
On Characterizing the Data Access Complexity of
Programs

Venmugil Elango1 Fabrice Rastello2 Louis-Noël Pouchet1

J. Ramanujam3 P. Sadayappan1

1The Ohio State University
2Inria

3Louisiana State University

POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages

: POPL 2015

Outline

1 Motivation

2 Prior work & Challenges

3 Static analysis of affine programs

2

Motivation: POPL 2015

Outline

1 Motivation

2 Prior work & Challenges

3 Static analysis of affine programs

3

Motivation: POPL 2015

What is a Good Algorithm?

I Computational cost: number of operations executed by the algorithm
I Objective: reduce the operation complexity

I Execution time: time to execute the operations
I Actually, time to execute the operations and time to move the operands

in the system
I Example: moving data from disk to RAM at 3Gb/s
I Example: moving data from RAM to CPU at 17Gb/s
I ...

4

Motivation: POPL 2015

What is a Good Algorithm?

I Computational cost: number of operations executed by the algorithm
I Objective: reduce the operation complexity

I Execution time: time to execute the operations
I Actually, time to execute the operations and time to move the operands

in the system
I Example: moving data from disk to RAM at 3Gb/s
I Example: moving data from RAM to CPU at 17Gb/s
I ...

á Good algorithm: good execution time (computation + data
movement)

4

Motivation: POPL 2015

A Look at Architectural Trends
I The relative cost of data movement vs. computation keeps increasing

I Ex: Intel 80286: 2 MIPS, 13 MB/s for transfer RAM->CPU
I Ex: Intel core i7: 50,000 MIPS, 16,000 MB/s for transfer RAM->CPU

I The relative energy cost of data movement vs. computation keeps
increasing

Source: Jim Demmel, John Shalf

!"

!#"

!##"

!###"

!####"

$%&&"

!!'&"()#!*+"

45 nm

11 nm

Decrease in
energy for FLOP
much greater than
for data
movement

P
ic

o
jo

u
le

s

No Change

á Computational complexity alone is not sufficient. Data movement
complexity matters!

5

Motivation: POPL 2015

A Look at Architectural Trends
I The relative cost of data movement vs. computation keeps increasing

I Ex: Intel 80286: 2 MIPS, 13 MB/s for transfer RAM->CPU
I Ex: Intel core i7: 50,000 MIPS, 16,000 MB/s for transfer RAM->CPU

I The relative energy cost of data movement vs. computation keeps
increasing

Source: Jim Demmel, John Shalf

!"

!#"

!##"

!###"

!####"

$%&&"

!!'&"()#!*+"

45 nm

11 nm

Decrease in
energy for FLOP
much greater than
for data
movement

P
ic

o
jo

u
le

s

No Change

á Computational complexity alone is not sufficient. Data movement
complexity matters!

5

Motivation: POPL 2015

Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost

I Data movement cost different for
two versions

I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
6

Motivation: POPL 2015

Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost

I Data movement cost different for
two versions

I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
6

Motivation: POPL 2015

Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost

Computational vs. Data Movement Complexity Computational vs. Data Movement Complexity
for (i=1; i<N-1; i++)
for (j=1;j<N-1; j++)

A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
for(jt = 1; jt<N−1; jt +=B)
for(i = it; i < min(it+B, N−1); i++)
for(j = jt; j < min(jt+B, N−1); j++)
A[i][j] = A[i−1][j] + A[i][j−1];

Untiled version
Comp. complexity: (N-1)2 Ops

Tiled Version
Comp. complexity: (N-1)2 Ops

Data movement cost different for
two versions

Also depends on cache size

Question: Can we achieve lower
cache misses than this tiled
version? How do we know when
no further improvement is
possible?

Question: What is the lowest
achievable data movement cost
among all possible equivalent
versions of the computation?

I Data movement cost different for
two versions

I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
6

Motivation: POPL 2015

Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost
I Data movement cost different for

two versions
I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
6

Motivation: POPL 2015

Data Movement vs. Computational Complexity

Untiled

for(i=1; i<N-1; i++)
for(j=1; j<N-1; j++)
A[i][j] = A[i][j-1]\

+ A[i-1][j];

Comp. cost: (N −1)2

Tiled

for(it=1; it<N-1; it+=B)
for(jt=1; jt<N-1; jt+=B)
for(i=it; i<min(it+B,N-1); i++)
for(j=jt; j<min(jt+B,N-1); j++)
A[i][j] = A[i][j-1] + A[i-1][j];

Comp. cost: (N −1)2

Data movement cost
I Data movement cost different for

two versions
I Also depends on cache size
I Question: What is data

movement complexity?

á Data movement complexity:
Minimum data movement cost
considering all possible valid

schedules
6

Prior work & Challenges: POPL 2015

Outline

1 Motivation

2 Prior work & Challenges

3 Static analysis of affine programs

7

Prior work & Challenges: POPL 2015

Graph based
I Arbitrary CDAGs

I [Hong and Kung, 1981]: all
valid schedules all valid
“2S-partitions” of CDAG

I (+) Generality
I (-) manual reasoning =⇒

challenge to automate

Geometric data footprint
I Linear algebra like algorithms

0 1 2 3 4 5 6
j

0

1

2

3

4

5

6

i

I [Irony et al., 2004],
[Ballard et al., 2011]: Geom.
approach based on Loomis-Whitney
(LW) inequality

I [Christ et al., 2013]: Automation
based on Holder-Brascamp-Leib
(HBL) ineq.

I (+) Automated
I (-) Restricted model =⇒ weakness

of bounds or inapplicability
8

Prior work & Challenges: POPL 2015

Graph based
I Arbitrary CDAGs

I [Hong and Kung, 1981]: all
valid schedules all valid
“2S-partitions” of CDAG

I (+) Generality
I (-) manual reasoning =⇒

challenge to automate

Geometric data footprint
I Linear algebra like algorithms

0 1 2 3 4 5 6
j

0

1

2

3

4

5

6

i

I [Irony et al., 2004],
[Ballard et al., 2011]: Geom.
approach based on Loomis-Whitney
(LW) inequality

I [Christ et al., 2013]: Automation
based on Holder-Brascamp-Leib
(HBL) ineq.

I (+) Automated
I (-) Restricted model =⇒ weakness

of bounds or inapplicability
8

Prior work & Challenges: POPL 2015

Graph based
I Arbitrary CDAGs

I [Hong and Kung, 1981]: all
valid schedules all valid
“2S-partitions” of CDAG

I (+) Generality
I (-) manual reasoning =⇒

challenge to automate

Geometric data footprint
I Linear algebra like algorithms

0 1 2 3 4 5 6
j

0

1

2

3

4

5

6

i

I [Irony et al., 2004],
[Ballard et al., 2011]: Geom.
approach based on Loomis-Whitney
(LW) inequality

I [Christ et al., 2013]: Automation
based on Holder-Brascamp-Leib
(HBL) ineq.

I (+) Automated
I (-) Restricted model =⇒ weakness

of bounds or inapplicability
8

Prior work & Challenges: POPL 2015

Our work: Static analysis to automate asymptotic parametric
lower bounds analysis of affine codes for CDAG model.

9

Prior work & Challenges: POPL 2015

Loomis-Whitney inequality
I E ⊂ Rd

I φ1(E), . . . ,φd(E) its projections on the coordinates hyperplanes

Example (d = 3):

|E | ≤ |φ1(E)|1/2×|φ2(E)|1/2×|φ3(E)|1/2

|E | ≤ |φ1(E)|1/(d−1)×·· ·× |φd(E)|1/(d−1)

10

Prior work & Challenges: POPL 2015

Loomis-Whitney inequality
I E ⊂ Rd

I φ1(E), . . . ,φd(E) its projections on the coordinates hyperplanes

Example (d = 3):

|E | ≤ |φ1(E)|1/2×|φ2(E)|1/2×|φ3(E)|1/2

|E | ≤ |φ1(E)|1/(d−1)×·· ·× |φd(E)|1/(d−1)

10

Prior work & Challenges: POPL 2015

Hong & Kung 2S-partioning

Hong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG
 Any valid schedule using S

registers is associated
with a “2S-partition” of the
CDAG
�

Divide trace into segments
incurring exactly S
load/stores
�

Ops executed in segment-i
form a convex vertex set VSi

�

|In-set(VSi)| <= 2S
�

Since each segment (except
last) must have S
load/stores:
�

S*NS >= Total I/O >=S*(NS-1)

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

Store
Load
….

1

1

2

2

3

3

4

4

5

6

7

5

6

7

VS1

VS2

VS3

Total of NS Segments

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

I Any valid schedule is asociated with
a 2S-partition

S-partition

Collection of h subsets (V1, . . . ,Vh) of
V \ I s.t:

P1 pairwise disjoint

P2 no cyclic dependence

P3 ∀i, |In(Vi)| ≤ S

I Largest vertex-set: PHong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG
�

�

�

�

�

�

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

Store
Load
….

1

1

2

2

3

3

4

4

5

6

7

5

6

7

VS1

VS2

VS3

Total of NS Segments

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

 Analysis of CDAG structure
�

Establish Max |VSi | <= VSmax (S)

�

=> Min. # vertex sets = NSmin (S) =
Nvertices /VSmax (S)
�

=> IOmin (S) >= (NSmin -1)*S
�

In example above:
• S=2, Nvertices =16
• VSmax (S) = 4 => NSmin = 16/4 = 4
• IOmin >= 2*(4-1) = 6

Data movement
complexity

Q ≥
(
|V |
|P| −1

)
×S

11

Prior work & Challenges: POPL 2015

Hong & Kung 2S-partioning

Hong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG
 Any valid schedule using S

registers is associated
with a “2S-partition” of the
CDAG
�

Divide trace into segments
incurring exactly S
load/stores
�

Ops executed in segment-i
form a convex vertex set VSi

�

|In-set(VSi)| <= 2S
�

Since each segment (except
last) must have S
load/stores:
�

S*NS >= Total I/O >=S*(NS-1)

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

Store
Load
….

1

1

2

2

3

3

4

4

5

6

7

5

6

7

VS1

VS2

VS3

Total of NS Segments

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

I Any valid schedule is asociated with
a 2S-partition

S-partition

Collection of h subsets (V1, . . . ,Vh) of
V \ I s.t:

P1 pairwise disjoint

P2 no cyclic dependence

P3 ∀i, |In(Vi)| ≤ S

I Largest vertex-set: PHong/Kung SHong/Kung S--Partitioning of CDAG Partitioning of CDAG
�

�

�

�

�

�

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

FLOP

Store
Load
….

1

1

2

2

3

3

4

4

5

6

7

5

6

7

VS1

VS2

VS3

Total of NS Segments

Se
gm

en
t 1

Se
gm

en
t 2

Se
gm

en
t 3

 Analysis of CDAG structure
�

Establish Max |VSi | <= VSmax (S)

�

=> Min. # vertex sets = NSmin (S) =
Nvertices /VSmax (S)
�

=> IOmin (S) >= (NSmin -1)*S
�

In example above:
• S=2, Nvertices =16
• VSmax (S) = 4 => NSmin = 16/4 = 4
• IOmin >= 2*(4-1) = 6

Data movement
complexity

Q ≥
(
|V |
|P| −1

)
×S

11

Static analysis of affine programs: POPL 2015

Outline

1 Motivation

2 Prior work & Challenges

3 Static analysis of affine programs

12

Static analysis of affine programs: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

0 1 2 3 4 5
i

0

1

2

3

4

5

t

á Apply geometric reasoning on Z-polyhedra to bound |P|

13

Static analysis of affine programs: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

0 1 2 3 4 5
i

0

1

2

3

4

5

t

á Apply geometric reasoning on Z-polyhedra to bound |P|

13

Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

Parameters : N, T; Inputs : I[N]; Outputs : A[N]
for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

DFG:

I

S1

 e1

S2

 e2 e3 e4 e5 e6

S3

 e7 e8 e9 e10

14

Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

Injective (DFG) circuit:

S2

S3

 e7 e8

Set of disjoint (CDAG) paths:

0 1 2 3 4 5 6 7 8
i

0

1

2

3

4

5

6

7

8

t

From disjoint paths to projections

I For any P at most one element per disjoint path in In(P).

I ~b as projection vector for φi |φi(P)| ≤ |In(P)| ≤ 2S.

15

Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

Injective (DFG) circuit:

S2

S3

 e7 e8

Set of disjoint (CDAG) paths:

0 1 2 3 4 5 6 7 8
i

0

1

2

3

4

5

6

7

8

t

From disjoint paths to projections

I For any P at most one element per disjoint path in In(P).

I ~b as projection vector for φi |φi(P)| ≤ |In(P)| ≤ 2S.

15

Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

0 1 2 3 4 5 6 7
i

0

1

2

3

4

5

6

7

t

Original space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i

−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6

t

Transformed space

16

Static analysis of affine programs: POPL 2015

Example 1: Jacobi 1D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i

−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6

t

Apply Loomis-Whitney inequality:

|P| ≤ (2S)2 Q = Ω
(

NT
S

)
− (N +T)

17

Static analysis of affine programs: POPL 2015

High-Level algorithm

1 Extract data flow graph (DFG) from source code.
2 Identify paths of interest in DFG
3 Obtain projections that satisfy |φj(P)| ≤ |In(P)|.
4 Apply geometric reasoning to obtain the lower bounds

18

Static analysis of affine programs: POPL 2015

more in the paper...

I use of “broadcast” paths to find projection directions
I use of generalized geometric Holder-Brascamp-Leib inequality
I Inherent multi-regime parametric characterization

Example: Rectangular matmult (m×n×p)

If m,n,p�
√

2S:

Q = Ω
(

mnp√
S

)
else if m,n�

√
2S and p�

√
2S (mat-vect):

Q = Ω(mn)

else if . . . :
. . .

19

Static analysis of affine programs: POPL 2015

Conclusion

I Challenge: Computational complexity of algorithms is well understood,
but data movement complexity is not.

I Applications:
I Algorithm analysis: Which currently popular algorithms need rethinking

due to high inherent data movement complexity?
I Compiler assessment: Is further improvement of data locality possible?
I Algorithm-architecture co-design: How to provision future architectures

for the minimal data movement demands of algorithms?

I Ongoing / future work:
I Methodologies
I modeling / systems
I handling irreglar CDAGs
I developing corresponding upper bounds of algorithms

20

Static analysis of affine programs: POPL 2015

Conclusion

I Challenge: Computational complexity of algorithms is well understood,
but data movement complexity is not.

I Applications:
I Algorithm analysis: Which currently popular algorithms need rethinking

due to high inherent data movement complexity?
I Compiler assessment: Is further improvement of data locality possible?
I Algorithm-architecture co-design: How to provision future architectures

for the minimal data movement demands of algorithms?

I Ongoing / future work:
I Methodologies
I modeling / systems
I handling irreglar CDAGs
I developing corresponding upper bounds of algorithms

20

Static analysis of affine programs: POPL 2015

Conclusion

I Challenge: Computational complexity of algorithms is well understood,
but data movement complexity is not.

I Applications:
I Algorithm analysis: Which currently popular algorithms need rethinking

due to high inherent data movement complexity?
I Compiler assessment: Is further improvement of data locality possible?
I Algorithm-architecture co-design: How to provision future architectures

for the minimal data movement demands of algorithms?

I Ongoing / future work:
I Methodologies
I modeling / systems
I handling irreglar CDAGs
I developing corresponding upper bounds of algorithms

20

Thank
you

end: POPL 2015

Ballard, G., Demmel, J., Holtz, O., and Schwartz, O. (2011).
Minimizing communication in numerical linear algebra.
SIAM J. Matrix Analysis Applications, 32(3):866–901.

Christ, M., Demmel, J., Knight, N., Scanlon, T., and Yelick, K. (2013).
Communication Lower Bounds and Optimal Algorithms for Programs
That Reference Arrays Part 1.
EECS Technical Report EECS–2013-61, UC Berkeley.

Hong, J.-W. and Kung, H. T. (1981).
I/O complexity: The red-blue pebble game.
In Proc. of the 13th annual ACM sympo. on Theory of computing
(STOC’81), pages 326–333. ACM.

Irony, D., Toledo, S., and Tiskin, A. (2004).
Communication lower bounds for distributed-memory matrix
multiplication.
J. Parallel Distrib. Comput., 64(9):1017–1026.

21

	Motivation
	Prior work & Challenges
	Static analysis of affine programs

