping images collected afterwards and extend the 

image sequences to cover the whole building. Because we 

cannot register image I with other images as mentioned above, 

we cannot directly obtain the 3D position corresponding to 

points in image I by 3D construction of the scene. So we have 

to match image I with images used in 3D reconstruction and 

obtain the 3D position of points in image I by transfer: given 

the position of a point in one (or more) image(s), determine 

where it will appear in all other images of the set (Hartley and 

Zisserman, 2004). After we’ve got the 3D position of the 

viewpoint of image I by pose estimation, we can project it to the 

images covering the building and visually locate the place. So 

our method could be mainly separated to three steps: 

1. 3D reconstruction of the scene: reconstruct the scene using 

image sequences covering the landmarks in image I and the 

nearby environment (e.g. the building). 

2. Point transfer: match image I and images used to do 3D 

reconstruction and transfer image points with known 3D 

position to image I. 

3. Pose estimation and viewpoint projection: solve PnP 

problem using the points in image I and their 

corresponding 3D position obtained in step 2. Project the 

calculated viewpoint of image I to images covering nearby 

environment. 

 

2.1 3D reconstruction of the scene 

We’ve compiled Bundler v0.4 under Linux and use the system 

to create a 3D reconstruction. We first extract image 

information (including focal length and image resolution) using 

Perl script. Interest points are detected in the given image I as 

well as each image in image sequences using SIFT operator. 

Images are matched against each other using approximate 

nearest neighbour search. Mismatches often result from clutters 

and shadows which are common in urban scenes. RANSAC is 

used to detect and remove outliers in point correspondences. 

The main program “bundler” solves the Bundle Adjustment 

problem using Levenberg–Marquardt algorithm. After all 

possible images have been registered, Bundler outputs 3D 

reconstruction containing the reconstructed cameras and sparse 

3D points. The estimated extrinsic and extrinsic parameters of 

each registered camera contain: 

f:          the focal length, 

k1, k2: radial distortion coeffs 

R:        3x3 matrix representing the camera rotation 

t:          a 3-vector describing the camera translation 

 

Parameters of each reconstructed point has the form: 

position:   a 3-vector describing the 3D position of the point 

color :      a 3-vector describing the RGB color of the point 

view list:  a list of cameras the point is visible in 

 

The view list begins with the number of cameras the point is 

visible in and followed by a list of quadruplets <camera> <key> 

<x> <y>, where <camera> is a camera index, <key> the index 

of the SIFT keypoint detected in that camera, and <x> and <y> 

are the detected 2D positions of that keypoint in that camera.  

We use a pinhole camera model. The origin of the camera 

coordinate system the center of the image, the positive x-axis 

points right, the positive y-axis points up and the positive z-axis 

points backwards. Therefore, the estimated parameters of each 

camera specified above can be used to project a 3D point X into 

a camera (R, t, f) by: 

 

 

                                      P = R * X + t                                       (1) 

                                      p = -P / zp                                           (2) 

                                      p' = f * r(p) * p                                    (3) 

 

 

where zp is the third coordinate of P. Equation 1 transforms the 

coordinates of a 3D points from a world coordinate system to 

the current camera coordinate system. Equation 2 commits 

perspective division and Equation 3 converts the coordinates to 

values in pixel. In the last equation, r(p) is a function that 

computes a scaling factor to undo the radial distortion 

(Equation 4): 

 

 

r(p) = 1.0 + k1 * ||p||^2 + k2 * ||p||^4            (4) 

 

 

2.2 Point Transfer 

We can obtain 3D points and their corresponding positions in 

image sequences from output of the first step. To find the 

projections of these 3D points, we must first establish the 

relationship between image I and images in sequences using a 

set of auxiliary point correspondences. If image I is registered 

with other images in bundle adjustment process, we would 

directly get the 3D position of image I by: 

 

 

   X(I) = -R' * t                                           (5) 

 

 

And the projection of viewpoint of camera I into each camera 

would be calculated by Equation 1, 2 and 3. Then point transfer 

and pose estimation will not be necessary. But usually image I 

cannot be registered with other images (none in our experiment) 

due to large variations of scale and angles of viewpoint. The 

alternative procedure we take in this research is to transfer 

points from image(s) used in reconstruction to image I and use 

the transferred points to estimate the pose of I. 
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2.3 Pose estimation and viewpoint projection 

We use EPnP (Lepetit et al., 2009) to estimate the pose of 

image I in the reconstructed space. The calculated 3D 

coordinates X(I) is then projected into images covering the 

nearby environment. The viewpoint of image I is determined 

when p'(I) lies in effective area of an image plane. 

 

 

3. RESULTS AND DISCUSSION 

To test the presented method, we firstly took the photo shown in 

Figure 1a. And the actual place where we took the image is 

marked with a red circle. Then we went to the square and took a 

collection of overlapping images (Figure 2). To guarantee the 

accurate 3D using Bundler, we keep relatively small angle 

between viewpoints of neighboring images. The reconstructed 

3D scene is illustrated in Figure 3, in which the position of 

3704 points and pose of 24 cameras are visualized. Figure 4 

shows 12 of all 3704 points and their projections in an image. 

These projected points are transferred to image I in Figure 5. 

Figure 6 illustrates the actual position and projection of the 

calculated 3D viewpoint of image I to an image covering the 

building. Figure 7a, 7b and 7c give show the presented method 

tested another dataset. 

 

The computation of our method is mainly cost by image 

matching procedure. Not all of the cameras can be registered 

using Bundler, and sometimes the reconstruction is not accurate. 

The result of point transfer has many outliers which often lead 

to fault estimation. In this research we cut off some outliers by 

hand and recalculate the viewpoint of image I using EPnP. 

 

 
Figure 2: 9 of 24 images used to reconstruct the scene 

 

 
      Figure 3: The reconstructed 3D scene (point cloud) 

 
Figure 4: Reconstructed points projected to an image (red 

crosses) 

 

 
Figure 5: Point transfer (green crosses) 

 

 
Figure 6: The estimated viewpoint (green point) of image I and 

its actual place (red point) 

 

 
Figure 7a: Anoter test image 
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Figure 7b: Images used to reconstruct the scene 

 
 

 
Figure 7c: The estimated viewpoint and its actual place 

 
4. CONCLUSIONS AND FUTURE WORK 

In this paper we present an approach to solve the Location 

Determination Problem in urban environment using image 

sequences. The outdoor scene depicted in the given image is 

reconstructed first. Points of images used in the reconstruction 

are transferred to the given image in order to obtain the control 

points. Then pose of the given image is estimated using PnP 

solver. The computation of the presented method mainly lies in 

matching and reconstruction process. In the future work, GPU 

computation should be considered to speed up the matching 

process. We may also try other feature operators such as 

Speeded Up Robust Features (SURF) and ORiented Brief (ORB) 

to evaluate their performance in our research environment. We 

will test patch-based algorithms for methods that find both 

dense and global matches have often had high time cost in the 

matching stage. In Parallel  Tracking and Mapping (PTAM) 

there are no descriptors as in SIFT but “warped” patches which 

makes it fast and detectable at bigger angles, which makes it 

possible to register images with relative large angles between 

viewpoints.  Another function that is worthy to add to our 

method is to geo-locate the reconstructions and the given image 

I as well if the image sequences come with geo-tags/GPS 

information. However, geographical information obtained from 

images is frequently incorrect, noisy and even missing, which 

means we must introduce robust estimation method to further 

improve the accuracy and automation of the presented method. 
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