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Motivation: POPL 2015

What is a Good Algorithm?

I Computational cost: number of operations executed by the algorithm
I Objective: reduce the operation complexity

I Execution time: time to execute the operations
I Actually, time to execute the operations and time to move the operands

in the system
I Example: moving data from disk to RAM at 3Gb/s
I Example: moving data from RAM to CPU at 17Gb/s
I ...
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á Good algorithm: good execution time (computation + data
movement)

4



Motivation: POPL 2015

A Look at Architectural Trends
I The relative cost of data movement vs. computation keeps increasing

I Ex: Intel 80286: 2 MIPS, 13 MB/s for transfer RAM->CPU
I Ex: Intel core i7: 50,000 MIPS, 16,000 MB/s for transfer RAM->CPU

I The relative energy cost of data movement vs. computation keeps
increasing

Source: Jim Demmel, John Shalf 
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á Computational complexity alone is not sufficient. Data movement
complexity matters!
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Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost

I Data movement cost different for
two versions

I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
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Data movement cost different for 
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Also depends on cache size

Question: Can we achieve lower 
cache misses than this tiled 
version? How do we know when 
no further improvement is 
possible?

Question: What is the lowest 
achievable data movement cost 
among all possible equivalent 
versions of the computation?

I Data movement cost different for
two versions

I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
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schedules
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Prior work & Challenges: POPL 2015

Graph based
I Arbitrary CDAGs

I [Hong and Kung, 1981]: all
valid schedules all valid
“2S-partitions” of CDAG

I (+) Generality
I (-) manual reasoning =⇒

challenge to automate

Geometric data footprint
I Linear algebra like algorithms
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I [Irony et al., 2004],
[Ballard et al., 2011]: Geom.
approach based on Loomis-Whitney
(LW) inequality

I [Christ et al., 2013]: Automation
based on Holder-Brascamp-Leib
(HBL) ineq.

I (+) Automated
I (-) Restricted model =⇒ weakness

of bounds or inapplicability
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Prior work & Challenges: POPL 2015

Our work: Static analysis to automate asymptotic parametric
lower bounds analysis of affine codes for CDAG model.
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Loomis-Whitney inequality
I E ⊂ Rd

I φ1(E), . . . ,φd(E) its projections on the coordinates hyperplanes

Example (d = 3):

|E | ≤ |φ1(E)|1/2×|φ2(E)|1/2×|φ3(E)|1/2

|E | ≤ |φ1(E)|1/(d−1)×·· ·× |φd(E)|1/(d−1)

10
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Hong & Kung 2S-partioning

Hong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG 
 Any valid schedule using S 

registers is associated 
with a “2S-partition” of the 
CDAG
�

 
Divide trace into segments 
incurring exactly S 
load/stores
�

 
Ops executed in segment-i 
form a convex vertex set VSi

�

 
|In-set(VSi )| <= 2S
�

 
Since each segment (except 
last) must have S 
load/stores:                              
�

 
S*NS >= Total I/O >=S*(NS-1)
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Load
Load

Load

Load
Load
Load
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Store
Store
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Total of NS Segments

Se
gm

en
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Se
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en
t 2

Se
gm
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t 3

I Any valid schedule is asociated with
a 2S-partition

S-partition

Collection of h subsets (V1, . . . ,Vh) of
V \ I s.t:

P1 pairwise disjoint

P2 no cyclic dependence

P3 ∀i, |In(Vi)| ≤ S

I Largest vertex-set: PHong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG 
�

�

�

�

�

�

Load
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Load
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 Analysis of  CDAG structure
�

 
Establish Max |VSi | <= VSmax (S)

�

 
=> Min. # vertex sets = NSmin (S) = 
Nvertices /VSmax (S)
�

 
=> IOmin (S) >= (NSmin -1)*S
�

 
In example above:
• S=2,  Nvertices =16
• VSmax (S) = 4  =>  NSmin = 16/4 = 4
• IOmin >= 2*(4-1) = 6

Data movement
complexity

Q ≥
(
|V |
|P| −1

)
×S
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Static analysis of affine programs: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

0 1 2 3 4 5
i

0

1

2

3

4

5

t

á Apply geometric reasoning on Z-polyhedra to bound |P|
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Example 1: Jacobi 1D

Parameters : N, T; Inputs : I[N]; Outputs : A[N]
for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

DFG:

I

S1

 e1 

S2

 e2  e3  e4  e5  e6 

S3

 e7  e8  e9  e10 

14
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Example 1: Jacobi 1D

Injective (DFG) circuit:

S2

S3

 e7  e8 

Set of disjoint (CDAG) paths:

0 1 2 3 4 5 6 7 8
i

0

1

2

3

4

5

6

7

8

t

From disjoint paths to projections

I For any P  at most one element per disjoint path in In(P).

I ~b as projection vector for φi  |φi(P)| ≤ |In(P)| ≤ 2S.
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Example 1: Jacobi 1D

0 1 2 3 4 5 6 7
i

0

1

2

3

4

5

6

7

t

Original space

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i

−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6

t

Transformed space
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Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i

−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6

t

Apply Loomis-Whitney inequality:

|P| ≤ (2S)2  Q = Ω
(

NT
S

)
− (N +T )
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High-Level algorithm

1 Extract data flow graph (DFG) from source code.
2 Identify paths of interest in DFG
3 Obtain projections that satisfy |φj(P)| ≤ |In(P)|.
4 Apply geometric reasoning to obtain the lower bounds

18
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more in the paper...

I use of “broadcast” paths to find projection directions
I use of generalized geometric Holder-Brascamp-Leib inequality
I Inherent multi-regime parametric characterization

Example: Rectangular matmult (m×n×p)

If m,n,p�
√

2S:

Q = Ω
(

mnp√
S

)
else if m,n�

√
2S and p�

√
2S (mat-vect):

Q = Ω(mn)

else if . . . :
. . .

19
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Conclusion

I Challenge: Computational complexity of algorithms is well understood,
but data movement complexity is not.

I Applications:
I Algorithm analysis: Which currently popular algorithms need rethinking

due to high inherent data movement complexity?
I Compiler assessment: Is further improvement of data locality possible?
I Algorithm-architecture co-design: How to provision future architectures

for the minimal data movement demands of algorithms?

I Ongoing / future work:
I Methodologies
I modeling / systems
I handling irreglar CDAGs
I developing corresponding upper bounds of algorithms
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